Extracting Domain Ontologies from Domain Specific APIs

Daniel Ratiu* and Martin Feilkas

Institut fiir Informatik

Technische Universitit Miinchen
Boltzmannstr. 3, D-85748 Garching
ratiu]| feilkas@in.tum.de

Abstract

Domain specific APIs offer their clients ready-to-use im-
plementations of domain concepts. Beside being interfaces
between the worlds of humans and computers, domain spe-
cific APIs contain a considerable amount of domain knowl-
edge. Due to the big abstraction gap between the real
world and today’s programming languages, in addition to
the knowledge about their domain, these APIs are clut-
tered with a considerable amount of noise in form of im-
plementation detail. Furthermore, an API offers a particu-
lar view on its domain and different APIs regard their do-
mains from different perspectives. In this paper we propose
an approach for building domain ontologies by identifying
commonalities between domain specific APIs that target the
same domain. Besides our ontology extraction algorithm,
we present a methodology for eliminating the noise and we
sketch possible usage-scenarios of the ontologies for pro-
gram analysis and understanding. We evaluate our ap-
proach through a set of case-studies on extracting domain
ontologies from well-known domain specific APIs.

Index Terms: Reverse engineering, Libraries, Knowl-
edge acquisition

1 Introduction

According to [4] one of the central goals of reverse engi-
neering is to create a representation of a system at a higher
level of abstraction than the code itself. A central aspect of
the reverse-engineering problem is the location of concepts
in the code [3, 10]. In order to do concept location auto-
matically we need two ingredients: an amount of relevant
domain knowledge that contains concepts at the proper ab-
straction level and in a machine processable format, as well
as the identification of how this knowledge is reflected at
code level.

Most of the knowledge necessary for understanding pro-
grams is of technical nature [2, 1] (e.g. knowledge related

1

Jan Jiirjens
Department of Computing
The Open University
Milton Keynes, Great Britain
http://www.jurjens.de/jan

to graphical user interfaces, networking, XML processing).
The difficulty in understanding the programs resides in the
large quantity of knowledge that needs to be managed and
the fact that it is non-localized in the maintained programs.

But domain knowledge in a machine processable format
and at a proper abstraction level suitable for program analy-
sis is difficult to get. One of the biggest sources of technical
knowledge that is represented in a structured form are the
public interfaces of domain specific libraries. Every pro-
gramming language has an implementation of the core tech-
nical concepts in its standard libraries. However, a single
API contains only one view on its domain and this is usu-
ally not sufficient to gain a complete model of the domain.
Furthermore, APIs contain a significant amount of bias and
noise in form of implementation details mixed with repre-
sentations of the domain knowledge in their interfaces. In
order to overcome these problems, we present a technique
for extracting the domain knowledge based on the similari-
ties of several APIs that cover the same domain. Different
APIs that are developed by different programmers in differ-
ent organizations and perhaps even in different languages
but still target the same domain, give us a much broader
perspective of this domain.

In Figure 1 (left) we illustrate intuitively this situation:
the upper part of this figure represents the forward engineer-
ing process of building the APIs. Starting from the same do-
main knowledge, different programmers provide different
implementations of domain concepts. In the lower part the
approach taken in this paper to extract the domain knowl-
edge is presented: the commonalities of more APIs are cap-
tured into a domain ontology.

Since there is a big abstraction gap between the mod-
eled domain and the programming languages, the concepts
and aspects of the domain can be reflected in the code in a
multitude of ways and from a multitude of perspectives. In
the upper part of Figure 1 (right) we present examples of
common-sense concepts from the graphical user interfaces
and the relations among them (e.g. buttons are graphical
components, graphical components have position and size).

(© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/CSMR.2008.4493315

Representing the domain knowledge in APIs

Programmer 1

o
P _(H—C P2 e @
o G
PO, SD Pl 2 ()
@ © @ &)

Extracting the domain knowledge from APIs

package java.awt;

class Component extends Object {
int getSize() { ... }
int getLocation() { ... }

class Button extends Component { ...} : }
class Label extends Component { ... }

hasProp
Control, Component

isA

* namespace Windows.Forms;

: class Control : Component {

: public Point Location { get; set; }
public Size Size { get; set; }

* package org.eclipse.swt.widgets;
: class Widget extends Object{ ... }
¢ class Control extends Widget {
* Point getSize() { .. }
: Point getLocation(){ ... }

© class Lael : Control {..}
* class Button extends Control { ..} : class ButtonBase : Control { ...}
+ class Label extends Control { ..} : class Button : ButtonBase {..}

Figure 1. Domain knowledge reflected in APIs

In the lower part we present how is this knowledge reflected
in three of the most well-known widget APIs (Java AWT,
Eclipse SWT and .NET).

The challenge of extracting the domain knowledge au-
tomatically is twofold: firstly we need to identify a way
to uniformize the possibly different implementations of the
same real-world situation, and secondly we need to filter out
the noise introduced by particular implementation details.

