Joint Entity Resolution

Makoto Tachinaba Hector Garcia-Molina
Stanford University Stanford University

January 13, 2009

Abstract there are two data sets to be resolved. Those data sets are
related, which means a record in one data set can refer
Entity resolution (ER) is the process of matching recortts a record in the other data set. ER algorithm for those
that represent the same real-world entity and then megigtasets is complex because a ER process for one dataset
ing them. We consider the ER problem for two relatatiay affect other ER process.
datasets. In the datasets, a record in one can refer to aor ConcretenESS, in this paper we focus on a type of
record in the other and an ER process running on oBR processing called generic pair-wise. In this case, a do-
set can affect an ER process on the other. We formaain expert writes two functions, a match and a merge
ize the joint ER model for datasets which reference eagfhction. The pair-wise match rulg/(r,,r,) evaluates
other by treating the match and merge functions as blagkrye when two records, andr, are determined to rep-
boxes. We identify important properties for match an@sent the same entity. I/ (r,,) is true, then a merge
merge functions that, if satisfied, allow much more effjynction is used to create the composite record ;).
cient ER. We provide four algorithms that run Entity Re$yote that after a merge we may identify new matches with
olution for a pair of datasets. We show that our parallgiher records. For example, the combined information in
algorithms require shorter runtime than naive alternate @l; ,.,) may match with a third recorel, while neithen-

gorithms. We also introduce improvements for our parglor , had enough information to generate a match with
lel algorithms which result in fewer feature comparisons,,

The alternative to pair-wise ER is generally some type
. of global clusteringstrategy that groups records that are
1 Introduction similar and are deemed to represent the same real-world
. . _ entity [16, 4]. Briefly, pair-wise may be easier to imple-
Entity Resolution (ER) (sometimes referred to as dedupiiient since the domain expert only needs to consider two
cation) is the process of identifying and merging recor?‘écords at a time, and pair-wise may be more amenable

judged to represent the same real-world entity. For exag,.remental and distributed processing [1]. Clustering
ple, two companies that merge may want to combine th Bproaches may yield more accurate results.

customer records: for a given customer that dealt with the .
two companies they create a composite record that co Several works [14, 15, 7, 5] have addressed algorithms

bines the known information. wn?nch handles two datasets and they have focused on ac-

Most of the previous work considered ER techniqu curacy of matching and how to compare records. By con-

. . . ?rsast, we focus on performance and treat the functions for
for a single class dataset. However, in practice, man :))
. . : .comparing and merging records as black-boxes. We will
data integration tasks need to tackle complex informatig 2 : o .
. Show efficient parallel algorithms for jointly comparing
spaces where datasets of multiple classes and relation- ;
d mergingry, r2) those data sets.

) . . an
ships between the datasets exist. In this paper, we assume oo i

In summary, in this paper we make the following con-
*Visiting from NEC Corporation tributions:

https://core.ac.uk/display/357381398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e We formalize the generic ER problem for two relatethe records match\/;(r1,r2) = true, we denote this as
dataset (Section 3). r1 & rq; Otherwise, ifM;(r1,r2) = false, we denote
thisry # ro. My results always true or false; we do not
e We identify the ICAR properties of match and merggonsider approximate matches (with an associated confi-
functions for this problem that lead to efficient stratgtence value).

gies (Section 4.2). A merge ruleu; merges two records in the record set
. I in ne. The function is onl fined for matchin
e We present parallel ER algorithms for two related to one e function is only defined for matching

. records. The result gf;(r1,72) is denotedry, 3).
dataset (Section 5). Let X andY be the sets of records to be resolved. We

o We experimentally evaluate the algorithms using twiliscuss entity resolution from the point of view of the

sets of related data, one on papers and another'8fords; .the case for the recprds in.symmetrical. All
their authors. Our algorithms result in good perfofb® functions forX that we define (which have aXi sub-

mance in terms of the number of feature comparisop&iPt) have & analogue.
and runtime (Section 6). Arecordr € X has a fieldF that refers to one or more
Y records. We refer to this field aBx (r). Note that
Fx(r) C Y. (We could extend our model to include a
2 Motivating Examp|e confidence value with each linke Fx (r), representing
how confident we are that is theY record associated
To illustrate joint ER, consider two data sel§ and With r. These confidences could be taken into account by
Y, where X is a set of books and@” is a set of au- the match function when deciding if two records match.
thors. Books inX have attributes Title and Writ-We do not discuss such an extension here.)
tenBy. Authors inY have attributes Name, Affil- WhenFx (r) contains a single element we omit the set
iation and Publication. The two data sets are rbrackets and simply writé’x (r) = s (s € Y). We use
lated because values in the WrittenBy attribute refée notationf’y " (r) to refer to theY” records whose+y
to Y author names, and vice versa. For examplé€ld containg. Note thatF);l(r) can be implemented in
X may contain the tuple{Database book, H.Garcia- @ variety of ways. For instance, we can séasearching
Molina) and Y may contain the tuple(H.Garcia- for r references, which would be expensive. We could
Molina, Stan ford University, Database book). also keep back pointers ik records, i.e., materialize the
In this example, the rules for determining when authof; ' (r) values. The latter option would involve an update
(or books) represent the same real world entity are intépst whent” records change.
related. For instance, if two records i have identical ~ For setX, we have a match functiof/x (r1,72) that
title, or similar titles and were written by the same authd€turns true if records,, r, € X represent the same real
we can assume that they refer the same entity. Similatgrld entity. We assume that the match function is of the
if two records inY” have identical name, or similar naméollowing form:

and identical affiliation and those authors wrote the sameMx (r1,72) = Bx(r1,m2) V [Lx(r1,72) A
books, we can assume that they refer the same entity. €8x (1), Fx (r2))] _ o
every record inX we need to refer td” to find the affil- The “base” comparison functioBy can determine if

iation of its author. Moreover, for every recordawe 71 andr; match without consulting any” records. For

need to refer taX to find the names of books its authogxample, if two products have almost identical names,
wrote. prices and codes, then we assume they are the same, re-

gardless of their manufacturer (representedbycords).

