
Distinguishing Multiplications from Squaring

Operations

Frederic Amiel1, Benoit Feix2, Michael Tunstall3, Claire Whelan4, and
William P. Marnane5

1 AMESYS,
1030, Avenue Guillibert de la Lauzière,

13794 Aix-en-Provence, Cedex 3, France.
f.amiel@amesys.fr
2 Inside Contactless

41 Parc Club du Golf, 13856 Aix-en-Provence, Cedex 3, France.
bfeix@insidefr.com

3 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, United Kingdom.
tunstall@cs.bris.ac.uk

4 TDS (Time Data Security) Ltd.,
2060 Castle Drive, Citywest Business Campus,

Naas Road, Dublin 24, Ireland.
claire.whelan@tds.ie

5 Department of Electrical and Electronic Engineering,
University College Cork, Cork, Ireland.

liam@eleceng.ucc.ie

Abstract. In this paper we present a new approach to attacking a mod-
ular exponentiation and scalar multiplication based by distinguishing
multiplications from squaring operations using the instantaneous power
consumption. Previous approaches have been able to distinguish these
operations based on information of the specific implementation of the
embedded algorithm or the relationship between specific plaintexts. The
proposed attack exploits the expected Hamming weight of the result of
the computed operations. We extrapolate our observations and assess
the consequences for elliptic curve cryptosystems when unified formulæ
for point addition are used.

Keywords: Side channel attacks, differential power analysis, modular
multiplication and exponentiation, RSA, square and multiply algorithm.

1 Introduction

Side channel attacks on RSA [23] target the algorithm for modular exponenti-
ation, the computation of which is dependent on the private key. It has been
shown in the literature that an attacker can derive a private key by observing
the power consumption during the computation of a näıvely implemented modu-
lar exponentiation [17]. This attack targeted implementations of the square and

multiply algorithm, which has been shown to be vulnerable to this technique,
referred to as Simple Power Analysis (SPA). This vulnerability was present be-
cause the power consumption during the computation of a squaring operation
was different to that of a multiplication, and could, therefore, be distinguished by
simply monitoring the power consumption trace of the target device. This attack
can allow an attacker to simply read the private key from a power consumption
trace.

One of the first countermeasures proposed was a square and multiply always

algorithm [11], which consists of a squaring operation followed by a (possibly
fake) multiplication. While this algorithm achieves the effect of ensuring regular
behaviour regardless of the value of the bits of the exponent, it has a large im-
pact on efficiency. A more efficient approach, known as side channel atomicity,
was proposed in [10]. While this approach does make the operations computed
behave identically in terms of the instantaneous power consumption, other in-
formation being processed, such as the operand value being operated on, may
leak information and provide an attacker with the necessary insight to recover
the private key.

In this paper, we describe an attack that can be applied to algorithms imple-
mented using side channel atomicity [8] without knowledge of the plaintext used.
This is possible because the statistically expected Hamming weight of the result
of a multiplication and a squaring operation has an exploitable difference, which
is visible in the instantaneous power consumption. This highlights the impor-
tance of randomising the exponent used to calculate a modular exponentiation.
A similar attack was previously proposed in [1] but requires that the architecture
of a hardware implementation is known. The attack is also somewhat similar to
the attack described in [27]. However, our attack is based on the distribution of
the Hamming weights of the values being manipulated by a device, rather than
a thorough analysis of the structure of hardware implementations of multipli-
ers [27,29].

In some previously proposed attacks, similar power consumption traces dur-
ing squaring (or doubling) operations in two separate acquisitions have been
exploited by choosing or knowing the plaintexts being manipulated [14,19,30].
However, these attacks can be prevented by blinding the plaintext, and these
attacks are not possible when classical padding schemes are used. The advan-
tage of the attack described in this paper is that an attacker does not need any
plaintext information. Indeed, we assume that an attacker does not have access
to this information.

The implications of the proposed attack are explored further, and we analyse
how attacks based on the statistically expected difference in Hamming weight of
a multiplication and a squaring operation can be applied to implementations of
the elliptic curve point scalar multiplication algorithm central to many elliptic
curve schemes.