In this paper we represent the extracted domain knowl-
edge as (light-weighted) ontologies. Even if obtaining good
ontologies is challenging, we envision that once they are
available, they can improve the current reverse engineering
practice in a number of directions:

e Program understanding. Mapping parts of programs
to concepts from ontologies enables maintainers to re-
gard program parts from the point of view of the con-
cepts that they implement.

e Assessing the quality of APIs. Using a domain on-
tology we can compare different APIs that address the
same domain. Thereby, we can identify situations in
which an API implements domain concepts in a way
that does not match to the domain knowledge repre-
sented by the ontology [13, 12].

e Enriching program analysis with domain knowl-
edge. Many of the current wide-spreaded code analy-
ses (e.g. clone detection, assessing the design quality)
are at a pure syntactical level. However, the proper
interpretation of their results requires semantical in-
formation about their relation of program parts to the
real-world knowledge (e.g. design flaws in classes that
represent the core of an application are usually more
problematic than design flaws in some UI parts)

Qutline In Section 2 we present our framework for rep-
resenting APIs that takes into consideration both the public

program elements and their names. In Section 3 we give
a short introduction into ontologies with focus on domain
specific ontologies as machine processable carriers of do-
main knowledge. In Section 4 we present our algorithm that
uses the similarities of several APIs that address the same
domain and extracts domain knowledge in form of a domain
ontology. We present also a methodology for post process-
ing the results automatically obtained by our algorithm in
order to eliminate the noise. In Section 5 we present two
case-studies that we performed on APIs targeting the build-
ing of graphical widgets and XML. We demonstrate the use-
fulness of the obtained ontologies on a concepts location
example. In Section 6 we present related approaches and
after this we end our paper by presenting our conclusions
and future work plans.

2 Formalizing APIs

In order to identify domain concepts based on similari-
ties of several APIs, we need to represent the APIs in a rig-
orous manner. Our formalization uses a graph-based repre-
sentation of the program elements from the public interface
of the APIs (Section 2.1) and models explicitly the names
of the program elements (Section 2.2).

2.1 Representing APIs as Graphs

We describe the program layer as a labeled directed
graph. The nodes of the graph are the program elements
accessible to the users of the API and its edges are typed
relations defined in the program among these program ele-
ments. Formally, the program layer II of an API is:

IM=(P,Xe), e: Px P—XU{e}

The set of the nodes (P) represents the program entities
accessible through the public interface of the library. The

public class Widget {
public int gefWidrh[A{ x
public int getheight(} { ..
public Point getLocation) { ...}

hasSupCls{Diolog) = Widget
hasSupCls{Menu) = Widget

API,

public class Diolog extends Widget {..}
public closs Menu extends Widget {..)

P,={Widget, getWidth, getheight, getLocation, Dialog, Menu}

hashcc(Widget] = getWidth
basice{Widget) = getHeight Y
hashce(Widget] = getLocation 9

hashtH{Widget] = size

. hasAcc @ hasAcc

1,=(Widget", “getWidth", “getHeight", “getLacation", “Dialog”, “Menu'}
W={ Widget", “Dialog”, ‘Menu", “Get", “Width", "Height", "Location”, “Point", “Window’, “Dimension’”, “Size’}

%

S

g
E
= . . I;={ Widget", “size", “location”, “loc’, “Window’, “Dialog’}
pulc clss Widget | P,={Widget, size, location, loc, size, Window, Dialog}
public Dimension size;))
. public Point location; hasSupCls{Window) = Widget
& publc WidgetfPoint loc, Dimension sze} {..} hasSupCls{Diolog) = Window

hasCtr{Widget] = Widget

public closs Window exfends Widget {..}
hasPar(Widget] = loc

public class Diolog extends Window {..}

hashtH{Widget) = location
hasPar{Widget] = size

hassupcy

%

" hasSupCls
Dialog —>

Figure 2. API Layers

kinds of relations between the public program elements is
given by a set of labels . Given a pair of nodes, the func-
tion e returns the type of the edge between them or ¢ if there
is no edge.

The exact set of relation types varies from paradigm to
paradigm and even from language to language inside the
same paradigm (e.g. Smalltalk has no public attributes).
We consider in this paper only the case of Java-like lan-
guages and thereby we use the following relation types:
hasSupCls, hasType, hasAcc, hasCtr, hasMeth, hasAttand
hasPar. The semantic of the labels is defined as follows:
hasSupCls represents the relation between a class and its
super classes; hasT'ype is a relation between an attribute
and its type; hasAcc is a relation between a class and its
accessors; hasC'tr is a relation between a class and its con-
structors; hasMeth is a relation between a class and its
methods that are neither constructors nor accessors; hasAtt
is a relation between a class and its attributes; hasPar is a
relation between a method and its parameters.

Notation: In the following of this paper we will de-
scribe the relations between the graph nodes through sets of
functions named according to the relations’ labels. Thus,
iff between two program elements p; and ps is an edge
which contains the label hasType then we use the fol-
lowing notations interchangeably: e(p1,p2) = hasType
and e(pa,p1) = hasType~t and ps € hasType(py).
A path between two nodes in the program graph is given
by a sequence of labels between these nodes — e.g.
(hasType, hasSupCls)

Example: In the lower and upper parts of Figure 2 we
present examples of two APIs: on the left side is the
source code, in the middle is their instantiation accord-
ing to our framework and on the right these APIs are
represented as graphs. For example, the fact that the

class Widget has attribute size is represented through
the relation: e(Widget, size) = hasAtt. In API;, be-
tween the nodes Widget and Dialog is the following
path: (hasSupCls~!, hasSupCls~t). If we consider
the inverse sense, namely between the node Dialog and
Widget then the path is (hasSupCls, hasSupCls). Sim-
ilarly, between the nodes Widget and loc the path is:
(hasCtr, hasPar).