If the Bx function cannot determine that andr, match
3 Model on their own, then the second part of the match func-

tion checks if they match due to common references to
A match ruleM; determines if two records, andr, in Y records. For example, we may say that two products
the record set refer to the same real-world entity. Ifmatch if they are manufactured by the same company (the

Fx fields point to a single common manufacturer), andkfowever, the most natural value fdfx (r3) would be
Lx says the products names are roughly the same. Fx(r1) U Fx(ra).
There are two important issues to discuss regarding thé&iven match and merge functions f&r, we can define
clauseC'(Fx(r1), Fx(r2)) in the match function. the resolved set of recordsRx (X) as done in [1]. We
First, there are two natural choices for thecompari- also have analogous functions for theset and a defini-
son function. One is a functiof; that checks if all ele- tion of ERy (V).
ments in the sets match. For example, say a book recoriiVe define the joint resolution oX andY as an itera-
r1 in X refers to two authors ilt", s; ands,. Similarly, a tive process, where we alternate resolving one set and the
second book:, refers to authors, i.eFx (r2) = {s3,s4}. other until we reach a fixed point.
The conditionC; (Fx (1), Fix (r2)) is true only if (a)s;
equals eithess or s4, and (b)s, equals the remaining ER(X, Y):
author. done := false;
X =X Y =Y,
while not done do

C1(Fx(r1), Fx(r2)) = Fx(r1) = Fx(r2) [newX := ER_X(X); newY := ER_Y(Y’);
done := (newX = X’) and (newY = Y’)
The second natural condition), checks that a subset X' := newX; Y’ = newY]
of Fx(r1) matches a subset dfx (r2). In the previous return (X', Y"):
example, ifs; or s, equals eithegs or s, then the condi-
tion is true.

Note that the above is simply our definition of a cor-
rect joint resolution. In what follows we investigate effi-
Ca(Fx(r1), Fx(r2)) = Fx(r1) N Fx(r2) # 0 cient ways to perform such joint resolution (showing that
the more efficient strategy yields the same correct results
The second issue regarding the comparison functioryi$ the above definition). We also study properties of the

how F' values are updated. In particular, during entity regyatch and merge functions that may make the resolution
olution we assume that &s records are merged, tHex more efficient.

values are updated. For instance, $ay(r1) = s; and

Fx(r2) = s2. If s andsy merge into a new recorsk,

then Fx(r1) = Fx(r2) = s3. This change may then4 Properties

maker; andr, match in setX. Note that these updates

can be implemented in a variety of ways. For examplgzl Basic Properties

with an eager strategy, as soons@sand sy merge, we

can update alX records inFy ! (s1) and Fy ' (s2). With We assume four basic properties called ICAR properties
a lazy strategy, we do not update tierecords but in- for M; andyu;: idempotence, commutativity, representa-
stead keep #anslation tablel” that maps records to theirtivity and associativity. (We us&in M; andu; to repre-
current merged record. For instance, before the mergst eitherX or Y.) These properties ware addressed in
T(s1) = s1 and after the merg@(s;) = s3. In this lazy [2]. Idempotence says that any record matches itself, and
case, to perform the comparisdrx (r;) = Fx(r2) in merging a record with itself yields the same record. Com-

the match function, we actually perforffi(F'x (r1)) = mutativity says that, if; matches-, thenry matches-.
T(Fx(rg)) (whereT operates on a set in the obviougdditionally, the merged results of, andr, should be
way). identical regardless of the merge ordering. The meaning

When two X recordsr; and ro merge, a compos-of the representativity property is that recotdobtained
ite recordrs = (rq,r9) is created by the merge funcfrom merging two records; andr, "represents” the orig-
tion. The merge function creates &k (r3) value. For inal records, in the sense that any recojdthat would
now we do not make any assumptions abdut(rs). have matched; (or ro by commutativity) will also match

r3. Intuitively, this property states that there is no "nedrepresentativity: The conditions for representativity
ative evidence”: merging two records andr, cannot are different forC; and Cy;. For Cs, if Bx and Lx
create evidence (in the merged recesiithat would pre- are representative an®y = Ly, then Mx must
ventrs from matching any other record that would havee representative. Note th#y = Lx meansByx

matched; or r. is a stronger condition tharlx. For example, if
Bx(r1,72) is similarity(ri,r2) > 0.9, Lx(r1,r2)
e IdempotenceYr;r ~ rand(r,r) =r could besimilarity(ri,r2) > 0.8. For Cy, in addi-

tion to the previous condition, the records must satisfy
Bx = (4. Itis not possible to satisfy this last property
in practice, since the content of tiiésets would have to

e Associativity:Vry, re, r3 such thatiry, (ro,73)) and be determined by the outcome of tBg function. Thus,

o Commutativity:Vry, 1o, 71 = ro iff 7o = r1, and if
r1E ~ ro, then<’l"1,’l“2> = <’I“2, T1>

