
Joint Entity Resolution

Makoto Tachinaba∗

Stanford University
Hector Garcia-Molina
Stanford University

January 13, 2009

Abstract

Entity resolution (ER) is the process of matching records
that represent the same real-world entity and then merg-
ing them. We consider the ER problem for two related
datasets. In the datasets, a record in one can refer to a
record in the other and an ER process running on one
set can affect an ER process on the other. We formal-
ize the joint ER model for datasets which reference each
other by treating the match and merge functions as black
boxes. We identify important properties for match and
merge functions that, if satisfied, allow much more effi-
cient ER. We provide four algorithms that run Entity Res-
olution for a pair of datasets. We show that our parallel
algorithms require shorter runtime than naive alternate al-
gorithms. We also introduce improvements for our paral-
lel algorithms which result in fewer feature comparisons.

1 Introduction

Entity Resolution (ER) (sometimes referred to as dedupli-
cation) is the process of identifying and merging records
judged to represent the same real-world entity. For exam-
ple, two companies that merge may want to combine their
customer records: for a given customer that dealt with the
two companies they create a composite record that com-
bines the known information.

Most of the previous work considered ER techniques
for a single class dataset. However, in practice, many
data integration tasks need to tackle complex information
spaces where datasets of multiple classes and relation-
ships between the datasets exist. In this paper, we assume

∗Visiting from NEC Corporation

there are two data sets to be resolved. Those data sets are
related, which means a record in one data set can refer
to a record in the other data set. ER algorithm for those
datasets is complex because a ER process for one dataset
may affect other ER process.

For concreteness, in this paper we focus on a type of
ER processing called generic pair-wise. In this case, a do-
main expert writes two functions, a match and a merge
function. The pair-wise match ruleM(r1, r2) evaluates
to true when two recordsr1 andr2 are determined to rep-
resent the same entity. IfM(r1, r2) is true, then a merge
function is used to create the composite record〈r1, r2〉.
Note that after a merge we may identify new matches with
other records. For example, the combined information in
〈r1, r2〉may match with a third recordr3, while neitherr1

nor r2 had enough information to generate a match with
r3.

The alternative to pair-wise ER is generally some type
of global clusteringstrategy that groups records that are
similar and are deemed to represent the same real-world
entity [16, 4]. Briefly, pair-wise may be easier to imple-
ment since the domain expert only needs to consider two
records at a time, and pair-wise may be more amenable
to incremental and distributed processing [1]. Clustering
approaches may yield more accurate results.

Several works [14, 15, 7, 5] have addressed algorithms
which handles two datasets and they have focused on ac-
curacy of matching and how to compare records. By con-
trast, we focus on performance and treat the functions for
comparing and merging records as black-boxes. We will
show efficient parallel algorithms for jointly comparing
and merging〈r1, r2〉 those data sets.

In summary, in this paper we make the following con-
tributions:

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357381398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• We formalize the generic ER problem for two related
dataset (Section 3).

• We identify the ICAR properties of match and merge
functions for this problem that lead to efficient strate-
gies (Section 4.2).

• We present parallel ER algorithms for two related
dataset (Section 5).

• We experimentally evaluate the algorithms using two
sets of related data, one on papers and another on
their authors. Our algorithms result in good perfor-
mance in terms of the number of feature comparisons
and runtime (Section 6).

2 Motivating Example

To illustrate joint ER, consider two data setsX and
Y , where X is a set of books andY is a set of au-
thors. Books inX have attributes Title and Writ-
tenBy. Authors in Y have attributes Name, Affil-
iation and Publication. The two data sets are re-
lated because values in the WrittenBy attribute refer
to Y author names, and vice versa. For example,
X may contain the tuple,〈Database book,H.Garcia-
Molina〉 and Y may contain the tuple,〈H.Garcia-
Molina, Stanford University, Database book〉.

In this example, the rules for determining when authors
(or books) represent the same real world entity are inter-
related. For instance, if two records inX have identical
title, or similar titles and were written by the same author,
we can assume that they refer the same entity. Similarly,
if two records inY have identical name, or similar name
and identical affiliation and those authors wrote the same
books, we can assume that they refer the same entity. For
every record inX we need to refer toY to find the affil-
iation of its author. Moreover, for every record inY we
need to refer toX to find the names of books its author
wrote.

3 Model

A match ruleMI determines if two recordsr1 andr2 in
the record setI refer to the same real-world entity. If

the records match,MI(r1, r2) = true, we denote this as
r1 ≈ r2; otherwise, ifMI(r1, r2) = false, we denote
this r1 6= r2. MI results always true or false; we do not
consider approximate matches (with an associated confi-
dence value).

A merge ruleµI merges two records in the record set
I into one. The function is only defined for matching
records. The result ofµI(r1, r2) is denoted〈r1, r2〉.

Let X andY be the sets of records to be resolved. We
discuss entity resolution from the point of view of theX
records; the case for theY records in symmetrical. All
the functions forX that we define (which have anX sub-
script) have aY analogue.

A recordr ∈ X has a fieldF that refers to one or more
Y records. We refer to this field asFX(r). Note that
FX(r) ⊆ Y . (We could extend our model to include a
confidence value with each links ∈ FX(r), representing
how confident we are thats is the Y record associated
with r. These confidences could be taken into account by
the match function when deciding if two records match.
We do not discuss such an extension here.)