This paper is organised as follows. Section 2 describes why the Hamming
weight is of interest in side channel analysis. Section 3 details the difference in
expected Hamming weight between the results of a multiplication and squaring

operation. Section 4 gives practical results using different long integer modular
multiplications on a classical ARM7 microprocessor to validate the theoretical
analysis given. New attacks based on this difference analysis are presented on
public key algorithms in Section 5. In Section 6 we analyse the countermeasures
which can be used in implementations of the algorithms discussed. We conclude
our research in Section 7.

Notation: The base of a value is determined by a trailing subscript, which is
applied to the whole word preceding the subscript. For example, FE16 is 254
expressed in base 16, d = (d`−1, d`−2, . . . , d0)2 gives a binary expression for d.

2 The Hamming Weight

It has been demonstrated that in microprocessors the instantaneous power con-
sumption is typically proportional to the Hamming weight of data being manip-
ulated at a given point in time [8]. This difference in Hamming weight was first
exploited in [17] to attack block ciphers. In this attack, an attacker acquires M
power consumption traces (wi for i ∈ {1, 2, . . . ,M}) during the computation of
a block cipher, and chooses one bit b of an intermediate state generated during
the computation of a block cipher. For a given hypothesis for a secret key value
(or portion of the key) K this bit is predicted and used to determine whether
a corresponding power consumption trace is a member of one of two possible
sets. The first set S0 will contain all the traces where b is equal to zero, and the
second set S1 will contain all the remaining traces, i.e. where the output bit b is
equal to one.

A differential trace ∆ is calculated by finding the average of each set and
then subtracting the resulting values from each other, where all operations on
waveforms are conducted in a pointwise fashion, i.e. this calculation is conducted
on the first point of each acquisition to produce the first point of the differential
trace, the second point of each acquisition to produce the second point of the
differential trace, etc.

∆ =

∑
wi∈S0

wi

|S0|
−

∑
wi∈S1

wi

|S1|

A differential trace is produced for each value that K can take. In DES the first
subkey will be treated in groups of six bits, so 64 (i.e. 26) differential traces will
be generated to test all the combinations of six bits. The differential trace with
the highest peak will validate a hypothesis for K.

In this paper we propose a novel attack based on a similar difference in
Hamming weight. However, in the proposed attack it is not necessary to predict
the value of a bit b, as the difference in Hamming weight is produced by the
statistically expected Hamming weight of the result of the computed operations.
A similar attack was previously proposed in [1] but requires that the architecture
of a hardware implementation is known.

Another commonly used model to describe the power consumption is the
Hamming distance model [8], where the power consumption is proportional to
the Hamming weight of data being manipulated at a given point in time XORed
with some previous state. An analysis of how one would perform the proposed
attack in this case is beyond the scope of this paper.

In smart card implementations of RSA it has traditionally been necessary
to use a cryptographic coprocessor, which would typically be modelled using
the Hamming distance model [8]. However, it has been practically demonstrated
in [2] that the Hamming weight model applies to many public key implemen-
tations using arithmetic coprocessors. Some modern smart card chips are using
32-bit architectures [3,20], which allow for efficient implementations of RSA with-
out requiring a cryptographic coprocessor. In these cases the Hamming weight
model is likely to apply.

3 Defining the Difference in Hamming Weight

In this section we will describe the difference in Hamming weight of a multipli-
cation and squaring operation for random inputs, to describe why the expected
difference in Hamming weight between a multiplication and squaring operation
occurs.

If we consider the classical binary method of long integer multiplication, the
least significant bit will be set to one, if and only if both least significant bits
in the multiplicands are equal to one. The probability of the least significant
bit of the output being one is, therefore, equal to 1/4. In the case of a squaring
operation the least significant bit will be equal to one if the least significant bit
of the input is equal to one. For a random input this will occur with probability
1/2.

