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An Iterative Method for Analyzing 
Oscillating Cam Follower Motion 
This paper describes a method of analyzing the kinematic characteristics of cams, with 
profiles represented by an eight-term Fourier series and with oscillating-type followers. 
Two kinds of cam follower systems, viz., roller follower and flat-face follower systems, 
are used.. In general the method applies to any cam whose profile can be expressed in 
terms of its radius being a function of the rotation angle [r = f(ff) ]. 

Introduction 

L HE analysis of cam follower motion directly from 
the cam profile is usually done graphically, the numerical analysis 
being so complex that it has been rejected as generally useless ex­
cept for a few special cases. However, difficulty in incorporating 
the effects of elasticity and inertia in follower response with the 
indirect methods provides some incentive for the development 
of a method for performing the analysis directly from cam profile 
specifications. 

The usual way of doing this is by assuming the displacement-
time diagram. This diagram is either constructed numerically 
or with the help of standard mathematical curves. The shape 
of the cam profile, velocity, and acceleration curves are then ob­
tained from this diagram. The classical way of doing this utilizes 
graphical analysis, which is cumbersome as well as time consum­
ing. A more direct method, preferably programmable on a digital 
computer, is therefore a worthwhile goal. 

A number of authors have investigated the graphical analysis 
method. The more notable of these are Franklin de Ronde 
Furman [ l ] , 1 J. Hirschhorn [2], and S. Molian [3]. In the field 
of analytical methods Harold A. Rothbart [4], S. Lindroth [5], 
and R. R. Griffin [6] have done significant work. 

The method of analysis presented here consists of representing 
the rise and fall curves of a dwell-rise-dwell cam by r = /(#), 
where r is the magnitude of the radius vector, measured from the 
cam center to the profile, and d is the cam rotation angle. For 
the purpose of this presentation, f(0) has been taken to be an 
eight-term Fourier series in 6. The constants for the two curves 
are obtained by applying the boundary conditions and solving 
the resulting equations simultaneously. Once the profile has 
been defined, the cam is rotated at small intervals, the point of 
cam follower contact determined iteratively, and the displace­
ment, velocity, and acceleration computed. Two types of oscil-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Design Engineering Division and presented 

at the Mechanisms Conference, Columbus, Ohio, November 2-4, 
1970, of T H E AMEBIOAN SOCIETY OF MECHANICAL ENGINEEES. Man­
uscript received at ASME Headquarters, July 13, 1970. Paper No. 
70-Mech-23. 

lating followers have been used, i.e., roller follower and the flat-face 
follower. The knife-edge case, though included in the original 
work [7], has not been dealt with here. Two reasons justify for 
this. First, the knife-edge has more of an academic value than 
its usefulness in a practical application. Secondly, the roller 
follower case can be reduced to the knife-edge case by reducing 
the roller radius to zero. A computer program, written sepa­
rately for each case, was interfaced with a digital plotter routine. 
The final output consists of graphs of displacement, velocity, and 
acceleration against cam rotation angle. 

Development of Cam Profile 
Consider the cam radius vector at the beginning of the lower 

dwell period (Fig. 1). Let this be the rotating reference line to 
measure cam rotation angles from the fixed reference line OX. 
Let r be the magnitude of the radius vector at any cam angle 6. 

Fig. 1 Cam profile showing radii at various cam angles 
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As 0 varies from 0 to 04 the radius vector describes the following 
four portions of the cam profile: 

0 to dh r = R1 (Lower Dwell) 

0i to &, r = / (0) = osi + «2 eos 6 + a3 cos 20 

a4 cos 30 + a5 cos 40 + 

a6 sin 0 + a7 sin 20 + 

as sin 30 (Rise) 

02 to 03, r = i?2 (Upper Dwell) 

03 to 04, r = f(6) = 6i + 62 eos 0 + 63 cos 20 

64 cos 30 + 65 cos 40 -f 

be sin 0 + 67 sin 20 + 

6s sin 30 (Fall) 

(1) 

(2) 

(3) 

(4) 

To find the values of constants for the rise curve, the following 
boundary conditions are applied to equation (2): 

A t 0 = 
r = Ri 

dr 

dd 
= 0 

equations of motion for the roller and the flat-face type of oscil­
lating followers. I t is assumed that the cam rotates with a con­
stant angular velocity, i.e., 0 = co and 0 = 0. 