((r1,r2),r3) €Xist,(r, (ra,73)) = ((r1,72),73) the ICAR properties cannot be expected to hold'ifis
. used.
o Representativity: Ifr; = (r1,72) then for anyrs 14 symmarize, for the ICAR properties to hold, the fol-
such thatr; ~ ry, we also haves ~ 7. lowing conditions must be met:

In [2] we argue that many match and merge rules nat-, Merge: Fx ((r1, 7)) = Fx (r1) U Fx (r3)
urally satisfy the ICAR properties. However, nhow our
match and merge function have specific components, so it Idempotenceyr; Bx(r,r) = true, (r,r) =7
the next sub-section we study what properties these com-

ponents (i.e.B, L, C) must satisfy in order to meet the ° Commutativity: vrs, 7, BX(TI’TQ).f: Bx(ra,m),
ICAR properties. ande(Tth) = Lx<’l"2,’l“1), and i M_)((Tl, 7“2) =

true, then(ry, re) = (ro,r1).

4.2 Propertles |n Two Datasets ° ASSOCiatiVity:V?"l, 79,73 such that<7’1, <7’2, 7’3>> and
_ o o ((r1,7ra),m3) €Xist, (r1, (r2,73)) = ((r1,72),73)
Merge Function: To maintain representativity,

Fx({r1,r2)) must at least contailf’y () U Fx (ro); if ~ ® Representativity: I3 = (ry,r2) then
the merge function removes any recordsHg (r1) or
Fx(r2), representativity might no longer hold.
The proof of the above property, as well as other prop-
erties given in this section, are given in Appendix A.
Since it does not make sense for the merge function

e For anyr, such thatBx (r1,74) = true, we
also haveBx (r3,74) = true

e For anyr, such thatL x (r1,r4) = true, we
also havel x (r3,r4) = true.

to add links not already in-; or r,, to satisfy the above e For anyr; andry such thatBx(ri,ry) =
property we will assume thaFx ({r1,r2)) is equal to true, we also have. x (r1,r4) = true
Fx(r1) U Fx(r2) . e IncaseC is used, ifBx (11, 74) = true, then

we mst have® (Fx (r1), Fx(r4)) = true.
Idempotence: For Mx to be idempotentBx must be

idempotent. Note that this is regardlessof andC. .
5 Resolution

Commutativity: If Bx andLx are commutative)! x . .

must be com?/nutative. This property holds regardless%w‘l Problem of Naive ER Algorithm

whetherC' is implemented a€’; or asC’. (becasue both | section 3, we showed an algorithm which alternates

Cy andC, are commutative.) running Entity Resolution on two data sets. That algo-
rithm has two performance problems.

Associativity: As in the general case, the merge func- First, the algorithm of section 3 may need a large

tion y; should be associative. amount of time; each ER process must run to completion

before the next may begin. To improve response timesue when: By(ry,72) = false, Li(r1,r2) = true,

we will show the following algorithm, which runs EntityCs(Fx (1), Fx (r2)) = false.

Resolution on X and Y concurrently. To inform the concurrent ER process of merges, the

Second, the algorithm may perform redundant coraR procedure sends UPDATE messages in line 25. Then,
parisons. For example, say there are a records whafter each/ record is processed (line 29), procedure ER
ri,re € X, s1,80 € Y, Fx(r1) = s1, Fx(ry) = checks for received messages from its concurrent process

sy, Bx(ri,m3) = false, Lx(ri,r2) = true, by callingprocedure UPDATE (Algorithm 2).

My (s1,82) = false. At the comparison in the first R- To check for changes in locdl’ sets, procedure ER

Swoosh execution oY, records; andr, do not match, calls function UPDATE after each record is processed

becaus&y (Fx (r1), Fix (r2)) is false. At the comparison(line 29). To illustrate function UPDATE, say in our run-

in the next R-Swoosh execution ahafter doing so oY, ning examplePy mergess; and ss t0 s3 = (s1, $2),

records-; andrs will not match because bothiy (r;) and so it sendsPx an update messages which includes

Fx(r9) are not changed an@h (Fx (r1), Fx (r2)) will be F;1(<sl, s2)) (=r1,r2)and the identity ofss. When that

false. In the example\/x (r1,72) is computed twice, and message is received (line 3 of UPDATE)R¢, if either

the computation is redundant. Section 5.4 shows a moui-or 2 happen to be id’ (= X’), they are moved back

fication that eliminates redundancy. to I (=X) since these records need to be compared again,

in light of the new information. Also, in line XX thé’
L . sets are updated locally using a lazy strategy.

5.2 Preliminaries The concurrent ER processes finish when neither one
as new merged records to report and all outstanding UP-
ATE messages have been fully processed. The termi-

nation function (Algorithm 3) checks these conditions.