The next least significant bit has a higher chance of being equal to one if we
consider a multiplication with random inputs. However, if we conduct a squaring
operation this bit will always be equal to zero. This is because there are only
two bits that could affect this bit in the output. The two values that could affect
this bit are 102 and 112. In the case of 102 only the least significant bit in the
output is set to one and nothing affects the second bit, in the case of 112 both
bits will affect the second most significant bit. The bits will therefore cancel and
produce a carry. I.e. the output of every squaring operation will be equal to 0 or
1 mod 4.

This reasoning can be continued with increased complexity for more signifi-
cant bits and will be valid for all bit lengths, until more bits than half the total
number of bits being considered are included. After this point the least signif-
icant bit ceases to directly affect each bit, and will only have an effect via the
carry.

Defining the exact extent of this difference for n-bit operands is a non-trivial
problem. A method for defining the probability density function of the product
of uniformly distributed random variables is defined in [15]. This method de-
fines a means of computing the probability density function of the result of the

product of two random values that are distributed over a continuous uniform
distribution. Where, for two random values uniformly distributed in the interval
[0, `], the product can take every real value in [0, `2]. Random values generated
in a microprocessor will, by necessity, be distributed on a discrete uniform dis-
tribution. If we consider two discrete random values uniformly distributed in the
interval [0, `], the product cannot take every integer value in [0, `2]. This is be-
cause no integer value in (`, `2] that is coprime with respect to the integer values
in [0, `] can be made from the product of two discrete random values distributed
between [0, `]. The most efficient method of defining the probability distribution,
and computing the expected Hamming weight of the result, is to simply count
all the possible outcomes.

We will consider the multiplication and squaring of random values of bit
length n, with no modular reduction. This is because we are interested in the dis-
tribution of the single-precision operations required to compute multi-precision
operations. We will therefore assume that the values multiplied together will
have an equal bit length. If we consider that the values multiplied together have
a bit length of n, then the input values are, therefore, uniformly distributed over
the integer values in the interval [0, 2n − 1].

The difference in the distributions can be demonstrated by evaluating the
expected output of a multiplication and a squaring operation by calculating the
mean Hamming weight of all the possible results, i.e. the expected Hamming
weight of the result of squaring an n-bit value, X, is calculated as

E(X2) =

2
n
−1∑

i=0

H(i2) · Pr [X = i] =
1

2n

2
n
−1∑

i=0

H(i2) ,

and the Hamming weight of the result of multiplying two n-bit values, X and
Y , is calculated as

E(X · Y) =
2

n
−1∑

i=0

2
n
−1∑

j=0

H(i · j) · Pr [X = i ∧ Y = j] =
1

22n

2
n
−1∑

i=0

2
n
−1∑

j=0

H(i · j) ,

where H is a function that computes the Hamming weight in both cases.
This can be readily computed for bit lengths of less than, or equal to, 16.

For bit lengths greater than 16 it starts to become time consuming to compute
the expected Hamming weight of the output of a multiplication. Figure 1 shows
the expected difference in Hamming weight for bit lengths between one and 16,
and the difference appears to tend to slightly less than one as the bit length
increases.

If we consider multiplication and squaring operations with 16-bit inputs,
the reason for the difference in the expected result can be demonstrated if we
consider the probability of each bit being equal to one. For random, uniformly
distributed, 16-bit inputs the probability of each of the 32 bits in the output
being equal one for a multiplication and squaring operation can be derived if all
the possible inputs are considered. A plot of the probabilities for each bit for
the multiplication and squaring operation is given in Figure 2. Further details
on this expected difference for 32-bit variables are given in the Appendix A.

Fig. 1. The expected difference in Hamming weight between the output of a multipli-
cation and a squaring operation, for bit lengths 1 to 16.

Fig. 2. The probability that each bit of the result of a multiplication (left) and a
squaring operation (right) is equal to one with random 16-bit inputs.

4 Demonstrating the Difference in Practice

Certain multiplication algorithms were implemented on a standard 32-bit mi-
croprocessor. The results of manipulating the power traces acquired while these
multiplication algorithms were being computed are described in this section.