2.2 Lexical layer

In a similar manner to the communication among hu-
mans, which is many times realized through words that
serve as carriers for the semantic information, we consider
the program element names (identifiers) to carry the infor-
mation about the domain. Formally the lexical layer A is:

A=, W)
Pl:P—1I, LW:I—P(W)

The library’s vocabulary ([) is represented by the set of pro-
gram elements names that are accessible through the public
interface of the API. The lexical layer is centered around
a set of lexically normalized words (W) that are obtained
by the reunion of the words of identifiers. We consider that
words carry the basic information and they represent the
fundamental lexicalized concepts of the domain. The lex-
ical layer represents the “skin” of the library and is used
to communicate among the library developer and its users.
The functions program element-to-identifier (P, /) map the
program elements to their names. The functions identifier-
to-words (I3 W) is responsible for obtaining the set of nor-
malized words contained in the identifiers’ names. The
function oW transforms an identifier into a set of normal-
ized words. The splitting of an identifier into words is done
by using a set of heuristics (e.g. CamelCase, special delim-
iters like underscore).

Example: In the middle part of Figure 2 we present
an example of the lexical layer corresponding to the two
APIs. It is centered around a set of words W that is
obtained through the splitting the identifiers from API;
(I1) and API5 (I3). Examples of the function identifiers-
to-words are: I,W ('getHeight') = {'Get') Height'},
LW(drawAndMove') = {'Draw’) And',/ Move'},
LW(XMLNode') = {'Xml')/ Node'}.

3 Knowledge sharing through ontologies

In this section we give an overview of ontologies in the
context of our work (Section 3.1) and present typical ways
in which ontological relations are represented in APIs (Sec-
tion 3.2).

3.1 Ontologies in a nutshell

To support sharing and reuse of knowledge of a partic-
ular domain one needs to explicitly represent it in a formal
manner. The first step in formally representing a body of
knowledge is to decide on a conceptualization of the do-
main. A conceptualization is an abstract, simplified view of
a domain which is to be described for a particular purpose.
It contains a set of objects together with their properties and
relations [6]. An ontology is defined to be an explicit spec-
ification of a conceptualization [7] and is used for sharing
the knowledge about a domain by making explicit the con-
cepts and relations within it. The ontologies specification
level spans over a wide spectrum: from simple taxonomies
up to logical theories [9]. In the present work we use an in-
formal meaning of the term “ontology” - which we regard to
comprise only concepts and relations between them, among
which the most important is the “isA” hierarchical relation
between the superordinate and its subordinates (e.g. Com-
ponent —isA — Window). Apart from iSA we consider in our
ontology three other relations: hasProperty between an en-
tity and its properties (e.g. Window — hasProperty — Size);
isDoer between an object and the action that it performs
(e.g. Window — isDoer — paint) and actsOn between an ac-
tion and the entities on which it is performed (e.g. Resize —
actsOn — Window). We assume that these relations are ex-
pressive enough to cover a relative large part of the common
real-world situations.

In order to represent an ontology we use a graph lan-
guage similar to the RDF graphs [8]. Entities within the
ontology are the nodes of the graph and relations between
them are represented as labeled arcs.

Current off-the-self ontologies cover only restricted parts
of some domains. Usually ontologies are built for a partic-
ular purpose and represent the domain concepts from a cer-
tain perspective that fits at best for achieving their purpose.
Furthermore, to the best of our knowledge, with very few

exceptions, there are no ontologies that address the techni-
cal domains that are usually implemented in libraries.

Thus, even if the number of the ontologies is growing
rapidly, most of the time there aren’t ontologies available
that can be used to analyze a program. In [12] we proposed
a method for manually building ontologies that are suitable
for analyzing APIs. In many cases bigger ontologies (with
more than 100 concepts) are needed, but these are difficult
to build manually.

Our assumption is that extracting the domain knowledge
from APIs is much more efficient than building the ontology
by hand.

3.2 Reflecting abstract relations in APIs

Our aim is to compare many APIs in order to extract the
domain knowledge in form of a domain ontology (concepts
and relations among them). In order to identify the similari-
ties between the APIs, we start by studying the typical ways
of how the ontological relations that we aim to recover are
reflected at the APIs level.

Reflecting the “isA” relation in APIs. The isA relation
between an entity and its superordinate is reflected usually
at the API level through type-system generated relations: ei-
ther through the sub-classing relation or through a relation
between a variable and its type. Below are several examples
that reflect how the “Dialog isA Window” relation from an
imaginary ontology about graphical widgets can be imple-
mented in the code.

public closs Window { .. }
public class Dialog extends Window {..}

public closs Window { . } isA
public class SpecialWindows { ‘m hasType ‘M’

public Window oDialog; ...}

Reflecting the “hasProperty” relation in APIs. The
hasProperty relation between an entity and its properties is
reflected usually at the API level through the attributes of a
class, through accessor methods or through the parameters
of the constructors.