Roller Follower. Consider the cam and the roller follower system 
at the beginning of the lower dwell period. Let OeX and OcX' 
be the fixed and the rotating axes, respectively, coincident at this 
starting position. Let the cam rotate through an angle 0 (Fig. 
2). The roller center Of swings in an arc centered on 0. The 
point of contact no longer lies on the fixed axis OaX. I t moves in 
such a way that the contact angle a leads the cam rotation angle 
0 in the earlier part of the rise period and lags behind in the latter 
part. This lead or lag is dependent on the radius of the roller 
follower. In fact, if the roller has zero radius there will be no 
lead and a will always lag behind 0. The difference is maximum 
during the upper dwell period, and is referred to as the forward 
shift of upper dwell period. 

Shift = 0i — 02 
where 

4>i = cos" 

p2 = COS"" 

E* 

E1 

+ (fix + R,Y -
2E(Ri + R,) 

+ (Ri + RfY -

- D* 

- D2 

2E(R2 + Rf) 

(7) 

(8) 

dd* 
= 0 

d * ' 0 

At 0 = 02 

= Ri 

= 0 

dr 

dd 

dV 

dd2 

d3^ 

dOs 

The resulting eight equations are solved simultaneously by the 
matrix inversion method to give the values of constants ai, at, as, 
ffli, a5, as, an, a8. The values of constants for the fall curve are ob­
tained in the same manner. Once these constants are known, 
equations (1), (2), (3), and (4) fully describe the cam profile. 

Having defined the cam profile, it is now intended to find the 

The angles of rotation at which the upper dwell period begins 
and ends must, therefore, be corrected for this shift. The cor­
rected upper dwell angles will thus be: 

and 

02 + Shift 

03 + Shift. 

The values of shift for intermediate positions of the follower 
on rise and fall curves must be determined to define the point of 
contact. This is accomplished by computing a with the help of 
an iterative process. Consider T to be the point of contact for 
a moment. Construct a roller follower at T. Draw a tangent AB 
to the cam profile at T. Angle 0 is successively decreased or in­
creased by very small amounts, depending on whether a lags 
behind or leads 6, and the value of distance x is computed. This 
value is compared with the known follower arm length D. The 
iterative process ceases as the value of x equals D, of course 
within a specified tolerance. 

(Rf
2 + OT2 - 2RtOT cos A)1/2 

where 

•Nomenclature-

<hi 02, °3, a^ I 

05, an, 07, as ] 

61, 62, 63, bA 

65, &6, 67, &81 

= constants in Fourier se­
ries for period of rise 

= constants in Fourier se­
ries for period of fall 

D = length of follower arm, in. 

E = distance between cam 
center and follower 
arm pivot, in. 

r = magnitude of radius vec­
tor to cam profile at 
cam rotation angle 0 

ra — magnitude of radius vec­
tor to point of cam fol­
lower contact 

r, r, r = first, second, and third 
derivatives, l'espec-

Ri 
R<L 

Rt 

P = 

tively, of r with respect 
t o 0 

first, second, and third 
derivatives, respec­
tively, of ra with re­
spect to a. 

first and second deriva­
tives of r with respect 
to time. (In general, 
dot over letters implies 
derivatives with re­
spect to time.) 

radius of base circle 
radius of nose circle 
radius of roller follower 
angle from rotating axis 

to the point of contact 
angle 0T0C (roller fol-

7 = 

5 = 

X = 

* = 

* 

$ 

lower case) 
angle between the tan­

gent at T and radius 
vector 

angle L0fP (roller fol­
lower case) 

cam rotation angle 
angle 0T0f (roller fol­

lower case) 
angle between follower 

arm and center to cen­
ter line 

angular velocity of the 
follower arm 

angular acceleration of 
the follower arm 

input angular velocity of 
cam 
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Fig. 2 Cam and roller follower system 

OT = (»•» + El - 2rE cos 0i)1 / 2 

X = ( f + 7 ) - / 3 

',.2 _|_ QJT2 - E2 

2rOT 

From differential calculus, 

y = tan" 
dr 

= tan" [T] 

Analysis of Follower Motion 
Flat-Face Follower. The flat-face follower system differs from 

the roller follower system in that the length of its follower arm is 
not fixed. The point of contact is the tangent point between the 
cam curve and the follower arm. In this case the contact angle a 
leads the cam rotation angle 6 in the earlier part of the rise period 
and lags behind in the latter part. The reverse is true for the 
fall period. The shift is not necessarily maximum during the 
upper dwell period. However, the dwell period does shift for­
ward in this case also. I t is now a function of cam radii Tti and Ri 
and distance E only. 