Long Integer Multiplication A 128-bit multiplication using the long integer
multiplication algorithm was implemented on a microprocessor and 3000 acqui-
sitions1 were taken for multiplications and squaring operations with random,
uniformly distributed inputs. The implementation was based on the description
given in [18], and is given in Algorithm 1.

The difference between the two average traces is shown in Figure 3. There are
four peaks in the trace that correspond to the four squaring operations conducted
by the chip to compute the square of the input, i.e. for X = (x3, x2, x1, x0)b,
where b is 232, there will be four occurrences in the 16 multiplications where

1 Similar results are possible with 500 traces. However, the results are not as clear.

Algorithm 1: Long Integer Multiplication

Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b

Output: W = (w2z−1, . . . , w1, w0)b = X · Y

W ← 0
for i = 0 to z − 1 do

c← 0
for j = 0 to z − 1 do

(uv)b ← wi+j + xj · yi + c
wi+j ← v ; c← u

end

w2z−1 ← u
end

return W

i = j when xi · xj is computed. If averaged traces corresponding to the same
operation are subtracted from each other no significant peaks are produced.

Fig. 3. The difference between two averaged power consumptions for long integer mul-
tiplication.

Montgomery Multiplication One of the most common methods of calcu-
lating modular multiplication is using Montgomery multiplication [21]. This is
because of its efficiency, especially as it can be parallelised in hardware and does
not require any time-consuming word-by-word divisions.

Montgomery multiplication [21] does not return the simple product of X and
Y modulo M . The algorithm actually returns XY R−1 mod M , where R−1 mod
M is introduced by the algorithm (R = bz), which imposes certain restrictions
on its use. The conditional subtraction has been shown to be unnecessary, and

undesirable in a secure implementation, and was not included in our implemen-
tation [25,26].

A description of Montgomery multiplication is given in Algorithm 2. Here b
is the size of the basic data unit, usually a machine word, and z is the number
of words in the representation of M , X and Y .

Algorithm 2: Montgomery Multiplication

Input: X = (xz−1, . . . , x1, x0)b, Y = (yz−1, . . . , y1, y0)b,
M = (mz−1, . . . , m1, m0)b, R = bz with gcd(M, b) = 1, and M ′ = −M−1

mod b
Output: A = (az−1, . . . , a1, a0)b = X · Y ·R−1 mod M

A← 0
for i = 0 to z − 1 do

ui ← (a0 + xi · y0)M
′ mod b

A← (A + xi · Y + ui ·M)/b
end

if A ≥M then A← A−M

return A

As previously, a 128-bit multiplication algorithm was implemented and 3000
acquisitions were taken for multiplications and squaring operations with random,
uniformly distributed inputs. The difference in the average trace produced by
each set of acquisitions is shown in Figure 4.

Fig. 4. The difference between two averaged power consumptions for Montgomery
multiplication.

The first peak will be produced by the calculation of a0 + x0 · y0 mod b, as
a0 is set to zero so the difference in the distribution will be visible even where
this can be calculated with one instruction (e.g. on ARM microprocessors).

In the implementation analysed the processor computed A ← A + u0 ·M
followed by A ← A + xi · Y . The group of peaks following the first peak are
caused by the repeated manipulation of u0 when it is multiplied by M . The
peaks are dependent on the value of M , and therefore M ′, that is being used
and will vary from one analysis to another.

This is followed by a large peak that corresponds to the computation of x0 ·y0,
which is subsequently combined with u0 ·M by adding the result to A. The next
group of three peaks are created by the manipulation of A when it is combined
with u1 ·M .

This is followed by three groups of small peaks that correspond to the mul-
tiplication of three squaring operations conducted by the chip to compute the
square of the input, i.e. three instances where i = j when xi · yj is computed.

5 Exploiting the Difference in Tamper Resistant

Cryptographic Primitives

Once an exponentiation algorithm has been chosen, for instance Barrett or Mont-
gomery exponentiation [5,21], a common countermeasure to protect embedded
implementations from Simple Power Analysis, consists in using side channel
atomicity. This was introduced in [10], where they deem an algorithm to be se-
cure if it can be broken down into indistinguishable blocks. In this section we
describe how these schemes can be attacked by observing the difference between
a multiplication and a squaring operation.