To explain the new algorithms, consider recor
r1,7T9, 81, 82 Wherery,ro € X andsy, ss € Y. Further-

more, sa r1) ={s1}, Fx(r2) = {s2}. Say we want - . :
Wix(r1) = {si}, Fx(ra) = {s2}. Say When Px finished processing all records i (line 5),
to run ER onX andY'. . o .
: it sends a termination message with the number of mes-
We make the standard assumptions about our paral-~ ™ . . .
.) sages it sent and retrieved. Whék receives a termi-
lel computing model: we assume that no messages ex=, . ; o
nation message, it examines the contents and if it knows
changed between processors are lost. .
that all those messages were processed then it completes

execution.
5.3 Running R-Swoosh in Parallel

Our Simple Parallel ER (SPER) algorithm consists 9"4 Enhanced Parallel ER Algorithm

three code segments, shown as Algorithms 1, 2, 3. We will show how the joint ER algorithm can be modified
Each processor fak andY” runs procedur& R (/) de- to improve efficiency by explaining how an ER process
tailed in Algorithms 1, wherd is the input set of recordssends and reacts to messages.
(eitherX orY’). Except for lines 6, 25, 26, 29-3ER(I) First, we consider the possibility of reducing the num-
is the Swoosh algorithm of [2], which assumes the ICARer of record comparisons. When ER processes apply a
properties. In this code, sét contains the records thatSimple Parallel algorithm to the example given abave,
aretentativelyin the result. Each recoreirrent Record compares records iX ,rq,rs, to all records inX’ ,rs,
in [is considered in turn, and if it does not merge witind moves the records i to X’. Then, after receiv-
any I’ recordscurrent Record is moved tol’. ing messages’x movesr; andry from X’ back toX.
However, activity in the concurrent ER process mdyinally, Px compares-; andr, to r3 again. However,
lead to a new local match (because fiesets changed), only the comparison of; andr, could match. All other
and hence a record already ifi may have to be comparisons between andrs will not match, and are
moved back tol so it can be reconsidered in lightedundant.
of new information. In particular, it is possible for To avoid this redundant comparison, we will show how
a match resultM;(ry,m2) to change fromfalse to a process can react to messages more efficiently. Just be-

fore moving X’ records back toX, Px runs R-Swoosh

for the records which refer to mergéd records. If by o

doing so,Px produces new records, thétyx adds them 4, |

to X. If insteadPx deletes records, then it deletes them soo ¢

from X’. In the processPx will not retrieve messages. |

This algorithm is shown in Algorithm 4. In the example s |

given above, aftePx pops the update messag®s; runs = 422 oMo

R-Swoosh for-;, 75, and producesr;, 72). Py thenadds | ot

(r1,72) to X, and deletes; andr, from X’. Note that 1o

Px does not compare; andrs again. " o oo om o8 o 01 oss o

Second, we consider the possibility of reducing the L Threshold

number of feature comparisons in a record compariscmgure 1: Merges and Messages Plotted Againstor

We use a cache to reduce the number of feature compgg Paper Dataset

isons. When records do not match, they may be com-

pared again. However, once an ER process compares the

records, the evaluation d®; and L; will not change so records. The paper dataset includes an ID, atitle, a venue,

the process will not need to be repeated. In our algorithemd an author name, which refers to author recorfds.

if L; is false, an ER process memoizes the combinatiand L; evaluate the lexical similarity of each attribute

of records in a table. Before comparing records, if an ERher than ID and compare the similarity to a threshold.

process finds the combination of records in the table,Tihe B; threshold is larger thai; threshold so thaB;

knows the evaluation is false without computifg and and L; meet the representativity conditio®; — Ly,

Ly. Algorithm 5 is called as a match function from Algothen they satisfy ICAR properties. We fixdd = 2,

rithm 1 and update the cache namE@MATCH;. Al- Co(Fx(r1), Fx(r2)) = Fx(r1) N Fx(rz) # 0. We im-

gorithm 6 is called as a match function from Algorithm #lementedF'y for author records as a set of IDs of paper

and use the cache. records whose title is the exactly same as the title in the

author record. An approximate match between the titles

. in the author and paper records might be required, how-

6 Experlments ever we do not talk in this paper. This may be a future

work. We also implementeflx for paper records as a set

We implemented the Alternate ER algorithm given in seef IDs of author records whose author name is the exactly

tion 3 and the Simple Parallel ER algorithm, the Enhancedme as the author name in the paper record.

Parallel ER Algorithm, and the Enhanced Parallel ER al-The algorithms were implemented in Java, and our ex-

gorithm with cache given in section 5. We used ¢tloga periments were run on four 2.4GHz Intel Core processor

citation data set. We compared the number of merges pgith 4GB of memory.

formed and messages sent by the four algorithms while

varying the thresholds aB; andL;. We also compared

the number of comparisons by and runtime of the algg-'2 Merges and Messages

rithms while varying the thresholds &f; andL;. Finally, We measured the number of merges performed in and

Number of merges and messages

we conducted scalability tests. messages sent by a ER process by varying the thresholds
of eitherBy or L;.
6.1 Experimental Setting Figure 1 and 2 shows the number of merges and mes-

sages while varying the; threshold. When we varied the
We ran our experiments on a citation dataset. We re; threshold, we fixed thé; threshold to 1.0. Figure 3
trieved two data sets from theora dataset: author andshows the number of merges while varying #gethresh-
paper. The author dataset includes an ID, an author naold, When we varied thés; threshold, we fixed thé.;
an institution, and a paper title, which refers to pap#reshold to 0.7. Lower thresholds Bf and L; resulted