WhenFX(r) contains a single element we omit the set
brackets and simply writeFX(r) = s (s ∈ Y). We use
the notationF−1

X (r) to refer to theY records whoseFY

field containsr. Note thatF−1
X (r) can be implemented in

a variety of ways. For instance, we can scanY searching
for r references, which would be expensive. We could
also keep back pointers inX records, i.e., materialize the
F−1

X (r) values. The latter option would involve an update
cost whenY records change.

For setX, we have a match functionMX(r1, r2) that
returns true if recordsr1, r2 ∈ X represent the same real
world entity. We assume that the match function is of the
following form:

MX(r1, r2) = BX(r1, r2) ∨ [LX(r1, r2) ∧
C(FX(r1), FX(r2))]

The “base” comparison functionBX can determine if
r1 andr2 match without consulting anyY records. For
example, if two products have almost identical names,
prices and codes, then we assume they are the same, re-
gardless of their manufacturer (represented byY records).
If the BX function cannot determine thatr1 andr2 match
on their own, then the second part of the match func-
tion checks if they match due to common references to
Y records. For example, we may say that two products
match if they are manufactured by the same company (the

2

FX fields point to a single common manufacturer), and if
LX says the products names are roughly the same.

There are two important issues to discuss regarding the
clauseC(FX(r1), FX(r2)) in the match function.

First, there are two natural choices for theC compari-
son function. One is a functionC1 that checks if all ele-
ments in the sets match. For example, say a book record
r1 in X refers to two authors inY , s1 ands2. Similarly, a
second bookr2 refers to authors, i.e.,FX(r2) = {s3, s4}.
The conditionC1(FX(r1), FX(r2)) is true only if (a)s1

equals eithers3 or s4, and (b)s2 equals the remainingY
author.

C1(FX(r1), FX(r2)) ≡ FX(r1) = FX(r2)

The second natural condition,C2 checks that a subset
of FX(r1) matches a subset ofFX(r2). In the previous
example, ifs1 or s2 equals eithers3 or s4 then the condi-
tion is true.

C2(FX(r1), FX(r2)) ≡ FX(r1) ∩ FX(r2) 6= ∅

The second issue regarding the comparison function is
howF values are updated. In particular, during entity res-
olution we assume that asY records are merged, theFX

values are updated. For instance, sayFX(r1) = s1 and
FX(r2) = s2. If s1 ands2 merge into a new records3,
then FX(r1) = FX(r2) = s3. This change may then
maker1 andr2 match in setX. Note that these updates
can be implemented in a variety of ways. For example,
with an eager strategy, as soon ass1 ands2 merge, we
can update allX records inF−1

Y (s1) andF−1
Y (s2). With

a lazy strategy, we do not update theX records but in-
stead keep atranslation tableT that maps records to their
current merged record. For instance, before the merge
T (s1) = s1 and after the mergeT (s1) = s3. In this lazy
case, to perform the comparisonFX(r1) = FX(r2) in
the match function, we actually performT (FX(r1)) =
T (FX(r2)) (whereT operates on a set in the obvious
way).

When two X recordsr1 and r2 merge, a compos-
ite recordr3 = 〈r1, r2〉 is created by the merge func-
tion. The merge function creates anFX(r3) value. For
now we do not make any assumptions aboutFX(r3).

However, the most natural value forFX(r3) would be
FX(r1) ∪ FX(r2).

Given match and merge functions forX, we can define
the resolved set of recordsERX(X) as done in [1]. We
also have analogous functions for theY set and a defini-
tion of ERY (Y).

We define the joint resolution ofX andY as an itera-
tive process, where we alternate resolving one set and the
other until we reach a fixed point.

ER(X, Y):
done := false;
X’ := X; Y’ := Y;
while not done do

[newX := ER_X(X’); newY := ER_Y(Y’);
done := (newX = X’) and (newY = Y’)
X’ := newX; Y’ := newY]

return (X’, Y’);

Note that the above is simply our definition of a cor-
rect joint resolution. In what follows we investigate effi-
cient ways to perform such joint resolution (showing that
the more efficient strategy yields the same correct results
as the above definition). We also study properties of the
match and merge functions that may make the resolution
more efficient.

4 Properties

4.1 Basic Properties

We assume four basic properties called ICAR properties
for MI andµI : idempotence, commutativity, representa-
tivity and associativity. (We useI in MI andµI to repre-
sent eitherX or Y .) These properties ware addressed in
[2]. Idempotence says that any record matches itself, and
merging a record with itself yields the same record. Com-
mutativity says that, ifr1 matchesr2, thenr2 matchesr1.
Additionally, the merged results ofr1 andr2 should be
identical regardless of the merge ordering. The meaning
of the representativity property is that recordr3 obtained
from merging two recordsr1 andr2 ”represents” the orig-
inal records, in the sense that any recordr4 that would
have matchedr1 (or r2 by commutativity) will also match

3

r3. Intuitively, this property states that there is no ”neg-
ative evidence”: merging two recordsr1 and r2 cannot
create evidence (in the merged recordr3) that would pre-
vent r3 from matching any other record that would have
matchedr1 or r2.

• Idempotence:∀r; r ≈ r and〈r, r〉 = r

• Commutativity:∀r1, r2, r1 ≈ r2 iff r2 ≈ r1, and if
r1 ≈ r2, then〈r1, r2〉 = 〈r2, r1〉

• Associativity:∀r1, r2, r3 such that〈r1, 〈r2, r3〉〉 and
〈〈r1, r2〉, r3〉 exist,〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉

• Representativity: Ifr3 = 〈r1, r2〉 then for anyr4

such thatr1 ≈ r4, we also haver3 ≈ r4.