5.1 Recovering the Exponent in Atomic Exponentiations

The simplest exponentiation algorithm is the square and multiply algorithm, that
functions by scanning the bits of an exponent from left to right. An accumulator
is initially set to one and for each bit of the exponent scanned the accumulator
is operated upon. For each bit the accumulator is squared, and when a bit
is equal to one the accumulator is multiplied by the value being raised to the
power of the exponent. The square and multiply atomic exponentiation algorithm
simply means that squaring operations are computed using the same algorithm
as multiplications and the side channel becomes identical [10].

If a series of power consumption traces are taken, the points corresponding
to each operation (multiplication or squaring) can be identified using a method
similar to that described in [27] for identifying multiplications with a constant
value. The average power consumption trace of each operation can be compared
to the operation preceding, or following, it by performing a pointwise subtraction.
If this corresponds to subtracting the power consumption trace of a squaring
from that of a multiplication peaks will be visible (as shown in Figure 3), in the
case where the opposite occurs the same peaks will occur but will be negative.

It is interesting to note that an attacker does not need to have any knowledge
of the values being manipulated.

An attacker would therefore be able to determine a k-bit exponent by mak-
ing 3

2
k − 1 comparisons, i.e. comparing each operation with one neighbouring

operation. This can be decreased by a factor of two, where an attacker can be
sure that each comparison gives noise free information, by only including each
operation in a comparison once.

If we consider the (M,M3) algorithm, as described in [10], analysing the
power consumption traces is sufficient to decrease the security of the algorithm.
However, we cannot recover the entire private exponent d. The (M,M 3) algo-
rithm functions in a similar manner to the square and multiply algorithm, but
there are three possible cases when parsing the bits of the private exponent from
left to right. When di = 0 a squaring operation is performed. When didi−1 = 102

the device computes a squaring operation, a multiplication with M and then a
squaring operation. The third case occurs when didi−1 = 112, where the device
computes two squaring operations followed by a multiplication with M 3.

In the remainder of this section we will denote a multiplication by M and a
squaring operation by S. Any sequence of operations MSM is particular because
it indicates that the last two operations correspond to the secret bits didi−1 =
102 and that di+2di+1 = 112. Indeed, this sequence can only be part of a longer
sequence SSMSM . We can also identify any bits of an exponent set to zero
when there are more than two consecutive squaring operations.

Through simulations of this attack we were able to determine that an attacker
can retrieve, on average, 37% of the bits of a private exponent by exploiting the
sequence MSM , and a further 17% of the bits by identifying repeated squaring
operations. Thus, an attacker would be able to retrieve 54% of the bits of a
private exponent using the attack method proposed above.

In case where the public exponent is small (for instance 3 or 216 + 1), half
of the most significant bits of d are intrinsically leaked as showed in [7]. Thus,
combined with the side channel leakage, up to 3/4 of the bits of a private ex-
ponent could be considered to be recoverable by an attacker. However, there
are currently no factorisation techniques in the literature that can benefit from
such partial information, although an interesting approach has been published
in [13], where the authors assume that the exponent is modified by a small ran-
dom value. How the proposed attack can be applied to an implementation where
this occurs is discussed in Section 6.2.

5.2 Recovering the Scalar in ECC using Unified Addition Formulæ

In the context of Elliptic Curve Cryptosystems (ECC), the ability to distinguish
a multiplication operation from a squaring operation can also facilitate the ex-
traction of secret information. The calculation of the point scalar multiplication
of rPPP , where r is a secret scalar value, PPP is a point on the prescribed elliptic
curve, and the operation of rPPP is known as point scalar multiplication is central
to a number of ECC schemes, such as EC-DH [6]. One of the most side-channel
näıve methods to calculate rPPP is the double and add method, which involves

accumulatively doubling and adding the point PPP , the sequence of which is deter-
mined by the binary representation of r [4]. This method is inherently vulnerable
to Simple Power Analysis and other side-channel attacks.

