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Abstract

In information retrieval (IR), the objective of ranking filem is to construct and return a ranked list of relevant
documents to the user. The document ranking list is dematadeatisfy user’s information need as much as possible
with respect to a user’s query. To evaluate the goodnes&attarned document ranking list, performance measures,
such as Normalized Discounted Cumulative Gain (NDCG) andrM&verage Precision (MAP), are adopted.

Many learning to rank algorithms, which automatically leaanking function through optimizing specially
designed objective functions, are proposed to resolveahkimg problem. Intuitively, the IR performance measures
are the ideal objective functions to be optimized to leamkirag function. However, IR performance measures,
such as NDCG and MAP, are non-smooth and non-differentiafile respect to the ranking function parameter.
Thus, most existing learning to rank algorithms are deslgtee optimize objective functions that are loosely
related to the IR performance measures. As a result, sudhitalgns may only achieve sub-optimization of the IR
performance measures even they can perform very well omatig their adopted objective functions. Therefore,
it is highly demanded that learning to rank algorithms sbcug improved to be able to directly or approximately
directly optimize information retrieval performance me&s. To tackle the challenge of direct optimization of IR
performance measures, several approaches, such as 3¢ifRamd SVM-MAP[2] are proposed. Although these
algorithms can achieve good empirical performance, theeestll some questions that are unclear and not yet
answered: a) can ranking function learned by direct optition of IR performance measures still perform well
over unseen queries with respect to the optimized IR pedooe measures? b) how directly are IR performance
measures optimized by the proposed approaches?

In this report, we will attempt to answer the above questid¥ig first point out that, under some conditions,
the ranking function learned by direct optimization of IRfeemance measures can also perform well upon unseen

are optimized by previous approaches, we proposed a dagztvaluate metric. Based on this metric, SoftRank is
analyzed and corresponding results are presented.

. INTRODUCTION

In information retrieval (IR), the objective of ranking fiMem is to construct and return a ranked list of relevant
documents to the user. The document ranking list is dematadeatisfy user’s information need as much as possible
with respect to a user’s query.

Recently, learning to rank algorithms, which automaticaksolves the ranking problem with the help of
supervised learning techniques, gains more and more iattsnbecause of their good performance. In general,
learning to rank algorithm consists of two processes: thmitrg process and the testing process. The goal of the
training process is to learn a ranking function that predibe document ranking list for a given query. Usually,
it is achieved by solving an optimization problem with redjém a specially designed objective function. The goal
of the testing process is to evaluate the prediction go@loéshe ranking function when facing unseen queries.
Usually, IR performance measures such as Normalized DigcGumulative Gain (NDCG) and Mean Average
Precision (MAP) are utilized to perform the evaluationuitively, the objective function, which is optimized by the
training process, should be (or be directly related to) R@érformance measures themselves. However, typical IR



performance measures are non-smooth and non-differémtiath regard to ranking function parameter. Therefore,
it is not easy to learn a ranking function in practical time diyectly optimizing the IR performance measures.
The difficulty comes from the fact that most existing optiation techniques are developed to handle smooth and
differentiable cases. Therefore, most existing learnmgank algorithms only optimize objective functions that ar
loosely related to the IR performance measures. As a rebaly, may only achieve sub-optimization of the IR
performance measures even they can perform very well uptimiapg their adopted objective functions. Noticing
the gap between IR performance measures and actuallyedtitibjective functions, several approaches are proposed
to directly optimize IR performance measures. For exan§iéRank[1] smoothes the deterministic document score
with Gaussian distribution and then optimizes the softédB€G derived from the score distribution. SVM-MAP[2]
adopts structural SVM to optimize a hinge loss that is a comygper bound of IR performance measures. Although
such algorithms can achieve good empirical performanegethre still some questions that are unclear and not yet
answered: a) can ranking function learned by direct opation of IR performance measures still perform well
over unseen queries with respect to the optimized IR pedooa measures? b) how directly are IR performance
measures optimized by the proposed approaches?

In this report, we will attempt to answer the above questidiistly, according to the consistency and gener-
alization ability of empirical risk minimization (ERM), weoint out that if the is the ranking function space is
not very complex, when the number of training examples beconfinity, the ranking function learned by directly
optimizing the IR performance measures can achieve optpagbrmance upon unseen queries with respect to
the optimized IR performance measures. In other wordscdwptimization of IR performance measures is not
only intuitively but also theoretically reasonable. Thém,investigate how directly IR performance measures are
optimized by previous direct methods, we propose a metrevaduate the directness of the objective functions that
are actually optimized by such methods. Finally, based enpttoposed directness evaluation metric, we analyze
SoftRank and present the corresponding results we get.