In [2] we argue that many match and merge rules nat-
urally satisfy the ICAR properties. However, now our
match and merge function have specific components, so in
the next sub-section we study what properties these com-
ponents (i.e.,B, L, C) must satisfy in order to meet the
ICAR properties.

4.2 Properties in Two Datasets

Merge Function: To maintain representativity,
FX(〈r1, r2〉) must at least containFX(r1) ∪ FX(r2); if
the merge function removes any records inFX(r1) or
FX(r2), representativity might no longer hold.

The proof of the above property, as well as other prop-
erties given in this section, are given in Appendix A.

Since it does not make sense for the merge function
to add links not already inr1 or r2, to satisfy the above
property we will assume thatFX(〈r1, r2〉) is equal to
FX(r1) ∪ FX(r2) .

Idempotence: For MX to be idempotent,BX must be
idempotent. Note that this is regardless ofLX andC.

Commutativity: If BX andLX are commutative,MX

must be commutative. This property holds regardless of
whetherC is implemented asC1 or asC2. (becasue both
C1 andC2 are commutative.)

Associativity: As in the general case, the merge func-
tion µI should be associative.

Representativity: The conditions for representativity
are different forC1 and C2. For C2, if BX and LX

are representative andBX ⇒ LX , then MX must
be representative. Note thatBX ⇒ LX meansBX

is a stronger condition thanLX . For example, if
BX(r1, r2) is similarity(r1, r2) ≥ 0.9, LX(r1, r2)
could besimilarity(r1, r2) ≥ 0.8. For C1, in addi-
tion to the previous condition, the records must satisfy
BX ⇒ C1. It is not possible to satisfy this last property
in practice, since the content of theF sets would have to
be determined by the outcome of theBX function. Thus,
the ICAR properties cannot be expected to hold ifC1 is
used.

To summarize, for the ICAR properties to hold, the fol-
lowing conditions must be met:

• Merge:FX(〈r1, r2〉) = FX(r1) ∪ FX(r2)

• Idempotence:∀r;BX(r, r) = true, 〈r, r〉 = r

• Commutativity: ∀r1, r2, BX(r1, r2) = BX(r2, r1),
andLX(r1, r2) = LX(r2, r1), and ifMX(r1, r2) =
true, then〈r1, r2〉 = 〈r2, r1〉.

• Associativity:∀r1, r2, r3 such that〈r1, 〈r2, r3〉〉 and
〈〈r1, r2〉, r3〉 exist,〈r1, 〈r2, r3〉〉 = 〈〈r1, r2〉, r3〉

• Representativity: Ifr3 = 〈r1, r2〉 then

• For anyr4 such thatBX(r1, r4) = true, we
also haveBX(r3, r4) = true

• For anyr4 such thatLX(r1, r4) = true, we
also haveLX(r3, r4) = true.

• For any r1 and r4 such thatBX(r1, r4) =
true, we also haveLX(r1, r4) = true

• In caseC1 is used, ifBX(r1, r4) = true, then
we mst haveC1(FX(r1), FX(r4)) = true.

5 Resolution

5.1 Problem of Naive ER Algorithm

In section 3, we showed an algorithm which alternates
running Entity Resolution on two data sets. That algo-
rithm has two performance problems.

First, the algorithm of section 3 may need a large
amount of time; each ER process must run to completion

4

before the next may begin. To improve response time,
we will show the following algorithm, which runs Entity
Resolution on X and Y concurrently.

Second, the algorithm may perform redundant com-
parisons. For example, say there are a records where
r1, r2 ∈ X, s1, s2 ∈ Y , FX(r1) = s1, FX(r2) =
s2, BX(r1, r2) = false, LX(r1, r2) = true,
MY (s1, s2) = false. At the comparison in the first R-
Swoosh execution onX, recordsr1 andr2 do not match,
becauseC2(FX(r1), FX(r2)) is false. At the comparison
in the next R-Swoosh execution onX after doing so onY ,
recordsr1 andr2 will not match because bothFX(r1) and
FX(r2) are not changed andC2(FX(r1), FX(r2)) will be
false. In the example,MX(r1, r2) is computed twice, and
the computation is redundant. Section 5.4 shows a modi-
fication that eliminates redundancy.

5.2 Preliminaries

To explain the new algorithms, consider records
r1, r2, s1, s2 wherer1, r2 ∈ X ands1, s2 ∈ Y . Further-
more, sayFX(r1) = {s1}, FX(r2) = {s2}. Say we want
to run ER onX andY .

We make the standard assumptions about our paral-
lel computing model: we assume that no messages ex-
changed between processors are lost.

5.3 Running R-Swoosh in Parallel

Our Simple Parallel ER (SPER) algorithm consists of
three code segments, shown as Algorithms 1, 2, 3.

Each processor forX andY runs procedureER(I) de-
tailed in Algorithms 1, whereI is the input set of records
(eitherX or Y). Except for lines 6, 25, 26, 29-31,ER(I)
is the Swoosh algorithm of [2], which assumes the ICAR
properties. In this code, setI ′ contains the records that
aretentativelyin the result. Each recordcurrentRecord
in I is considered in turn, and if it does not merge with
anyI ′ records,currentRecord is moved toI ′.