The cam profile is expressed by 

r = f(6) 
and 

r = '0). 
I t may be kept in mind that the values of r and r change with 

each successive iteration until at the end 6 becomes a, r becomes 
ra = f(a), and r becomes ra = / ( a ) . Once a is computed, angular 
displacement, velocity, and acceleration can be calculated. (See 
Appendix.) 

Shift = 0i - & 

where 

Pi = cos 
'Ri' 

~E 

(9) 

(10) 

The contact angle is again determined by an iterative process. 
Let P be the contact point (Fig. 3). Point T is on the profile at 

Fig. 3 Cam and flat-face follower system 
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d angle of rotation, and' AB is a tangent to profile curve at T. 
Angle y(OcTA) and y(OcTO) have different values at this 
point. However, as 8 approaches a, their difference tends to 
diminish. Thus 6 is increased or decreased, depending on 
whether 7 is less than or greater than 7,until they have the same 
value, again within a specified tolerance. The two angles are 
expressed as 

y = tan - 1 

and 

where 

7 = cos -1 

OT = (-E2 

>2 + QT% 

2rOT 

- 2Er cos 01)1/2 

and 0i is defined by equation (9). 
Onee a is computed, ra is given by ra = f(a) where/(a) is the 

eight-term Fourier series in a. Equations of motion can now be 
written. These are given in the Appendix. 

Results and Conclusion 
Equations of angular displacement, velocity, and acceleration 

were programmed in the computer with parameters Ri — 2", 
Rz = 2.75", D = 7", E = 7", <J6J = 60 deg, & = 180 deg, 6S = 210 
deg, Oi = 360 deg, and cam angular velocity of 10 radians per 
second. This program was interfaced with a digital plotter 
which gave graphs of each drawn against the cam rotation angle 
(Figs. 4 and 5). Values of displacement, velocity, and accelera­
tion are different in each case of follower system. However, the 
results obtained do not greatly differ from those obtained by 
Stoddart [8] and Duddley [9] for their 3-4-5 polynomial or cy-
cloidal cams, respectively. 

The values of contact angles during the rise and the fall period 
were approximated within 0.00005 radian, thus assuring a very 
high degree of accuracy for all practical purposes. Any number 
of cams with different parameters may be analyzed by writing 
only one program. A digital computer is a "must" to use this 
method. The calculations involved would be impossible to 
handle manually. However, if such a facility is readily accessible, 
the method would certainly prove superior to conventional 
graphical methods in areas of accuracy, economy, and conve­
nience. 
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Fig. 4 Follower motion curves—roller follower 
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The method may be readily adapted to the design of cams for 
which the profile can be expressed as r = f(0). Since the shift 
in upper dwell period is a function of initially known parameters, 
cams for actual dwell periods may be designed by allowing for 
this shift at the very start. To manufacture a cam, data may be 
obtained directly by computing the values of r at sufficiently 
small intervals of rotation angle. When transferred to a punched 
tape milling machine, these data can produce a profile of the de­
sired accuracy. 

The author recommends that cams, whose profiles can be ex­
pressed in terms of radius, a function of cam rotation angle, be 
analyzed for functions other than Fourier series. This may open 
an entirely new avenue to cam design. In conclusion, the method 
presented here is sufficiently general to apply to most cam design 
problems and has definite advantages over the conventional 
graphical methods. 

A P P E N D I X 

Development of Equations of Motion for Roller Follower Case 
and Flat-Face Follower Case 

Roller Follower Case. Consider Fig. 6. 

Rf sin S + ra cos r/> = E — D cos yp (11) 

Rf cos S + ra sin 4> = D sin \p (12) 

8 + cj> = T - y (13) 

Squaring and adding equations (11) and (12), substituting for 
(5 + 0) , and solving for \p yields 

where 

\p = cos 
E2 + £>2 - Rf* - rj - 2R,ra sin y" 

2ED 
(14) 

Thus displacement = \j/ — fa, where 

"E2 + I>2 - (% + R 
fa = c o s - 1 

2ED * \ 

Differentiating this expression with respect to time once yields 
angular velocity, and differentiating again gives angular accelera­
tion. 