A countermeasure, known as unified addition formulæ, to make the double
operation indistinguishable from the addition operation was proposed in [6,9].
This method defined formulæ for the calculation for point addition and point
doubling, which is equivalent for both operations. Specifically, the slope for each
operation is equivalent. For example, the slope calculated during the addition of
the points PPP = (x1, y1), QQQ = (x2, y2) is

λ =
x2

1 + x1x2 + x2
2 + a2x1 + a2x2 + a4 − a1y1

y1 + y2 + a1x2 + a3

,

regardless of whether PPP is equal, or not equal, to QQQ. Hence, no discernible differ-
ence between the addition and doubling of a point is present in the formula. In
light of the work described in this paper, a difference between these operations
can be identified. The calculation of x1 · x2 in the calculation of λ will allow
an attacker to determine whether an addition or a doubling operation is being
performed, since when a double is performed x1 ·x2 = x2

1, and will be vulnerable
to the attack process described in Section 5.1.

Similarly, this potential exploit can be witnessed when the elliptic curve
points are represented and operated on as projective coordinates, which will be
the case in most practical implementations. Unified formula for point addition
and multiplication using projective coordinates was also given by [9] and further
examined by [24]. In this case the addition of the points PPP = (X1, Y1, Z1),
QQQ = (X2, Y2, Z2), with xi = Xi/Zi and yi = Yi/Zi is

X3 = 2FW Y3 = R(G− 2W) Z3 = 2F 3

where U1 = X1Z2, U2 = X2Z1, S1 = Y1Z2, S2 = Y2Z1, Z = Z1Z2, T = U1 + U2,
M = S1 + S2, F = ZM , L = MF , G = TL, R = T 2 − U1U2 + AZ2 and
W = R2 −G. Notice that, when a point doubling operation is being performed,
the computation of Z and U1U2 in R will be squaring operations and, hence,
our attacks can also be applied to such implementations.

6 Countermeasures

As presented in the previous sections, both side channel atomicity and unified
point addition formulæ are potentially vulnerable to attack according to the
expected difference highlighted in Section 3. Some of the countermeasures that
could be used to prevent this attack are discussed in this section.

6.1 Blinding

The most common countermeasure used to protect RSA against DPA consists
in modifying plaintext with a random value, either using an additive method

mb = m+r1n mod r2n, where r1 and r2 are random values, or in a multiplicative
way mb = re

1 ·m where e is the public exponent. With such a countermeasure,
classical DPA [17], and related attacks (such as the attacks presented in [19]
or [2]), can no longer be applied.

However, plaintext blinding is not sufficient to protect against the attack
described in this paper. It is, therefore, necessary to change the order of the
multiplication and squaring operations between different exponentiations. The
most common solution consists of computing db = d+r1φ(N), where φ is Euler’s
Totient function and r1 is a small random value [16]. An equivalent solution can
be used to protect the double and add algorithm [11].

6.2 The Big Mac Attack.

In [27], Walter presented the Big Mac attack, which demonstrates a powerful
attack on devices with a high level of side channel leakage, i.e. devices where
only a few power consumption traces are required to successfully conduct a power
analysis. Furthermore, in [28] it is explained that using longer keys in asymmetric
cryptosystems improves the probability of a Big Mac attack succeeding. This
idea can be extended here to obtain a kind of Big Mac power attack which,
would enable the attack described in Section 5.1 to be conducted on one power
consumption trace. In such a case, the blinding of d would not provide adequate
protection to defend against the attack described in this paper. The attack could
also be applied to other schemes, such as the Diffie-Hellman key exchange [12]
and the DSA [22].

An attack on a single power consumption trace would consist of identifying
the points in a power consumption trace that correspond to the computation of
xj · yi when i = j (e.g. in Algorithm 1), and extract these points where each
point its then treated as a separate trace. These small traces can then be used
in place of a trace representing the entire operation in exactly the same manner
described in Section 5.1. The points to be used can be identified by analysing
an unprotected algorithm, as described in [2].