900

Number of merges and messages

Number of Feature Comparisons

5000000
800 4500000 - Alternate)'
,,, - Simple Parallel
700 5 4000000 Enhanced Parallel
e -2 3500000 - Cache Enhanced
600 . ——8 §
N = £ 3000000 -
g% / S 2500000 |
5 e P
Z 400 /’ g 2000000 [
300 n—" -£ 1500000 |
—&-merges £
200 =M (Alternate) — Z 1000000
Messages (Simple Parallel) 500000
100 <M (Enhanced Parallel) [~ | 0 L e L
ol 1 095 09 085 08 075 07 065 06
1 0.95 09 085 08 0.75 0.7 0.65 06

Figure 2: Merges and Messages Plotted Againstor

L Threshold

the Author Dataset

Number of Merges

Figure 4: Feature Comparisons for the Paper Dataset

7000000

L Threshold

Number of Feature Comparisons

1200
—&- Alternate /.
,, 5000000 & Simple Parallel
1000 - a 5 5000000 Enhanced Parallel
- @
2 - € —¢ Cache Enhanced /7//./
L e g
5 800 [y m—® £ 4000000 "
£ S L
5 600 - 5 3000000 =
53 5 "
]
E 400 £ 2000000 pam————
—
= 2 /><
200 | 1000000 ST
LT
o™= — e ' 1 095 09 08 08 075 07 065 06
1 095 09 085 08 075

B Threshold

L Threshold

. Figure 5: Feature Comparisons for the Author Dataset
Figure 3: Merges and Messages Plotted AgaiBstfor g P

the Paper Dataset
which we showed. We fixe®; threshold to 1.0 in this

in a higher number of merges because processes frgRerment.

duced more new records. The number of messages cofsigure 4 shows the number of feature comparisons for

responded to the number of merges because when rec®@Rer records. In general, the number increased for lower
were merged processes sent messages. Relatively fewtf§gsholds because lower thresholds produced more new
mination messages were observed. The fact that the E@Mposite records. However, when the threshold was

hanced Parallel algorithm sent more messages than thé&glh, more than 0.8, the number of feature comparisons

ternate algorithm seems inefficient however it resulted @creased for lower thresholds in the alternative algo-
a shorter runtime. We will explain why below. rithm. The reason why is that processes run R-Swoosh

repeatedly for larger record sets. The Enhanced Parallel
. . ER algorithm performed 40.1% of the comparisons of the
6.3 Comparisons and Runtimes alternate algorithm for a high threshold (0.98). For lower
We measured the number of feature value comparisdfgesholds, the relative advantage over the alternate algo-
for each algorithm and runtimes of the four algorithms Bjthm decreased. However it still performed only 70.3%
varying theL; thresholds for both the author and papd@f the comparisons of the alternate algorithm for a low
datasets. We started measuring the runtime when a threshold (0.6).

process start R-Swoosh algorithm, and we finished meaFigure 5 shows the number of feature comparisons for
suring it when a ER process end by termination protocalithor records. Notice that the number of feature com-

Runtime Number of Feature Comparisons

250000 2500000

i - - Alternate
ernate Enhanced Parallel
200000 2000000

-l Simple Parallel
Enhanced Parallel
150000
P |
100000 F _—

50000 - W=

1500000

1000000

Runtime (ms)
Number of Comparisons

500000

o L
1 0.95 0.9 0.85 08 0.75 0.7 0.65 06
L Threshold

o M
400 600 800 1000 1200 1400 1600 1800
Total Number of Records

Figure 6: Runtime for the Paper Dataset Figure 8: Scalability Test of Feature Comparisons for the
Paper Dataset

Runtime

Number of Feature Comparisons

—4- Alternate
Enhanced Parallel

1500000 ~

250000

—&- Alternate 2500000
|| = Simple Parallel

200000 Enhanced Parallel

—< Cache Enhanced E

isons

2000000

150000

100000

Runtime (ms)

1000000 -
50000 - m-

500000 |

Number of Feature Compar

0

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0

L Threshold 400 600 800 1000 1200 1400 1600 1800
Total Number of Records

Figure 7: Runtime for the Author Dataset) -)
Figure 9: Scalability Test of Feature Comparisons for the

Author Dataset
parisons for the Simple Parallel ER algorithm was much
larger than for the other algorithms. The reason why rjﬁficantly faster in terms of runtime.
that processes repeated comparisons every time records
matched. The plot also shows the Enhanced Parallel ER .
algorithm reduced redundant comparisons; the numberEof]' Scalability

comparisons was between 23.5 and 40.3% of the SImp|@ conducted scalability tests for the alternate algorithm
Parallel algorithm’s. and for the Enhanced Parallel ER Algorithm. We mea-
These plots also shows that the use of a cache did Bgted the number of feature comparisons and runtimes by
affect the number of feature comparisons. The diffefarying the number of input record both for paper and au-
ence between the Enhanced Parallel ER algorithm wifor records. Input records were selected randomly from
and without cache was between 95 and 100%. a paper dataset containing 1037 records and an author
Figures 6 and 7 show runtime. The graphs are neadgtaset containing 780 records. TBeg and L; thresh-
identical because our termination protocol required batlds were fixed to 1.0 and 0.8 respectively.
ER processes to terminate at the same time. For larg&igure 8 and 9 shows the number of comparisons made
thresholds (0.98), the Enhanced Parallel ER algorithm @ each algorithm. The plot shows that the Enhanced
quired 30.9% of the runtime of the alternate algorithrRarallel ER algorithm performed fewer comparisons than
For thresholds as low as 0.6, the runtime was still ahe alternate algorithm. For very few number of input
most 50.8%. Our Enhanced Parallel algorithm was sigecords near 400, the Enhanced Parallel ER algorithm