However, activity in the concurrent ER process may
lead to a new local match (because theF sets changed),
and hence a record already inI ′ may have to be
moved back toI so it can be reconsidered in light
of new information. In particular, it is possible for
a match resultMI(r1, r2) to change fromfalse to

true when: BI(r1, r2) = false, LI(r1, r2) = true,
C2(FX(r1), FX(r2)) = false.

To inform the concurrent ER process of merges, the
ER procedure sends UPDATE messages in line 25. Then,
after eachI record is processed (line 29), procedure ER
checks for received messages from its concurrent process
by calling procedure UPDATE (Algorithm 2).

To check for changes in localF sets, procedure ER
calls function UPDATE after eachI record is processed
(line 29). To illustrate function UPDATE, say in our run-
ning examplePY mergess1 and s2 to s3 = 〈s1, s2〉,
so it sendsPX an update messages which includes
F−1

Y (〈s1, s2〉) (=r1,r2)and the identity ofs3. When that
message is received (line 3 of UPDATE) atPX , if either
r1 or r2 happen to be inI ′ (= X ′), they are moved back
to I (=X) since these records need to be compared again,
in light of the new information. Also, in line XX theF
sets are updated locally using a lazy strategy.

The concurrent ER processes finish when neither one
has new merged records to report and all outstanding UP-
DATE messages have been fully processed. The termi-
nation function (Algorithm 3) checks these conditions.
WhenPX finished processing all records inX (line 5),
it sends a termination message with the number of mes-
sages it sent and retrieved. WhenPY receives a termi-
nation message, it examines the contents and if it knows
that all those messages were processed then it completes
execution.

5.4 Enhanced Parallel ER Algorithm

We will show how the joint ER algorithm can be modified
to improve efficiency by explaining how an ER process
sends and reacts to messages.

First, we consider the possibility of reducing the num-
ber of record comparisons. When ER processes apply a
Simple Parallel algorithm to the example given above,PX

compares records inX ,r1, r2, to all records inX ′ ,r3,
and moves the records inX to X ′. Then, after receiv-
ing messages,PX movesr1 andr2 from X ′ back toX.
Finally, PX comparesr1 and r2 to r3 again. However,
only the comparison ofr1 andr2 could match. All other
comparisons betweenr1 andr3 will not match, and are
redundant.

To avoid this redundant comparison, we will show how
a process can react to messages more efficiently. Just be-

5

fore movingX ′ records back toX, PX runs R-Swoosh
for the records which refer to mergedY records. If by
doing so,PX produces new records, thenPX adds them
to X. If insteadPX deletes records, then it deletes them
from X ′. In the process,PX will not retrieve messages.
This algorithm is shown in Algorithm 4. In the example
given above, afterPX pops the update messages,PX runs
R-Swoosh forr1, r2, and produces〈r1, r2〉. PX then adds
〈r1, r2〉 to X, and deletesr1 andr2 from X ′. Note that
PX does not comparer1 andr3 again.

Second, we consider the possibility of reducing the
number of feature comparisons in a record comparison.
We use a cache to reduce the number of feature compar-
isons. When records do not match, they may be com-
pared again. However, once an ER process compares the
records, the evaluation ofBI andLI will not change so
the process will not need to be repeated. In our algorithm,
if LI is false, an ER process memoizes the combination
of records in a table. Before comparing records, if an ER
process finds the combination of records in the table, it
knows the evaluation is false without computingBI and
LI . Algorithm 5 is called as a match function from Algo-
rithm 1 and update the cache namedNOMATCHI . Al-
gorithm 6 is called as a match function from Algorithm 4
and use the cache.

6 Experiments

We implemented the Alternate ER algorithm given in sec-
tion 3 and the Simple Parallel ER algorithm, the Enhanced
Parallel ER Algorithm, and the Enhanced Parallel ER al-
gorithm with cache given in section 5. We used thecora
citation data set. We compared the number of merges per-
formed and messages sent by the four algorithms while
varying the thresholds ofBI andLI . We also compared
the number of comparisons by and runtime of the algo-
rithms while varying the thresholds ofBI andLI . Finally,
we conducted scalability tests.

6.1 Experimental Setting

We ran our experiments on a citation dataset. We re-
trieved two data sets from thecora dataset: author and
paper. The author dataset includes an ID, an author name,
an institution, and a paper title, which refers to paper

Number of merges and messages

0

100

200

300

400

500

600

700

800

900

1000

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

N
u
m

be
r

Merges
Messages (Enhanced Parallel)

Figure 1: Merges and Messages Plotted AgainstLI for
the Paper Dataset

records. The paper dataset includes an ID, a title, a venue,
and an author name, which refers to author records.BI

and LI evaluate the lexical similarity of each attribute
other than ID and compare the similarity to a threshold.
The BI threshold is larger thanLI threshold so thatBI

and LI meet the representativity condition,BI → LI ,
then they satisfy ICAR properties. We fixedk = 2,
C2(FX(r1), FX(r2)) ≡ FX(r1) ∩ FX(r2) 6= ∅. We im-
plementedFX for author records as a set of IDs of paper
records whose title is the exactly same as the title in the
author record. An approximate match between the titles
in the author and paper records might be required, how-
ever we do not talk in this paper. This may be a future
work. We also implementedFX for paper records as a set
of IDs of author records whose author name is the exactly
same as the author name in the paper record.

The algorithms were implemented in Java, and our ex-
periments were run on four 2.4GHz Intel Core processor
with 4GB of memory.

6.2 Merges and Messages

We measured the number of merges performed in and
messages sent by a ER process by varying the thresholds
of eitherBI or LI .