Reflecting the ““isDoer” relation in APIs. The isDoer re-
lation between an entity and the action it performs is re-
flected in APIs through a hasMethod relation between a
class representing the entity and a method representing the
action.

. hasProperty .
. hasAtt .

public class Window {
public String fitle; .. }

public closs Window {
public String getTitle[); ..

. hasAcc @

public class Window { hasProperty
public Window(String aTitle); .. .hasCtr hasPar.

public clas Windou {
public void refresh(} { ...} .. >0

Reflecting the “actsOn” relation in APIs. The actsOn
relation between an action and the affected entity is re-
flected in APIs through hasParameter relation between a
method representing the action and its parameters represent-
ing the entity.

public class Graphics {
public void draw(Shape aShape] { ...} ..

4 Extracting domain knowledge from APIs

In this section we present our algorithm and method for
extracting the domain knowledge from more APIs. The
graph-matching algorithm (Section 4.3) uses the similarity
of program element names (Section 4.1) and the similarity
of paths (Section 4.2). In Section 4.4 we present the se-
quence of steps that needs to be performed to extract the
ontology.

4.1 Naming clues

As already mentioned, one of the most important sources
of information for identifying the concepts in the code is
given by the identifiers’ names. We use in our case the
identifiers of program elements from the analyzed APIs as
hints for matching different program elements that refer to
the same concept. In a similar manner with the natural
language, we consider that the individual words represent
the basic semantic carriers. Identifiers composed of more
words can refer either to one complex concept or to several
concepts.

Below we define a similarity between two program ele-
ments based on their name. Given two program elements
p1, D2, the predicate simNme(p1,p2) returns true if the

names of these elements are similar. We use the following
definition of sim Nme:

[Win Wy
W1 U Wl
where W1 = IQW(PQI<p1>), Wg = IQW(PQI(])Q))

simNme(py,p2) = true & > 0.5,

Intuitively, two program elements have similar names iff at
least half of their words are the same.

Example: simNme(BaseButton, Button) = true
since from the two words that these identifiers contain
(’Base’ and ’Button’) one word (’Button’) appears in both
identifiers. simNme(ColoredButton, ColoredLabel) =
false since only one of the three words contained by these
identifiers is shared between them.

4.2 Mapping paths

The usage of names as clues for the identification of
commonalities between more APIs has two disadvantages:
Firstly based only on names we can identify the vocabu-
lary of the domain but not a domain ontology; Secondly
the names are themselves ambiguous (e.g. synonymy and
polysemy) and the matching of two names does not imply
the matching of two concepts. In order to overcome these
problems we use a graph matching algorithm that extracts
concepts based on the similarities of the API graphs. To
apply our algorithm, we need to define similarity between
program relations. Starting from our observations in Sec-
tion 3.2, we define the paths equivalence relation ~:

~ C Y'xX*

This relation is defined for the sequences of edges that re-
flect a similar implementation situation. The relation ~ is
transitive and commutative. Starting from the analysis of
the implementation of ontological relations in the API we
will use the following instantiation of the ~ relation in our
algorithm:

TI. (hasSupCls) ~ (attHasType)

T2. (hasAtt) ~ (hasAcc) ~ (hasCtr, hasPar)
T3. (hasMeth) ~ (hasMeth)

T4. (hasPar) ~ (hasPar)

Given two independent implementations of the same do-
main knowledge, there is a certain amount of inherent vari-
ations represented by implementation decisions. Basic vari-
ations were discussed in Section 3.2 (e.g. properties can be
reflected as attributes, accessors or constructor parameters;
is-a relation can be represented either through sub-classing
or through the relation between a variable and its type) and
are captured in the equation T2. Below we discuss several
other cases of heterogeneity.

4.2.1 Variation points

Different implementations of the same situation can exhibit
heterogeneities that reflects the different perspectives under
which the domain is represented in the APL. In the following
we concentrate on two heterogeneities:

Terminological mismatches. Many times the same con-
cept is implemented in different APIs under different
names. In order to overcome this problem we use the sim-
ilarity in the representation of the neighbors of these con-
cepts. For example, if a concept ¢ is implemented in two
APIs through the classes p; and p, with different names
(simNme(p1,p2) = false) and its siblings are imple-
mented as sub-classes of these classes then we can identify
the concept c by using the structural similarities between
these two implementations. In our example below we iden-
tified that widger and component are used to express the same
concept (i.e. GRAPHICAL COMPONENT).

public closs Widget { ..}
public class Dialog extends Widget { ...}
public closs Menu entends Widget { .. }

public class Component { ...}
public closs Dialog extends Component { ... } <h\@ §
asSupcls

public closs Menu extends Component { ..}

T5. (hasSupCls hasSupCls™t) ~
(hasSupCls hasSupCls—1)

Structural mismatches. In Section 3.2 we presented the
cases where the ontological relations are reflected directly
the in APIs. In reality, however, it is often the case that
the ontological relations are reflected in a degenerate man-
ner. For example, it is often the case that in one API the
properties of a concept are implemented only in one of the
sub-classes that refer to the concept. Below we present two
code fragments from two APIs where the relations “Wid-
get — hasProperty — Size” and “Widget — hasProperty — Po-
sition” are implemented directly (upper part) and are de-
generate (lower part). From this observation we deduce the
mappings (T6 — T7).

public closs Widget { CHiogh hasAtt
public Point position; @
. hasAcc

public Dimension getSize[) { ... } ..

public class Widget { ..} |
public closs Dialog extends Widget {
hasSupCIs . hasAcc @

public Point2D position;
public Dimension getSize]) { .. } ..