7 Related Work

Runtime

120000

E 1 Entity Resolution has been studied under various names
Eohanced Rarcle including record linkage [17], merge/purge [12], dedupli-
cation [18], reference reconciliation [8], object identifica-
tion [19], and more (see [21, 11] for recent surveys).
Most approaches focus on matching: accurately find-
ing records that represent the same entity, using a variety
, of techniques such as Fellegi and Sunter’'s probabilistic
40 60 a0 1000 100 1400 1600 1800 linkage rules [9], Bayesian networks [20], or c_Iustering
[16] [4]. Our approach encapsulates the behavior of such
Figure 10: Scalability Test of Runtime for the Pape&omplex decision processes into a Boolean match func-
Dataset tion that decides whether two records represent the same
entity or not. Iterative approaches [3] [8] identify the need
for a feedback loop that compares merged records in order
to discover more matches. Our ER algorithm provides a
Runtime general framework where match and merge are black-box

100000

80000 |

60000 |

Runtime (ms)

40000 |

20000 [

120000 W functions.

100000 |-__Enhanced Parallel = In the parallel computing literature, [1, 13] introduced a
3 80000 | parallel algorithm for single dataset based on the Swoosh
2 60000 algorithm. [6, 10] used parallel algorithms as well.

3 40000 | Several works [14, 15, 7, 5] have addressed algorithms

20000 which handles two datasets. [14] introduced a paral-

. ./ “““““““““““““““““““““““““““““““““ lel algorithm for two datasets. However the datasets it
40 600 800 1000 1200 1400 1600 1800 handles belong to same class. By contrast, our target

Total Number of Records

datasets belong to different classes. [15, 7, 5] presented

Figure 11: Scalability Test of Runtime for the Authofollective models for different datasets. However their re-

Dataset search focused on accuracy rather than runtime. Although
they demonstrated that making multiple ER decisions col-
lectively can provide better accuracy than historical ap-
proaches, however it is believed that the approach is ex-

performed very fewer comparisons than the alternate pénsive.

gorithm, 42.6% for paper records and 66.8% for author

records. For larger number of record more than 700, the

improvement rates were almost same around 50% for @ Future Work

per records and 70% for author records.

Figure 10 and 11 shows rumtimes of each algorithfAuture work might proceed in several directions. First,
The plots shows that the Enhanced Parallel ER algorittme might consider how to run ER for three or
performed faster than the alternate algorithm. For vemyore datasets. Second, one might consider more
few number of input records near 400, the Enhanced Piexible implementation ofC'(Fx (r1), Fx(r2)) which
allel ER algorithm performed very faster than the alternatan handle similarity of confidence values, because
algorithm, 27.2% for paper records and 21.3% for auth®% (Fx (r1), F'x(r2)) = Fx(r1) = Fx(rz) may be too
records. For larger number of record more than 700, thigict andCs(F'x (1), Fx(r2)) = Fx(r1) N Fx(ra) # 0
improvement rates were almost same around 35% for batay be too lax. Finally, one might investigate approxi-
records. mate reference between two datasets.

9 Conclusion

Fx(r1), soCy andC,, are always commutative, theid x
are commutative. In terms of mergEx is commutative

In this paper, we formalized the problem of Entity Res®ecause’ (71)UFx (r2) = Fx (r2)UFx (r1). Therefore

lution for two related different datasets. In the datasetsit records are always commutative.

O

record in one can refer to a record in the other and an ER

process affect to other ER process.

Proposition 3. Associativity: Ifux is associative, the

We also provided four algorithms that run ER jointlyecords are associative.

for two datasets. The alternate algorithm is the most

straightforward, but it results in long runtimes. The SinRroof. {{Fx(r1) U Fx(r2)} U Fx(r3)} = {Fx(r1) U

ple Parallel algorithm is efficient in terms of runtime, bufFx (r2) U Fx(r3)}}, then Fx is associative, so if the

it performs more redundant comparisons than the altgry is associative, the records are always associatize.

nate algorithm. The Enhanced Parallel algorithm is an

efficient way to reduce the number of comparisons aRuoposition 4. Representativity: For’y, if Bx and Lx

runtime. In our experiments, it required 31% of the rurare representative an®x = Ly, then representativ-

time of the alternate algorithm. Adding a cache to the Eity holds. ForC, if By and Lx are representative and

hanced Parallel algorithm did not affect its performanceBy = Lx and Bx = (i, then representativity holds.
Finally, we presented four important properties for

match and merge functions for two datasets that leadf 3 = (r1,72) then for anyry such thatBx (1, 74) =

to significantly more efficient ER. We argued that thegaue, we also haveBx (r3,r4) = true, and for anyry

properties should guide the development of match asidch thatlx (r1,74) = true, we also have x (r3,r4) =

merge functions.

Acknowledgments

We acknowledge the supports made by Steven EUIjofig that we must consider two cases.
Whang and David Menestrina. We would also like te'z(Fx(ﬁ) Fx(r1))

thank the other InfoLab members at Stanford Universify g Fx(r1) N Fx(rs) € Fx(

true, and for any; andr, such thaBx (r1,74) = true,
we also havd.x(r1,r4) = true and in the case of’,
we also have®; (Fx (r1), Fx(r4)) = true.