Figure 1 and 2 shows the number of merges and mes-
sages while varying theLI threshold. When we varied the
LI threshold, we fixed theBI threshold to 1.0. Figure 3
shows the number of merges while varying theBI thresh-
old. When we varied theBI threshold, we fixed theLI

threshold to 0.7. Lower thresholds ofBI andLI resulted

6

Number of merges and messages

0

100

200

300

400

500

600

700

800

900

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

N
u
m

be
r

merges
Messages (Alternate)
Messages (Simple Parallel)
Messages (Enhanced Parallel)

Figure 2: Merges and Messages Plotted AgainstLI for
the Author Dataset

Number of Merges

0

200

400

600

800

1000

1200

1 0.95 0.9 0.85 0.8 0.75

B Threshold

N
u
m

be
r

o
f

m
e
rg

e
s

Figure 3: Merges and Messages Plotted AgainstBI for
the Paper Dataset

in a higher number of merges because processes pro-
duced more new records. The number of messages cor-
responded to the number of merges because when records
were merged processes sent messages. Relatively few ter-
mination messages were observed. The fact that the En-
hanced Parallel algorithm sent more messages than the al-
ternate algorithm seems inefficient however it resulted in
a shorter runtime. We will explain why below.

6.3 Comparisons and Runtimes

We measured the number of feature value comparisons
for each algorithm and runtimes of the four algorithms by
varying theLI thresholds for both the author and paper
datasets. We started measuring the runtime when a ER
process start R-Swoosh algorithm, and we finished mea-
suring it when a ER process end by termination protocol

Number of Feature Comparisons

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

N
u
m

be
r

o
f

C
o
m

pa
ri
so

n
s

Alternate
Simple Parallel
Enhanced Parallel
Cache Enhanced

Figure 4: Feature Comparisons for the Paper Dataset

Number of Feature Comparisons

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

N
u
m

be
r

o
f

C
o
m

pa
ri
so

n
s

Alternate
Simple Parallel
Enhanced Parallel
Cache Enhanced

Figure 5: Feature Comparisons for the Author Dataset

which we showed. We fixedBI threshold to 1.0 in this
experiment.

Figure 4 shows the number of feature comparisons for
paper records. In general, the number increased for lower
thresholds because lower thresholds produced more new
composite records. However, when the threshold was
high, more than 0.8, the number of feature comparisons
decreased for lower thresholds in the alternative algo-
rithm. The reason why is that processes run R-Swoosh
repeatedly for larger record sets. The Enhanced Parallel
ER algorithm performed 40.1% of the comparisons of the
alternate algorithm for a high threshold (0.98). For lower
thresholds, the relative advantage over the alternate algo-
rithm decreased. However it still performed only 70.3%
of the comparisons of the alternate algorithm for a low
threshold (0.6).

Figure 5 shows the number of feature comparisons for
author records. Notice that the number of feature com-

7

Runtime

0

50000

100000

150000

200000

250000

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

R
u
n
ti
m

e
 (

m
s)

Alternate
Simple Parallel
Enhanced Parallel

Figure 6: Runtime for the Paper Dataset

Runtime

0

50000

100000

150000

200000

250000

1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6

L Threshold

R
u
n
ti
m

e
 (
m

s)

Alternate
Simple Parallel
Enhanced Parallel
Cache Enhanced

Figure 7: Runtime for the Author Dataset

parisons for the Simple Parallel ER algorithm was much
larger than for the other algorithms. The reason why is
that processes repeated comparisons every time records
matched. The plot also shows the Enhanced Parallel ER
algorithm reduced redundant comparisons; the number of
comparisons was between 23.5 and 40.3% of the Simple
Parallel algorithm’s.

These plots also shows that the use of a cache did not
affect the number of feature comparisons. The differ-
ence between the Enhanced Parallel ER algorithm with
and without cache was between 95 and 100%.

Figures 6 and 7 show runtime. The graphs are nearly
identical because our termination protocol required both
ER processes to terminate at the same time. For large
thresholds (0.98), the Enhanced Parallel ER algorithm re-
quired 30.9% of the runtime of the alternate algorithm.
For thresholds as low as 0.6, the runtime was still al-
most 50.8%. Our Enhanced Parallel algorithm was sig-

Number of Feature Comparisons

0

500000

1000000

1500000

2000000

2500000

400 600 800 1000 1200 1400 1600 1800

Total Number of Records

N
u
m

be
r

o
f

C
o
m

pa
ri
so

n
s

Alternate
Enhanced Parallel

Figure 8: Scalability Test of Feature Comparisons for the
Paper Dataset

Number of Feature Comparisons

0

500000

1000000

1500000

2000000

2500000

400 600 800 1000 1200 1400 1600 1800

Total Number of Records

N
u
m

be
r

o
f
F
e
at

u
re

 C
o
m

pa
ri
so

n
s Alternate

Enhanced Parallel

Figure 9: Scalability Test of Feature Comparisons for the
Author Dataset

nificantly faster in terms of runtime.

6.4 Scalability

We conducted scalability tests for the alternate algorithm
and for the Enhanced Parallel ER Algorithm. We mea-
sured the number of feature comparisons and runtimes by
varying the number of input record both for paper and au-
thor records. Input records were selected randomly from
a paper dataset containing 1037 records and an author
dataset containing 780 records. TheBI andLI thresh-
olds were fixed to 1.0 and 0.8 respectively.