T6. (hasSupCls—! hasAtt) ~ (hasAtt)
T7. (hasSupCls~! hasAcc) ~ (hasAcc)

4.3 Ontology extraction algorithm

Having abstracted the APIs as graphs, the identification
of similarities between several APIs is based on a graph
matching algorithm: it matches the nodes of the two graphs
based on the similarity of their names. After this it looks for
a compatible path in the graphs between every pair of nodes.
Whenever a match between nodes and relations is found, we
identify a pair of concepts and a relation between them. The
relation between these concepts is one of the ontological re-
lations from Section 3. Below we present our algorithm in
pseudo-code and in Figure 3 we present an example of how
this algorithm works. We consider that the APIs that are
compared are II = (P, X, e) and I' = (P’, 3, ¢’).

1. for-each p; € P do

2. reflection(p1) = {p| € P’'|simNme(p},p1)}

3. for-each (0;...0;) € &*, (0}....0]) € X" {0}...05) ~ (0},....0])
4 neighbors(p1, (0;...05)) = {p2 € P|p2 € (07...05)(p1)}
5 for-each po € neighbours(p1, (0;...05))

6. reflection(p2) = {p, € P’ |simNme(p},p2)}
7 for-each p’1 € reflection(p1), p € reflection(pz)

8 check-if p5, € (07,...07)(p2)

8 if-yes saveRelation(comNme(p1,p}),

9. comNme(pz, ph),

10. ontRel((0;...05)))

The function com Nme takes two program elements as
parameters and returns the intersection of the words of their
identifiers. We consider that the words obtained through
this intersection represent the name of the identified con-
cept. Below is the formal definition of comNme:

comNme : P x P' — o(W)
comNme(p,p') = LW (P2I(p)) N LW (PI(p"))

The function ontRel transforms a path in the pro-
gram graph into its corresponding ontological relation — e.g.
ontRel({hasSupCls~* hasAcc)) = hasProperty

Observation: The algorithm presented above does not
capture the case of terminological mismatches. Whenever
such a mismatch is identified we insert in our ontology three
concepts: the two siblings and their superordinate.

4.4 Knowledge extraction methodology

We proposed an algorithm based on graph matching that
is able to automatically find the similarities between differ-
ent APIs as well as collect and interpret these similarities
into a domain ontology. In order to obtain an ontology we
need to perform the following sequence of steps:

Step 1: Establish the scope of analysis. The very first
step is to exactly establish the scope of the analysis. Here

reflection(Rectangle] = {CRectangle}
Rectangle hasSubClass ~ hasSubClass

Sh;pe a) Example 1: The identification of relation “Aectangle isf Shape ™

J \ neighbours(Rectangle, hasSupCls) = {Shape}
Width Height teFlection{Shape] = {CShape}
1) Concepts graph (CRectangle hasSupCls CShape) with comhime{Shape, CShape)] = Shape,
comhme[Rectangle, CRectangle] = Rectangle, ontRel[hasSupCls) = ish
CShape ~ . .
= soveRelation (Rectangle, Shape, |s||]
(Rectangle T o .
/ \ by Example 2: The identification of relation “ectangle hasProperfy Width
! reflection[Rectangle] = {CRectangle}
idth getHeight
getlidth - el hashtt ~ hesficc
bl Program groph neibours{Rectongle, hosht) = {Width, Height}
Leqent reflection|Width) = {getWidth}

(CRectangle hasfice getWidth) with comhme(Rectangle, CRectongle] = Rectangle,
comhme{Width, getWidth] = Width, ontRel[hashtt] = hosProperty
= saveRelotion (Rectangle, Width, hasProperty)

hasSubCls —
hashttribute —=
hesAccessor —o

Figure 3. Concept identification examples

one should answer to questions like: what is the domain we
target? What should the extracted ontology look like?

Step 2: Select the set of APIs. After establishing the
analysis scope, we need to select the set of APIs that will
be used for extracting the domain knowledge. Ideally, in
order to avoid the implementation noise, these APIs should
be implemented in different languages.

Step 3: Run the concepts identification algorithm.
The running of the algorithm is fully automatic. The al-
gorithm’s output is a set of concept candidates and the cor-
responding relations among them. The algorithm ranks the
concepts and the relations according to their frequency.

Step 4: Eliminate the noise. There is a considerable
number of relations that are noise from the point of view
of the domain knowledge. We eliminate these relations in
two manners: Firstly, we use an heuristic that the most im-
portant concepts and relations have a higher matching fre-
quency. Thus, we remove the concept — relation — con-
cept that contain concepts with low frequency. Secondly,
we manually inspect the remaining triples and remove the
ones that do not make sense from the point of view of the
domain.