The success of this attack will depend on the length of the key and the
word size of the processor, i.e. long keys and small word size will provide an
accurate average and raise the probability of achieving a successful attack [28].
This demonstrates that the blinding of the private key d may not be adequate
to prevent the attack presented in this paper.

7 Conclusion

This paper shows that the statistically expected difference in operations com-
puted by a microprocessor can be used to distinguish between a multiplica-
tion and a squaring operation. All that is required is that the plaintexts used
contain enough variation that the computations adhere to the distributions
defined in Section 3. This is an improvement over previously published re-
sults [14,19,27,29,30], as the described attack requires no knowledge of the plain-
text being manipulated or of the architecture of the multiplier. Moreover, the

proposed attacks will work when classical padding schemes are used. Further
work that is being conducted by the authors consists of analysing the algo-
rithms that are potentially vulnerable to this attack, and the development of
inexpensive countermeasures.

Acknowledgements

The authors would like to thanks James Curran of University College Cork for
helpful discussions in the early stages of this work. The work described in this
paper has been supported in part by the European Commission IST Programme
under Contract IST-2002-507932 ECRYPT and EPSRC grant EP/F039638/1
“Investigation of Power Analysis Attacks”. Also the support of the Informatics
Commercialisation initiative of Enterprise Ireland is gratefully acknowledged.

References

1. T. Akishita and T. Takagi. Power analysis to ECC using differential power between
multiplication and squaring. In J. Domingo-Ferrer, J. Posegga, and D. Schreckling,
editors, Smart Card Research and Advanced Applications — CARDIS 2006, volume
3928 of Lecture Notes in Computer Science, pages 151–164. Springer-Verlag, 2006.

2. F. Amiel, B. Feix, and K. Villegas. Power analysis for secret recovering and reverse
engineering of public key algorithms. In C. M. Adams, A. Miri, and M. J. Wiener,
editors, Selected Areas in Cryptography — SAC 2007, volume 4876 of Lecture Notes
in Computer Science, pages 110–125. Springer-Verlag, 2007.

3. ARM. SecurCore family. http://www.arm.com/products/CPUs/families/

SecurCoreFamily.html.
4. R.-M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and

F. Verkauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Taylor
& Francis Ltd, 2008.

5. P. Barrett. Implementing the Rivest-Shamir-Adleman public-key encryption al-
gorithm on a standard digital processor. In A. M. Odlyzko, editor, Advances in
Cryptology — CRYPTO ’86, volume 263 of Lecture Notes in Computer Science,
pages 311–323. Springer-Verlag, 1987.

6. I. Blake, G. Seroussi, and N. Smart. Advances in Elliptic Curve Cryptography. Lec-
ture Note Series 317. Cambridge University Press, London Mathematical Society,
2005.

7. D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small fraction
of the private key bits. In K. Ohta and D. Pei, editors, Advances in Cryptology
— ASIACRYPT 1998, volume 1514 of Lecture Notes in Computer Science, pages
25–34. Springer-Verlag, 1998.

8. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and
Embedded Systems — CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 16–29. Springer-Verlag, 2004.

9. E. Brier and M. Joye. Weierstraß elliptic curve and side-channel attacks. In D. Nac-
cache and P. Paillier, editors, Public Key Cryptography — PKC 2002, volume 2274
of Lecture Notes in Computer Science, pages 335–345. Springer-Verlag, 2002.

10. B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for preventing
simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Com-
puters, 53(6):760–768, 2004.

11. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In C. K. Koç and C. Paar, editors, Cryptographic Hardware and Em-
bedded Systems — CHES 99, volume 1717 of Lecture Notes in Computer Science,
pages 292–302. Springer-Verlag, 1999.

12. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

13. P.-A. Fouque, S. Kunz-Jacques, G. Martinet, F. Muller, and F. Valette. Power
attack on small RSA public exponent. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems — CHES 2006, volume 4249 of
Lecture Notes in Computer Science, pages 339–353. Springer-Verlag, 2006.