Figure 8 and 9 shows the number of comparisons made
by each algorithm. The plot shows that the Enhanced
Parallel ER algorithm performed fewer comparisons than
the alternate algorithm. For very few number of input
records near 400, the Enhanced Parallel ER algorithm

8

Runtime

0

20000

40000

60000

80000

100000

120000

400 600 800 1000 1200 1400 1600 1800

Total Number of Records

R
u
n
ti
m

e
 (
m

s)

Alternate
Enhanced Parallel

Figure 10: Scalability Test of Runtime for the Paper
Dataset

Runtime

0

20000

40000

60000

80000

100000

120000

400 600 800 1000 1200 1400 1600 1800

Total Number of Records

R
u
n
ti
m

e
 (

m
s)

Alternate
Enhanced Parallel

Figure 11: Scalability Test of Runtime for the Author
Dataset

performed very fewer comparisons than the alternate al-
gorithm, 42.6% for paper records and 66.8% for author
records. For larger number of record more than 700, the
improvement rates were almost same around 50% for pa-
per records and 70% for author records.

Figure 10 and 11 shows rumtimes of each algorithm.
The plots shows that the Enhanced Parallel ER algorithm
performed faster than the alternate algorithm. For very
few number of input records near 400, the Enhanced Par-
allel ER algorithm performed very faster than the alternate
algorithm, 27.2% for paper records and 21.3% for author
records. For larger number of record more than 700, the
improvement rates were almost same around 35% for both
records.

7 Related Work

Entity Resolution has been studied under various names
including record linkage [17], merge/purge [12], dedupli-
cation [18], reference reconciliation [8], object identifica-
tion [19], and more (see [21, 11] for recent surveys).

Most approaches focus on matching: accurately find-
ing records that represent the same entity, using a variety
of techniques such as Fellegi and Sunter’s probabilistic
linkage rules [9], Bayesian networks [20], or clustering
[16] [4]. Our approach encapsulates the behavior of such
complex decision processes into a Boolean match func-
tion that decides whether two records represent the same
entity or not. Iterative approaches [3] [8] identify the need
for a feedback loop that compares merged records in order
to discover more matches. Our ER algorithm provides a
general framework where match and merge are black-box
functions.

In the parallel computing literature, [1, 13] introduced a
parallel algorithm for single dataset based on the Swoosh
algorithm. [6, 10] used parallel algorithms as well.

Several works [14, 15, 7, 5] have addressed algorithms
which handles two datasets. [14] introduced a paral-
lel algorithm for two datasets. However the datasets it
handles belong to same class. By contrast, our target
datasets belong to different classes. [15, 7, 5] presented
collective models for different datasets. However their re-
search focused on accuracy rather than runtime. Although
they demonstrated that making multiple ER decisions col-
lectively can provide better accuracy than historical ap-
proaches, however it is believed that the approach is ex-
pensive.

8 Future Work

Future work might proceed in several directions. First,
one might consider how to run ER for three or
more datasets. Second, one might consider more
flexible implementation ofC(FX(r1), FX(r2)) which
can handle similarity of confidence values, because
C1(FX(r1), FX(r2)) ≡ FX(r1) = FX(r2) may be too
strict andC2(FX(r1), FX(r2)) ≡ FX(r1) ∩ FX(r2) 6= ∅
may be too lax. Finally, one might investigate approxi-
mate reference between two datasets.

9

9 Conclusion

In this paper, we formalized the problem of Entity Reso-
lution for two related different datasets. In the datasets, a
record in one can refer to a record in the other and an ER
process affect to other ER process.

We also provided four algorithms that run ER jointly
for two datasets. The alternate algorithm is the most
straightforward, but it results in long runtimes. The Sim-
ple Parallel algorithm is efficient in terms of runtime, but
it performs more redundant comparisons than the alter-
nate algorithm. The Enhanced Parallel algorithm is an
efficient way to reduce the number of comparisons and
runtime. In our experiments, it required 31% of the run-
time of the alternate algorithm. Adding a cache to the En-
hanced Parallel algorithm did not affect its performance.

Finally, we presented four important properties for
match and merge functions for two datasets that lead
to significantly more efficient ER. We argued that these
properties should guide the development of match and
merge functions.

Acknowledgments

We acknowledge the supports made by Steven Euijong
Whang and David Menestrina. We would also like to
thank the other InfoLab members at Stanford University
and many members of NEC Corporation and NEC Labo-
ratories America and NEC Corporation of America who
supported me. We also thank Eric Schkufza.

A Appendix: Proofs

Proposition 1. Idempotence: IfBX andµX are idempo-
tent, then idempotence holds.

Proof. If we know BX(r, r) = true, then we know
MX(r, r) = true. 〈FX(r), FX(r)〉 = FX(r)∪FX(r) =
FX(r). Therefore, becauseMX(r, r) = true and
〈r, r〉 = r by definition, the idempotence holds.

Proposition 2. Commutativity: IfBX and LX and µX

are commutative, then commutativity holds.

Proof. For C1, (FX(r1) = FX(r2)) = (FX(r2) =
FX(r1)). Similarly, forC2, FX(r1)∩FX(r2) = FX(r2)∩

FX(r1), soC1 andC2 are always commutative, thenMX

are commutative. In terms of merge,FX is commutative
becauseFX(r1)∪FX(r2) = FX(r2)∪FX(r1). Therefore
the records are always commutative.

Proposition 3. Associativity: IfµX is associative, the
records are associative.