5 Case Study

In our experiments we aim to answer the questions re-
lated to the feasibility of our approach (Q1-2) and to briefly
demonstrate an example of using the extracted ontology for
concept location (Q3):

Q1) Are the overlappings between different domain spe-
cific APIs that address the same domain big enough for ex-
tracting domain ontologies? This question addresses the
recall of our ontology mining algorithm (Section 5.1).

Q2) What is the amount of noise in the extracted ontol-

ogy? What is the manual effort for eliminating the noise?
This question addresses the precision of the extraction al-
gorithm and the feasibility of eliminating the noise (Section
5.2).

Q3) How appropriate is the extracted ontology for locat-
ing concepts in code? This question addresses the relevance
of the extracted ontology for a central reverse engineering
activity, namely concept location (Section 5.3).

Experimental setup We performed experiments on two
sets of widespread APIs: The first set is represented by
the APIs that implement the functionality for processing
XML documents. In this case we chose the following APIs:
org.w3c.dom is the implementation of the W3C DOM
(Document Object Model) available in the Java standard li-
brary; dom4 5! open source library for working with XML;
jdom 2 library for accessing, manipulating, and outputting
XML data; xom 3 tree-based API for processing XML and
the XML processing API from the .NET platform. The
second set of APIs implement the functionality related to
GUI toolkits, graphical widgets and basic drawing: the AWT
and SWING APIs from the Java standard library, the Eclipse
Standard Widget Toolkit (swT) and the .NET API from the
namespace Windows.Forms. In order to answer the ques-
tion Q3 we used the JHotDraw framework (version 7.0.9).
In Figure 4 we present an overview over the size of the an-
alyzed APIs.

awt | swing | swt | .net || w3c.dom|domdj | jdom | Hom | .net | JHDT.0.9
I|cis||| 354| 719 | 245 | 772 || 10 | 158 | 65| 51| 5| 3n
[N | 3301|4380 2008 |7038 || 1364 | 947 | 449 | 230 [1646 || 1610
[IW]| | 1340| 1627 | 656 | 1362 || 479 | 344| 235 | 156 | 559 | 76

Figure 4. APIs Overview

5.1 Assessing API Overlappings

Vocabulary Overlapping. The most naive measurement
of overlapping represents the vocabulary (terminological)
level. In Figure 5 we present the overlapping of the vocab-
ulary of different APIs pairs. For example, in the case of
XML libraries, from the reunion of words of w3c.dom and
dom4j, approximately 27% (about 180) are common words;
between jdom and dom4j approximately 40% of their total
number of words are shared.

In the case of graphical widgets libraries, we can notice a
similar phenomenon: there is a quite wide range of the over-
lapping ratio from approximately 20% up to almost 40%.

Yywww.dom4 3 .org
2www.jdom.org
3www . xom.nu/

For example, the AWT implements rather low-level draw-
ing concepts and many concepts related to internationaliza-
tion of GUIs. These concepts do not appear in the other
APIs. From these tables we draw the conclusion that the
similarity at the vocabulary between different APIs that ad-
dress the same domain is between 20% and 40%.

Since we consider that the words are carriers of semantic
information, the vocabulary overlapping gives hints of the
conceptual similarity of these APIs. We considered these
results as promising and performed our ontology extraction
methodology.

w3c.dom | domdj | jdom | wom | NET awt [swing | swt | NET
wicdom | - | 027 | 021 | 0.8 | 028 || owt - |03 019 03
domdj - - | 040 | 028 | 035 || swing [- - | 020 | 038
jdom - - | - [os]oes || swt - - - |
Kom - - - T

Figure 5. APIs Vocabulary Overlapping

The automatically extracted ontology. In Figure 6 we
present the number of extracted concepts and relations. In
the case of XML, we obtained 371 concepts and 1145 rela-
tions among these concepts. In the case of graphical wid-
gets we obtained 926 concepts and 2918 relations. In Figure
6 we see that the highest number of relations are represented
by the relations between concepts and their properties.

#Concepts | #Relations | #ish | #hasProperty|#isDoer |#actsOn
my s 145 g amn 3/ | N
60l | 926 2918 | 203 1625 19 294

Figure 6. Automatically extracted ontology

Terminology mismatches. Many times, the same con-
cept is referred in different APIs under different names. For
example, in the GUI APIs the names component, control
and widgets are used to refer to the same kind of concept:
an abstract element of the hierarchy of graphical compo-
nents. In Figure 7 we present an example of how we could
identify the synonymy between the control and component
names.

org.eclipse.swt.widgets
JComponent Control

AN AN

¢ JSlider JLabel JButton JProgresanﬂ : Slider Lobel Button ProgressBar ;

Figure 7. Terminology mismatches examples

Identifying the core concepts and relations. In order
to rank the importance of the automatically extracted con-
cepts, we counted how many times they participated in a
match. Analogously we did for the relations between these
concepts: we counted how many times a relation was iden-
tified.