14. P.-A. Fouque and F. Valette. The doubling attack — why upwards is better than
downwards. In C. D. Walter, Ç K. Koç, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture Notes
in Computer Science, pages 269–280. Springer-Verlag, 2003.

15. A. G. Glen, L. M. Leemis, and J. H. Drew. Computing the distribution of the
product of two continuous random variables. Computaional Satatistics and Data
Analysis, 44(3):451–464, 2004.

16. P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In N. Koblitz, editor, Advances in Cryptology — CRYPTO ’96, vol-
ume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer-Verlag,
1996.

17. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer-Verlag, 1999.

18. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

19. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power analysis attacks of modular
exponentiation in smartcards. In Ç. K. Koç and C. Paar, editors, Cryptogaphic
Hardware and Embedded Systems — CHES ’99, volume 1717 of Lecture Notes in
Computer Science, pages 144–157. Springer-Verlag, 1999.

20. MIPS-Technologies. SmartMIPS ASE. http://www.mips.com/content/

Products/.
21. P. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44:519–521, 1985.
22. National Institute of Standards and Technology. Digital signature standard (DSS)

(FIPS–186-2), 2000.
23. R. Rivest, A. Shamir, and L. M. Adleman. Method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.
24. D. Stebila and N. Thériault. Unified point addition formulae and side channel

attacks. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Em-
bedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer Science,
pages 354–368. Springer-Verlag, 2006.

25. C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronic
Letters, 35(21):1831–1832, October 1999.

26. C. D. Walter. Montgomery’s multiplication technique: How to make it smaller and
faster. In Ç. K. Koç and C. Paar, editors, Cryptogaphic Hardware and Embedded
Systems — CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
80–93. Springer-Verlag, 1999.

27. C. D. Walter. Sliding windows succumbs to big mac attack. In Ç. K. Koç, D. Nac-
cache, and C. Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages 286–299.
Springer-Verlag, 2001.

28. C. D. Walter. Longer keys may facilitate side channel attacks. In M. Matsui and
R. J. Zuccherato, editors, Selected Areas in Cryptography — SAC 2004, volume
3006 of Lecture Notes in Computer Science, pages 42–57. Springer-Verlag, 2004.

29. C. D. Walter and D. Samyde. Data dependent power use in multipliers. In P. Mon-
tuschi and E. Shwarz, editors, 17th Symposium on Computer Arithmetic (ARITH),
pages 4–12. IEEE, 2005.

30. S.-M. Yen, W.-C. Lien, S.-J. Moon, and J. Ha. Power analysis by exploiting chosen
message and internal collisions — vulnerability of checking mechanism for RSA-
decryption. In E. Dawson and S. Vaudenay, editors, Progress in Cryptology —
Mycrypt 2005, volume 3715 of Lecture Notes in Computer Science, pages 183–195.
Springer-Verlag, 2005.

A Appendix

In Section 3 we discussed the expected Hamming weight of multiplication and
squaring operations for random, uniformly distributed, 16-bit inputs. Given the
complexity of evaluating all of the possible inputs to a multiplication, it is not
possible to evaluate the expected Hamming weight and the corresponding distri-
bution of the individual bits for larger bit length. Given that the implementations
described in Section 4 are on a 32-bit chip, it would be helpful to attempt to
describe the corresponding distribution.

To characterise the distribution of the individual bits in the result of a 32-bit
squaring operation all the possible input values were evaluated and the result
is plotted on the right hand side of Figure 5. It is not possible to evaluate
a 32-bit multiplication in the same way as there are 264 possible inputs to a
32-bit multiplication. An approximation to the distribution was generated by
evaluating the product of 232 pairs uniformly distributed 32-bit random values.

Fig. 5. The distribution of the individual bits of the result of a multiplication (left)
and a squaring operation (right) with random 32-bit inputs.

The form of the difference is similar to that shown of 16-bit operations in
Section 3, but with a larger region where the distribution of the bits are identical.

Given the very regular nature of multiplication algorithms, it would seem
reasonable to assume that the same difference will occur for all bit lengths.
However, it is not possible to demonstrate this because of the complexity of
evaluating all the possible inputs.