Proof. {{FX(r1) ∪ FX(r2)} ∪ FX(r3)} = {FX(r1) ∪
{FX(r2) ∪ FX(r3)}}, thenFX is associative, so if the
µX is associative, the records are always associative.

Proposition 4. Representativity: ForC2, if BX andLX

are representative andBX ⇒ LX , then representativ-
ity holds. ForC1, if BX andLX are representative and
BX ⇒ LX andBX ⇒ C1, then representativity holds.

If r3 = 〈r1, r2〉 then for anyr4 such thatBX(r1, r4) =
true, we also haveBX(r3, r4) = true, and for anyr4

such thatLX(r1, r4) = true, we also haveLX(r3, r4) =
true, and for anyr1 andr4 such thatBX(r1, r4) = true,
we also haveLX(r1, r4) = true and in the case ofC1,
we also haveC1(FX(r1), FX(r4)) = true.

Proof. We begin by showingC is representative. To
do that, we must consider two cases. ForC2, if
C2(FX(r1), FX(r4)) = true, FX(r1) ∩ FX(r4) 6=
∅ and FX(r1) ∩ FX(r4) ⊆ FX(r1). FX(r3) =
FX(r1) ∪ FX(r2), thenFX(r1) ⊆ FX(r3), soFX(r1) ∩
FX(r4) ⊆ FX(r3). ThenFX(r4) ∩ FX(r3) 6= ∅ and
C2(FX(r3), FX(r4)) = true. We will consider forC1

later.
We now consider four cases in turn.
If BX(r1, r2) and BX(r1, r4) equal to true, then

BX(r3, r4) equal totrue, becauseBX is representative.
Then,r3 ≈ r4.

If LX(r1, r2) and C2(FX(r1), FX(r2)) and
LX(r1, r4) and C2(FX(r1), FX(r4)) equal to true,
thenLX(r3, r4) = true, becauseLX is representative.
C2(FX(r3), FX(r4)) also equal totrue, as we explain
above. Then,r3 ≈ r4.

If BX(r1, r2) and LX(r1, r4) and
C2(FX(r1), FX(r4)) equal to true, then
LX(r1, r2) = true, becauseBX ⇒ LX . LX(r3, r4)
andC2(FX(r3), FX(r4)) equal totrue because of same
reason as previous explanation. Then,r3 ≈ r4.

10

If LX(r1, r2) and C2(FX(r1), FX(r2)) and
BX(r1, r4) equal totrue, thenLX(r1, r4) = true, be-
causeBX ⇒ LX . LX(r3, r4) andC2(FX(r3), FX(r4))
equal to true because of same reason as previous
explanation. Then,r3 ≈ r4.

We now consider four cases forC1.
If BX(r1, r2) and BX(r1, r4) equal to true, then

BX(r3, r4) equal totrue, becauseBX is representative.
Then,r3 ≈ r4.

If LX(r1, r2) and C1(FX(r1), FX(r2)) and
LX(r1, r4) and C1(FX(r1), FX(r4)) equal to true,
then LX(r3, r4) = true, becauseLX is representa-
tive. C1(FX(r3), FX(r4)) also equal totrue, because
FX(r3) = FX(r1) ∩ FX(r2) = FX(r1) = FX(r4).
Then,r3 ≈ r4.

If BX(r1, r2) and LX(r1, r4) and
C1(FX(r1), FX(r4)) equal to true, then
LX(r1, r2) = true, becauseBX ⇒ LX , and then
C1(FX(r1), FX(r2)) = true, becauseBX ⇒ C1.
LX(r3, r4) and C1(FX(r3), FX(r4)) equal to true
because of same reason as previous explanation. Then,
r3 ≈ r4.

If LX(r1, r2) and C2(FX(r1), FX(r2)) and
BX(r1, r4) equal totrue, then LX(r1, r4) = true,
becauseBX ⇒ LX , and thenC1(FX(r1), FX(r4)) =
true, because BX ⇒ C1. LX(r3, r4) and
C1(FX(r3), FX(r4)) equal to true because of same
reason as previous explanation. Then,r3 ≈ r4.

As we mentioned above, in all case wherer3 = 〈r1, r2〉
andr1 ≈ r4, we always haver3 ≈ r4, because we showed
in all cases,r1 ≈ r4.

A.1 Reference

References

[1] O. Benjelloun, H. Garcia-Molina, H. Kawai,
TE Larson, D. Menestrina, and S. Thavisomboon.
D-Swoosh: A Family of Algorithms for Generic,
Distributed Entity Resolution. 2007.

[2] O. Benjelloun, H. Garcia-Molina, Q. Su, and
J. Widom. Swoosh: A generic approach to entity
resolution.VLDB Journal, 2008.

[3] I. Bhattacharya and L. Getoor. Iterative record link-
age for cleaning and integration. InProceedings of
the 9th ACM SIGMOD workshop on Research issues
in data mining and knowledge discovery, pages 11–
18. ACM New York, NY, USA, 2004.

[4] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. InData Engineer-
ing, 2005. ICDE 2005. Proceedings. 21st Interna-
tional Conference on, pages 865–876, 2005.

[5] A. Culotta, A. McCallum, and MASSACHUSETTS
UNIV AMHERST DEPT OF COMPUTER SCI-
ENCE. A Conditional Model of Deduplication for
Multi-Type Relational Data, 2005.

[6] EW Dijkstra. Solution of a problem in concurrent
programming control.Communications of the ACM,
8(9), 1965.