Below are examples of the concepts and relations
from the XML ontology. We present the most fre-
quent 20 concepts, some of their frequencies and
a set of concepts that appeared only once (e.g.
the concept ’text’ was identified in 521 relations).

element (2693), node, name, attribute, document (1268), value,
namespace, child, text (521), create, processing instruction, type,
datum, xml, uri (318), remove, add, write, x path, local name
(242), [...], entity reference node, node name, html, return,
omit, create cdata, enumeration, processing instruction node, ha
attribute n, any attribute

Below we present the most frequent 10 “concept — rela-
tion — concept” triples and their frequencies.

element—actsOn (299) —name element-hasProp (136) —attribute

element-hasProp (288) —-name element-hasProp (117) —type
reader—isDoer (102) —read
attribute—actsOn (107) —value

attribute—hasProp (101) —value

attribute—actsOn (191) —name

element—isDoer (171) —attribute

document—isDoer (151) —create

Observations: We remark that the concepts with a higher
frequency have a very high relevance for the XML do-
main. At the same time, most of the least frequent con-
cepts have a very low relevance or are compound concepts
(i.e. node name, create cdata) that can be expressed in
terms of frequent concepts and relations between them (i.e.
node hasProperty name; create actsOn cdata). Similarly,
the most frequent triples concept—relation—concept repre-
sent relations that are in typical for the XML domain.

5.2 Applying the extraction methodology

Starting from these observations, we apply our method-
ology for eliminating the noise and identifying the central
concepts: Firstly we selected most frequent 50% of the con-
cepts; Secondly we eliminated the relations that contained
the least frequent 50% of the concepts. Finally we elimi-
nated the 50% least frequent of the remaining relations. We
are aware that through these heuristics we loose also useful
information. However, we concentrate on the elimination
of noise.

Following the application of these heuristics, we ob-
tained in the case of XML ca. 180 concepts and 456 re-
lations. In the case of the GUI ontology we obtained about
450 concepts and 941 relations. The next step is to manually
eliminate the noise by inspecting the remaining triples. Af-
ter the manual inspection we obtained in the case of XML
an ontology with 122 concepts and 235 relations. In the
case of GUI we got 265 concepts and 580 relations. Below
we exemplify the content of our ontology in the case of the
concepts BUTTON and LIST.

button—hasProp-size button—hasProp-border

button—hasProp—text button-isA—Component, Control
button—hasProp-alignment button—isDoer—add listener
button—hasProp—label button—isDoer—-remove listener

button—hasProp—enable button—isDoer—click

list-hasProp-size list-hasProp—count

list-hasProp—selection index | list-isA-Component, Control
list-hasProp—item list-isDoer—add item
list-hasProp—bound list-isDoer—add selection

list-hasProp—minimum size list-isDoer—remove selection

list-hasProp—name list-isDoer—paint

Effort estimation In Table 1 we present the duration mea-
sured in hours of each of these steps. These results represent
only the experiments and do not take into account the pro-
gramming effort. We spent most of the time in selecting
the set of APIs and in preparing them for analysis (e.g. we
removed the tests). Once the heuristics for eliminating the
noise are applied we performed the manual inspection with
minimal effort.

Operation | XML | GUI | Auto |
Selection of APIs 3 2 No
Preparation of APIs 3 3 No
Algorithm running 1 3 Yes
Noise elimination heuristics | 0.5 0.5 Yes
Manual noise elimination 0.5 1 No

Table 1. Estimation of the effort

5.3 Using the ontology for concept loca-
tion

Having an ontology that represents the knowledge con-
tained in a certain type of libraries in a machine process-
able format is a gain per se. Obtaining such ontologies for
all types of libraries would cover a wide area of the pro-
gramming knowledge. In the following we give only hints
of how such ontologies can be used in reverse engineering.
We choose a central reverse engineering problem — namely
concept location. We will use a method for locating con-
cepts in code that is based on mapping program entities to
ontologies[12, 11]. Whenever a mapping is found, we iden-
tify a concept in the code.

In order to perform our experiments we choose the ver-
sion 7.0.9 of the drawing framework JHotDraw. As knowl-
edge bases we used both the GUI and the XML ontologies.
Our concept location algorithm identified concepts from
both of these ontologies — JHotDraw uses both the AWT,
SWING and the w3c.dom APIs. Our algorithm identified
179 concepts in JHotDraw. These concepts were assigned
to 1370 program elements.

By inspecting the program elements assigned to XML
concepts, we discovered the fact that JHotDraw contains
classes that use the nanoxm1* in addition to the w3c.dom
library. This represents a sanity check for our approach as
we validate that the XML concepts contained in our ontol-
ogy are general enough and do not depend on a particular
XML API. In Figure 8 we present an example of how was
the ELEMENT concept identified.

nefadaononml yo pe i

W, NN

ENnmespnce Attribute Porent tonfenrrthildi namespace atfributes parent content children

‘Legend: hasProperty —= hoshttribute —o ‘

Figure 8. Concept identification example

6 Related Work

Knowledge for program understanding. The central
role of knowledge management in the process of mainte-
nance in general and program understanding in particular is
widely acknowledged in the literature. In [1] the software
maintenance is seen as a knowledge management issue.
Among the several dimensions of knowledge (e.g. busi-
ness knowledge, computer science knowledge), program-
mers most often make use of technical knowledge during
maintenance [2].

[3, 10] presents the role of concepts in program com-
prehension. These concepts can be either domain concepts
or technical oriented concepts. In order to automatize the
concepts-centered program understanding, the tools have to
be provided with a considerable amount of knowledge that
is relevant for understanding a program.