The rest of this report is organized as follow. In sectiomé describe the general framework of learning to rank
algorithms. Then we introduce the formulation of SoftRanksection Ill. In section IV, we theoretically justify
that it is reasonable to directly optimizing IR performamseasures under empirical risk minimization framework.
In section V a metric which can be used to evaluate the diesstiof direct method is proposed. Finally, based on
the proposed metric, we present analyze SoftRank and pregem@nalysis results in section VI.

[I. GENERAL FRAMEWORK OF LEARNING TO RANK

In this sectlon We describe the general framework of legrno rank. In the training process a set of queries
Q={¢W,¢?, ... ¢"}is given. Each query is associated with a list of document§) = {d\" d{”, .. . a1
and a rankingy(l = {7(’ (1), 7™(2),...,7®(n,)} over the documents, where, denotes the size ad(®, dé")
denotes thg* document ind®, 7 € 7 is a bijection from{1,2,...,n,} to itself, andr(?)(;) denotes the position

of documentd() in y(®. From each query-document pair”), d () , a feature vectox® = {x{’ x{" ... x{}

is constructed, Wher&§) = (b(q(”,dy)) € R"™. The goal of the tralnlng process is to learn a ranking fuomcti
h : X — Y through optimizing an objective functio®(w,x?,y®). X is the space ok and) is the space of
all possible permutations over documeniXw, x(V), y()) represents the penalty for making predictibfa, x(¥))
if the correct output isy”), wherew is the parameter of.

In the testing process, given a new querassociated with feature vectar and ranking listy, a document
ranking listy is predicted byh(w,x).! To evaluate the goodness of the predictiomhpfR performance measures,
such as NDCG and MAP, are adopted. Here, we present the aafsiaf NDCG:

Zg(dj)D(Tj)v g(dj):2ljv D(Tj):
j=1

1
Gmaa:

G = - -

where G4, IS @ normalization factor,; is the label of document;, andr; is the position of document; in y.

"We will ignore the upper scripti) when content is clear.



I1l. THE FORMULATION OF SOFTRANK

SoftRank is proposed in [1] to optimize a smooth approxioratf the IR performance measure NDCG. There
are three key steps in the SoftRank algorithm. _
The first step is to smooth the deterministic score of docmm%ﬁ of query ¢\, Originally, the score is a

deterministic value outputted by the ranking functif)(m),xg.i)) :R™ x R™ — R. After smoothened by a Gaussian

distribution whose variance ts, and mean is the original deterministic score, the score oﬂmeznbcg.") is regarded
as a random variable having probability density as follow.

@y _ (@) (@)
p(Sj )_N(Sj |f(w7xj )70-3)

The second step is to define the rank distribution of docum%)ntTo achieve this, the probability that a document
is ranked before another is deduced as follow.

n) =Prs — 59 > 0) = / N (sl ffw,x) = flw,x5), 02) ds.
0
Then the rank distribution can be calculated from a recarprocess as follow.
7)(1
p ) = 6(r)
) =0 = D+ V) (1= )

whered(r) = 1 only whenr = 0 and zero otherwise.
Third, SoftNDCG is defined as the expectation of NDCG in tephshe rank distribution.

Ng ng—1

N (i 1 i i
G, xy) = —5= 3@ 3= Do)

mar j=1 r=0

In order to maximize SoftNDCG, an artificial neural networkriiework is utilized.
Refer to the learning to rank framework described in abowdia® we can know, in the training process,
SoftRank learns the ranking function paramedelby resolvingOptimization Problem 1 presented below.

Optimization Problem 1.

i=1

In the testing process, given a new quergssociated with feature vecterand ranking listy, a ranking listy
is predicted through sorting the documents fifyw, x;) in descending order.
From the formulation oOptimization Problem 1, we can define
O1(w,x9, y¥) =1 — G(w,x®, y®)
Oy (w,xD, y¥) =1 — Gw,x®,y®),
It is obviously that the objective function actually optiead and the objective function intended to be optimized
by SoftRank areL 3" | Oy (w,x®,y®) and L 3" | Os(w,x®),y(®) respectively.

IV. s DIRECT OPTIMIZATION OF IR PERFORMANCEMEASURE REASONABLE?

Intuitively, people think the ranking function learned hiyetttly optimizing IR performance measures can perform
well with respect to the optimized measure upon unseen eglefo theoretically justify this intuition, we should
refer toLemma 1 as follow.