[7] P. Domingos and P. Domingos. Multi-Relational
Record Linkage. 2004.

[8] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, pages
85–96. ACM New York, NY, USA, 2005.

[9] I.P. Fellegi. A theory for record linkage.Journal of
the American Statistical Association, 64(328):1183–
1210, 1969.

[10] H. Garcia-Molina and D. Barbara. How to assign
votes in a distributed system.Journal of the Asso-
ciation for Computing Machinery, 32(4):841–855,
1985.

[11] L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future direc-
tions.

[12] M.A. Hernandez and S.J. Stolfo. The Merge/Purge
Problem for Large Databases. InSIGMOD Confer-
ence, pages 127–138, 1995.

[13] H. Kawai, H. Garcia-Molina, O. Benjelloun,
D. Menestrina, E. Whang, and H. Gong. P-Swoosh:
Parallel Algorithm for Generic Entity Resolution.

11

Technical report, Technical report, Stanford Univer-
sity, 2006.

[14] H. Kim and D. Lee. Parallel linkage. pages 283–
292, 2007.

[15] A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun coref-
erence.Advances in Neural Information Processing
Systems, 17:905–912, 2005.

[16] A.E. Monge and C. Elkan. An efficient domain-
independent algorithm for detecting approximately
duplicate database records.Research Issues on Data
Mining and Knowledge Discovery, pages 23–29,
1997.

[17] HB Newcombe, JM Kennedy, SJ Axford, and
AP James. Automatic linkage of vital records.Sci-
ence, 130:954–9, 1959.

[18] S. Sarawagi and A. Bhamidipaty. Interactive dedu-
plication using active learning. InProceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 269–
278. ACM New York, NY, USA, 2002.

[19] S. Tejada, C.A. Knoblock, and S. Minton. Learn-
ing object identification rules for information inte-
gration. Information Systems, 26(8):607–633, 2001.

[20] G. V.Moustakides V. S. Verykios and M. G. Elfeky.
A bayesian decision model for cost optimal record
matching.The VLDB Journal, 12(1)::28–40, 2003.

[21] William E Winkler and Nov P. Overview of record
linkage and current research directions. Technical
report, Bureau of the Census, 2006.

1: input: record setX andY
2: output: a setX ′ andY ′ of records,X ′ = ER(X),

Y ′ = ER(Y)
3: call ER(X) andER(Y) together
4:

5: ER(I):
6: I ′ ← Ø, sentCountI , recievedCountI ← 0
7: loop
8: if I 6= Ø then
9: currentRecord ← a record fromI

10: removecurrentRecord from I
11: buddy ← null
12: for all recordsr′ in I ′ do
13: result ← MI(currentRecord, r′)
14: if result = true then
15: buddy ← r′

16: exit for
17: end if
18: end for
19: if buddy = null then
20: add currentRecord to I ′

21: else
22: r′′ ← 〈currentRecord, buddy〉
23: removebuddy from I ′

24: add r′′ to I
25: SEND (UPDATE,

F−1
I (r′′), (currentRecord, buddy, r′′))

26: sentCountI + +
27: end if
28: end if
29: UPDATE()
30: if TERMINATION() = true then
31: return I ′

32: end if
33: end loop

Algorithm 1: Parallel Joint ER Algorithm

12

1: UPDATE():
2: while UPDATE messages existdo
3: pop UPDATE message → I ′′,

(oldRecord1, oldRecord2, newRecord)
4: T (oldRecord1) ← newRecord
5: T (oldRecord2) ← newRecord
6: recievedCountI + +
7: addI ′′ ∩ I ′ to I
8: removeI ′′ ∩ I ′ from I ′

9: end while

Algorithm 2: Simple Update Algorithm

1: TERMINATE():
2: if I 6= Ø∨ UPDATE messages existthen
3: return false
4: end if
5: SEND (TERMINATE, sentCountI ,

receivedCountI , PJ)
6: loop
7: Wait for messages
8: if UPDATE messages existthen
9: return false

10: end if
11: if TERMINATE messages existthen
12: pop TERMINATE message →

sentCountJ , receivedCountJ
13: if sentCountJ = receivedCountI ∧

receivedCountJ = sentCountI then
14: return true
15: end if
16: end if
17: end loop

Algorithm 3: Termination Protocol

1: UPDATE():
2: while UPDATE messages existdo
3: pop UPDATE message → I ′′,

(oldRecord1, oldRecord2, newRecord)
4: T (oldRecord1) ← newRecord
5: T (oldRecord2) ← newRecord
6: recievedCountI + +
7: ER(I ′′ ∩ I ′) → I ′′′, with no UPDATE
8: addI ′′′ − I ′ to I
9: remove(I ′′ ∩ I ′)− I ′′′ from I ′

10: end while

Algorithm 4: Enhanced Update Algorithm

1: MI(r1, r2):
2: if BI(r1, r2) = true then
3: returntrue
4: else ifLI(r1, r2) = false then
5: addr1 to NOMATCHI(r2)
6: returnfalse
7: else ifCk(FI(r1), FI(r2)) = true then
8: returntrue
9: else

10: returnfalse
11: end if

Algorithm 5: Update Cache

1: MI(r1, r2):
2: if r1 ∈ NOMATCHI(r2)|r2 ∈

NOMATCHI(r1) then
3: returnfalse
4: else
5: returnMI(r1, r2) withoutNOMATCHI

6: end if

Algorithm 6: Match Function with Cache

13