One of the modalities to share and formalize the concepts
in practice is through ontologies. In this paper we propose
a method for extracting the knowledge from APIs and for
expressing it in a formalized manner through domain on-
tologies. The obtained ontologies can be used as input for
other reverse engineering and program analyses activities.

Knowledge representation in programs. This paper is
in continuation to our previous work on knowledge repre-
sentation in programs. In [11, 13, 12] we presented different
problems related to the reflection, diffusion and distortion of
domain knowledge programs with focus on domain specific
APIs. One of the preconditions for the automatic detection
of API problems is the availability of domain ontologies.
Building large domain ontologies that contain hundreds of
concepts and relations between them is challenging.

“http://nanoxml.cyberelf.be/

Ontologies in software maintenance. The LASSIE sys-
tem [5] represents one of the pioneering works in using on-
tologies in software maintenance. It uses a knowledge base
system for intelligently indexing reusable components. The
approach is based on mapping between a domain ontology
to the code model. Although the code ontology is populated
automatically, the domain ontology and its relation to the
code model must be maintained manually. Such a system
proved to support comprehension tasks but the overhead
of manually synchronizing the models reduced the overall
benefit.

[15] presents an approach for representing both the
source code and the documentation as ontologies and
thereby it enables the usage of semantic web technologies
in the software maintenance. The semantic of the domain
is captured in this case only through the analysis of the pro-
gram’s documentation.

The ontologies that we extract from APIs can be used as
complementary sources of knowledge that addresses tech-
nical domains typically implemented in APIs.

Extracting ontologies [14] presents a method for extract-
ing an ontology that corresponds to an API by analyzing the
javadoc comments. The motivation for this work is the ob-
servation that web services reflect the functionality of their
underlying implementation. The goal of this paper is to pro-
vide a description of web-services.

We advance in the direction of extracting ontologies
from programs along two directions: Firstly, we capture the
domain knowledge by analyzing multiple APIs and not to
to provide a representation of a program as an ontology as
in [16]. Secondly, we extract ontologies by analyzing the
APIs and not by performing natural language processing.

7 Conclusions and Future Work

In this paper we presented a method for extracting do-
main knowledge by analyzing multiple APIs that address
the same domain. Our preliminary experiments suggest that
it is feasible to extract a large quantity of information by in-
vesting a relative small manual effort. By extracting knowl-
edge from several APIs and by sharing it in a machine pro-
cessable format, we aim to increase the abstraction level at
which the reverse engineering is done.

We are aware that even if the current results are promis-
ing, this work represents only the first steps both in ex-
tracting domain knowledge from APIs and in using fur-
ther this knowledge in the maintenance, reverse engineer-
ing or program understanding. We can divide the future
work into two directions: Firstly, we plan to qualitatively
improve our method in order to extract more expressive on-
tologies, reduce the noise and increase the number of con-
cepts. Secondly, we plan to advance into a quantitative di-

10

rection by extracting more ontologies that cover technical
domains that are implemented usually by APIs (e.g. net-
working, data bases, security). By doing so we aim to build
a knowledge base that contains knowledge relevant for re-
verse engineering in a machine processable format.

References

[1] N. Anquetil, K. M. de Oliveira, K. D. de Sousa, and M. G. B.
Dias. Software maintenance seen as a knowledge manage-
ment issue. J. of Inf. & Softw. Tech., 2007.

N. Anquetil, K. M. de Oliveira, M. G. B. Dias, M. Ramal,
and R. de Moura Meneses. Knowledge for software mainte-
nance. In SEKE, pages 61-68, 2003.

T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
ICSE ’93. IEEE CS, 1993.

E. J. Chikofsky and J. H. Cross. Reverse engineering and de-
sign recovery: A taxonomy. [EEE Softw., 7(1):13-17, 1990.
P. Devanbu, R. Brachman, and P. G. Selfridge. Lassie: a
knowledge-based software information system. Commun.
ACM, 34(5):34-49, 1991.

M. R. Genesereth and N. J. Nilsson. Logical foundations
of artificial intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1987.

T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907-928, 1995.

P. E. Hayes. Rdf semantics. Technical report, W3C Recom-
mendation, 2004.

D. L. McGuinness. Ontologies come of age. In Spinning
the Semantic Web: Bringing the World Wide Web to Its Full
Potential, D. Fensel et al., eds., pages 171-194. MIT Press,
2003.

V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In /IWPC ’02. IEEE CS Press, 2002.

D. Ratiu and F. Deissenboeck. Programs are knowledge
bases. In ICPC ’06. IEEE CS, 2006.

D. Ratiu and F. Deissenboeck. From reality to programs and
(not quite) back again. In /CPC. IEEE CS Press, 2007.
D. Ratiu and J. Juerjens. The reality of libraries.
CSMR °07. IEEE CS, 2007.

M. Sabou. Extracting ontologies from software documenta-
tion: a semi-automatic method and its evaluation. In ECAI-
OLP, 2004.

R. Witte, Y. Zhang, and J. Rilling. Empowering software
maintainers with semantic web technologies. In ESWC,
pages 37-52, 2007.

H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies from
legacy systems for understanding and re-engineering. In
COMPSAC ’99. IEEE Comp. Soc., 1999.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]
[11]
[12]
(13]

In

(14]

(15]

(16]