4,= 
Rfii'a sin y + ra cos 7 7 ) 

tf = 

ED sin ^ 

sin fal + R,(J + K + L)) - M 

ED sin2 \j/ 

(15) 

(16) 

and 

I = Va + ra
2 

J = fa cos 7 7 + ra sin 7 

K = ra(cos 7 7 — sin 77 2 ) 

L = fa cos 7 7 

M = cos fai/[rara + Rf(ra sin 7 + ra cos 77 ) ] 

In equations (15) and (16) 7 , 7 , fa, and ra were undefined. They 
are now defined as follows : 

Angle 7 at point P (Fig. 6) is given by 

where 

and 

where 

Q = 

7 = tan~ J 

7 = Q<x 

(rj — rara) cos2 7 
r 2 

7 = Qa. + aQ 

(17) 

(18) 

(19) 

(20) 

X 
2 ( v t r a f 1 - ra'r'a - ra

sra) cos 7 - Q(r„,2 - rara) sin 2 7 

(21) 

where ra, ra, and r a are first, second, and third derivatives, re­
spectively, of ra with respect to a. 

a and a are determined as follows: 

Z>a = 72/ + (Jpi - 2RfOP cos X (22) 

where 

OF2 = -B2 + ra
2 - 2Era cos 0 

9 = cj>i — (6 — a) where 4>i has been defined in 

equation (7). 

X = ^ + 7 - / 3 

and 

/3 = c o s - 1 'ra
2 + OP2 - E* 

2raOP 

Differentiating equation (22) with respect to time results in a 
linear equation in a which yields 

OP Br - R,(B, cos X - Kr OP sin X) 
Oi s= — \2iO) 

OP Fr - Rs[Fr cos X - OP sin \{Q ~ Nr)\ 

where 

Br = 
ErJ sin 0 

OP 

F = 
L r 

Kr = 
Fig. 6 Roller follower cose showing angles (3, y, S, X al the contact point 

rjra — E(ra cos 8 — ra sin 8 ) 

OP 

E2d(E - ra cos 8 ) sin 8 

OF" sin P 
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and where 

Nr 
O P 2 r a ( l - 4ra

2) + Era(ra cos 9 - ra sin 9)(2QP 2 - 1) 

2ra
2UF3 sin /3 

Differentiating equation (23) with respect to time yields a di­
rectly. 

Having computed a and a, fa and ra can now be obtained 
from 

ra = raa (24) 

''a = W + raOi2 (25) 

Thus in equations (15) and (16) every variable has been de­
fined. Therefore angular velocity and acceleration can be com­
puted. 

Flat-Face Follower Case. Consider Fig. 3 again, with angle y now 
shifted to point P . 

W. 
Era 6 sin 9 

(ra
s + E2 - 2Era cos 9 ) 1 / 2 

E[ra cos 9 — ?'Q. sin 9] — rara 

(ra
2 + E2 - 2Br a . cos9 ) 1 / 2 

ra cos y — raQ sin y 

where Q is as defined in equation (19), 
and 

rj-a cos 2-y — ra
2Q sin 27 

2(r„2 cos2 7 + E2) '< 

and 

OP sin t/' = ?•„ sin </> 

OP cos \p = E — ra cos . 

0 = 7T - (7 + \p) 

(26) 

(27) 

Dividing equation (26) by (27) and substituting the value of <f> 
and simplifying, gives 

ra sm 7 

E 
(28) 

(I) Thus displacement = \p — fa where fa = s i n - 1 ( — ) and 7 

is as defined in equation (17). 
Differentiating equation (28) with respect to time gives 

V̂  = 
ay cos 7 + fa sin y 

E cos \{/ 
(29) 

and 

lP = 

a is directly obtained by taking the time derivative of equation 
(34). Using these values of a and a in equations (24) and (25), 
fa and ra are defined for this case. Thus all variables in equations 
(29) and (30) are defined. Hence values of angular velocity and 
acceleration can be computed. 
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D I S C U S S I O N 

W. T. Walters2 

The authors have recognized the presence of shift between the 
output motion of the follower arm and the actual cam profile. 
The geometry of the cam/follower system determines the angles 
of shift. 

Based on the paper's recommendation regarding cam profile 
curves, an analysis of functions other than Fourier series will 
show different effects on the follower output motion. This re­
viewer has found that Fourier expressions in cam design are a 
rather limited method for motion specification; a large number of 
terms are required to guarantee smoothness. A Fourier expres­
sion is probably valid only in this instance: when the finite 
Fourier series gives a cam profile smoother than the obtainable 
manufacturing tolerances. Thus, choose the highest (or rath) 
harmonic such that the difference between the series with (ra — 1) 
harmonics and one with n harmonics is less than the estimated 
machining accuracy. 

W, 

x, Yf-Zf 

(34) 2 Research Associate, Department of Mechanical Engineering, 
University of Florida, Gainesville, Florida. 
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