Proof. We begin by showing”' is representative. To
Fos, if
= true, Fx(r1) N Fx(ry) #

7’1). Fx(’f‘g)

and many members of NEC Corporation and NEC Labg~ (-) Fy (), thenFx (r1) C Fx(r3), S0Fx (r1) N
ratories America and NEC Corporation of America Wh@ ;) ¢ Fy(r3). ThenFy(rs) N Fx(r3) # 0 and

supported me. We also thank Eric Schkufza.

A Appendix: Proofs

Proposition 1. Idempotence: 1By andux are idempo-
tent, then idempotence holds.

Proof. If we know Bx(r,r) = true, then we know
Mx (r,r) = true. (Fx(r), Fx(r)) = Fx(r)UFx(r) =
Fx(r). Therefore, becaus@/x(r,r) = true and
(r,r) = r by definition, the idempotence holds. O

Proposition 2. Commutativity: IfBx and Lx and px
are commutative, then commutativity holds.

Proof. For Cy, (Fx(r1) = Fx(r)) = (Fx(r2) =
Fx(r1)). Similarly, forCy, Fx (r1)NFx (r2) = Fx (ro)N

Ca(Fx(r3), Fx(ry)) = true. We will consider forC;
later.

We now consider four cases in turn.

If Bx(ri,m2) and Bx(r1,r4) equal totrue, then
Bx(rs,r4) equal totrue, becausé3y is representative.
Then,rs ~ r4.

If Lx(’r‘l,Tg) and CQ(Fx(Tl),FX(Tg)) and
Lx(Tl,Tzl) and CQ(Fx(Tl), Fx(’l“4)) equal to true,
thenLx(rs3,74) = true, becausd.y is representative.
Cy(Fx(r3), Fx(rs)) also equal totrue, as we explain
above. Thenys ~ r4.

If BX(T17T2) and Lx(Tl,T4) and
Cy(Fx(r1),Fx(rs)) equal to true, then
Lx(Tth) = true, becauseBX = Lx. Lx(’r‘g, 7‘4)
andCy(Fx (r3), Fix(r4)) equal totrue because of same
reason as previous explanation. Thenz r4.

10

If LX(T17T2) and CQ(Fx(T1)7Fx(T2)) and
Bx(r1,74) equal totrue, thenLx (ry,r4) = true, be-
causeBx = Lx. Lx(r3,r4) andCs(Fx(r3), Fx(r4))

3]

equal to true because of same reason as previous

explanation. Then;s ~ r4.

We now consider four cases f6x .

If Bx(ri,m2) and Bx(r1,74) equal totrue, then
Bx(rs,r4) equal totrue, because3 is representative.
Then,rs ~ r4.

If Lx(T'l,TQ) and Cl(Fx(Tl),Fx(Tg)) and
Lx(r1,74) and C1(Fx(r1), Fx(rs)) equal to true,
then Lx(rs,74) = true, becauseLx is representa-
tive. C1(Fx(rs), Fx(rs)) also equal totrue, because
Fx(T’g) = Fx(T’l) N Fx(TQ) = Fx(Tl) = Fx(T4).
Then,rs ~ r4.

If Bx(r1,72) and Lx(r1,74) and
C1(Fx(r1), Fx(r4)) equal to true, then
Lx(r1,72) = true, becauseBx = Lx, and then
C1(Fx(r1),Fx(r2)) = true, becauseBx = (.

Lx(Tg,’l’4) and Cl(Fx(T3),Fx(T4)) equal to true

because of same reason as previous explanation. Then,

rg ~ r4.

If Lx(T'hTQ) and Cz(Fx(T1)7Fx(T2)) and
Bx(r1,74) equal totrue, then Lx(r1,74) = true,
becauseBx = Lx, and thenC;(Fx(r1), Fx(r4))
true, because By = (. Lx(rs,r4) and
Cy(Fx(r3), Fx(rs)) equal totrue because of same
reason as previous explanation. Thenz r4.

As we mentioned above, in all case whese= (rq,)
andr, =~ r4, we always have; =~ r,, because we showed
in all casesy; ~ ry4.

O

A.1 Reference

References

[1] O. Benjelloun, H. Garcia-Molina, H. Kawai,

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

TE Larson, D. Menestrina, and S. Thavisomboofil2]

D-Swoosh: A Family of Algorithms for Generic,
Distributed Entity Resolution. 2007.

[2] O. Benjelloun, H. Garcia-Molina, Q. Su, and13]
J. Widom. Swoosh: A generic approach to entity

resolution.VLDB Journal 2008.

11

I. Bhattacharya and L. Getoor. Iterative record link-
age for cleaning and integration. Rroceedings of
the 9th ACM SIGMOD workshop on Research issues
in data mining and knowledge discovepages 11—
18. ACM New York, NY, USA, 2004.

S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. IBata Engineer-
ing, 2005. ICDE 2005. Proceedings. 21st Interna-
tional Conference orpages 865—-876, 2005.

A. Culotta, A. McCallum, and MASSACHUSETTS
UNIV AMHERST DEPT OF COMPUTER SCI-
ENCE. A Conditional Model of Deduplication for
Multi-Type Relational Data, 2005.

EW Dijkstra. Solution of a problem in concurrent
programming controlCommunications of the ACM
8(9), 1965.

P. Domingos and P. Domingos. Multi-Relational

Record Linkage. 2004.

X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of dafages
85-96. ACM New York, NY, USA, 2005.

I.P. Fellegi. A theory for record linkagelournal of
the American Statistical Associatio®v(328):1183—
1210, 1969.

H. Garcia-Molina and D. Barbara. How to assign
votes in a distributed systemlournal of the Asso-
ciation for Computing Machinery32(4):841-855,
1985.

L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future direc-
tions.

M.A. Hernandez and S.J. Stolfo. The Merge/Purge
Problem for Large Databases. $iGMOD Confer-
ence pages 127-138, 1995.

H. Kawai, H. Garcia-Molina, O. Benjelloun,
D. Menestrina, E. Whang, and H. Gong. P-Swoosh:
Parallel Algorithm for Generic Entity Resolution.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Technical report, Technical report, Stanford Univer-
sity, 2006.

H. Kim and D. Lee. Parallel linkage. pages 283-
292, 2007.

A McCall dB. Well Conditional model f1: input: record setX andY
- McCallum and B. Wellner. Conditional moaels 2: output: a setX’ andY”’ of records, X’ = ER(X),

identity uncertainty with application to noun coref- Y’ = ER(Y)
erence Advances in Neural Information Processi 93 call ER(X) andER(Y') together

Systemsl7:905-912, 2005. 4

A.E. Monge and C. Elkan. An efficient domain- 5 ER(I):

independent algorithm for detecting approximatelys: ' < O, sentCount;, recievedCount; < 0
duplicate database recordgesearch Issues on Data 7: 100P

Mining and Knowledge Discoveryages 23-29] 8 if I # @ then

1997. 9: currentRecord «— arecord from/
10: removecurrent Record from I

HB Newcombe, JM Kennedy, SJ Axford, andii: buddy <+ null

AP James. Automatic linkage of vital recordSci- | 12: for all recordsr’ in I’ do

ence 130:954-9, 1959. 13: result < Mj(currentRecord,r’)
14: if result = true then

S. Sarawagi and A. Bhamidipaty. Interactive deq o buddy — '
plication using active learning. roceedings of the 16: exit for
eighth ACM SIGKDD international conference on . end if

Knowledge discovery and data minjrngages 269—

18: end for
278. ACM New York, NY, USA, 2002. 19: if buddy = null then
S. Tejada, C.A. Knoblock, and S. Minton. Learn20: add currentRecord to I'
ing object identification rules for information intg-21: else
gration. Information System£6(8):607—-633, 2001| 22 " (currentRecord, buddy)
23: remove buddy from I’
G. V.Moustakides V. S. Verykios and M. G. Elfeky.24: addr”toI
A bayesian decision model for cost optimal recqrgs: SEND (UPDATE,
matching.The VLDB Journgl12(1)::28-40, 2003. F7(r"), (current Record, buddy, "))
26: sentCounty + +

William E Winkler and Nov P. Overview of record :
. T 27 end if
linkage and current research directions. Techn cgi_ end if

report, Bureau of the Census, 2006. 29_' UPDATE()
30: if TERMINATION() = true then
31 return I’
32: endif
33: end loop

Algorithm 1: Parallel Joint ER Algorithm

12

1: UPDATE():
2: while UPDATE messages exidb

1. UPDATE():

2: while UPDATE messages exidb

3 pop UPDATE message — I,

(oldRecordy, oldRecords, new Record)

4. T(oldRecordy) < newRecord

5. T(oldRecordsy) < newRecord

6: recievedCounty + +

7. addl”"nI'tol

8: removel” NI’ from I’

9: end while
Algorithm 2: Simple Update Algorithm

1: TERMINATE():

2: if I # (v UPDATE messages exitien

3: return false

4: end if

5. SEND (TERMINATE, sentCounty,

receivedCounty, Py)

6: loop

7 Wait for messages

8: if UPDATE messages exititen

9: return false

10. endif

11: if TERMINATE messages exighen

12: pop TERMINATE message —
sentCount y, receivedCount y

13: if sentCount; = receivedCount; A
receivedCount ; = sentCounty then

14: return true

15: end if

16: endif

17: end loop

Algorithm 3: Termination Protocol

3 pop UPDATE message — 1,
(oldRecordy , oldRecords, newRecord)
4. T(oldRecord;) < newRecord
5. T(oldRecords) < newRecord
6: recievedCountr + +
7. ER(I"NI')— I'", with no UPDATE
8 addl” —I'tol
90 remove(I”"NI')—I"fromI'
10: end while
Algorithm 4: Enhanced Update Algorithm
1:]\/[](T‘l,T2>:
2: if By(ry,re) = true then
3. returntrue
4: elseifL;(r1,m9) = false then
5: addr1 to NOMATCH[(TQ)
6: returnfalse
7: else ifCy(Fy(r1), Fr(r2)) = true then
8. returntrue
9: else
10: returnfalse
11: end if
Algorithm 5: Update Cache
1 M[(T’l,?”g):
2: if 71 € NOMATCH[(T2)|T‘2 €
NOMATCH; (7‘1) then
returnfalse
else

returnM;(ry, o) wWithout NOM ATCH;
end if

13

Algorithm 6: Match Function with Cache