Lemma 1. Given a training set{(x(®, y®}™  which is sampled from distributio®(x,y). Let O(w,x,y) :
X x Y — R be an objective function parameterized byDenote

R(w;0) =Ex y[O(w,x,y)]
R 1 , ,
O — (1) @)
R, (w;0) — ;:1 O(w,x", y")

w* = arg min R(w)
@y, = argmin R, (w)

The following inequality is ensured

R(@m; 0) — Rw*;0) < 2sup |R(w; O) — Ry (w; 0)]

According to the consistency and generalization abilityenfpirical risk minimization, if the space @? is not
very complex, we know when the number of training examples become infigity | R(w; O) — Ry, (w; O)| — 0.
In other words, we hav&(@,,; 0) =% R(w*;0). As for the ranking problem, we can considrto be directly
related to the IR performance measures, such asNDCG or 1 — MAP. Correspondinglyw,,® is the ranking
function obtained by directly optimizing a IR performanceasure over the queries in the training set. According
to Lemma 1, we know if a ranking function is learned by directly optiinig a IR performance measure over
infinity queries, the ranking function can achieve optimatfprmance with respect to that IR performance measure
over any query. Therefore, we can believe that direct ogation IR performance measures is reasonable.

V. DIRECTNESSEVALUATION METRIC

According to the formulation of SoftRank i@ptimization Problem 1, we know it does not actually optimize
NDCG directly. Instead, it optimizes a smooth approximatid NDCG, named as SoftNDCG, to learn the ranking
functiorf. Although, the previous direct methods can achieve optpealormance in terms of their own objective
functions, it is not clear whether optimal performance inme of IR performance measures can be achieved by
their learned ranking function. To answer this question pnapose a metric, as depictedTieorem 1, to evaluate
how directly IR performance measures is optimized when gariahms achieve optimization of its own objective
function.

Theorem 1. For any queryq?, suppose its associated feature vector and document rgnisinis x(*) and y(?)
respectively. Denoté; (w,x,y), O2(w,x,y) : X x ) — R as two objective functions, which are parameterized
by w. Let

1 m ) .
o 0 0
wy = argmin — ;:1 O1(w,x",y")

wy = arg min% ZZ:; Oy (w,x, y@)
For any (x,y) ~ P(x,y), if O; and O, satisfy
|01(w1,%x,y) — O2(w1,%x,y)| < &1
[O1(w2, x,y) — Oz(w2, x,y)| < &2
The following inequality is ensured

|EX,Y [02 (wlv X, Y)] - EX,Y [02 (w27 X, Y)” < 261 + €2

2For example, if the space @ is finite, which is just the case in the practical optimizatjgrocess since one can only try finite number
of different parameters.

3We usew to represent a ranking function when context is clear

4Similarly, it is easy to know that SVM-MAP actually optimien convex upper bound of MAP to learn the ranking function.



Here we give the proof of heorem 1°.
Proof: Let From the condition off heorem 1, we have:

O1(w2) > O1(w1)
Oz(w1) > Oz(w2)
1) |f Ol(wg) 2 Og(wl)
|01 (w1) — O2(w2)| = |01 (w1) — O2(w1) + O2(w1) — O2(w2)|
< 01(w1) = Oz(wn)] + [O2(w1) — Oz(w2)]
<e1+|01(w2) — Oz(w2)

<e1+eg
2) If Ol(wg) < Og(wl)
|O1(w1) — O2(w2)| = [01(w1) — O1(w2) + O1(w2) — O2(w2)|

< |O1(w1) — O1(w2)| + |O1(w2) — Oz (w2)]
< |O2(wr) — O1(wr)| + &2
<e1+eg

In summary

|O1(w1) — O2(w2)| < e1 + €2
Therefore

|02(w1) — Oz2(w2)| = [O2(w1) — O1(w1) + O1(w1) — O2(w2)
< |02(w1) — O1(w1)] + |01 (w1) — Oz(w2)]
<21 +e

Ex,v[02(w1,x,y)] — Ex v [O2(w2,x,y)]| < / |O02(w1) — Oz(w2) | P(dx,dy) < 2e1 + €2

XXy
[ |

When considering our direct optimization problem, we caua®0; (w, x,y) = 1—FE(w, x,y) andO; (w, x,y) =
1 —E(w, x,y), WhereE is a specified IR performance measure dnib the objective function, we call it surrogate
measure, optimized by a direct optimization algoritm. andw, correspond to two ranking functions that are
obtained by optimizingZ and E respectivelyTheorem 1 indicates that, for any query, if the surrogate meadtire
can have similar value as IR performance meadungith respect to botlv; andw,, thenw; can achieve similar
expected risk with respect to IR performance measur@sws.

Combining Theorem 1 and Lemma 1, we can know that given a big enough training set, once a gateo
measuref; can satisfy the condition ofheorem 1, then, the ranking function learned by optimizitijover the
training set can perform optimally upon any unseen queryndaluated by the corresponding IR performance
measurer.

VI. ANALYSIS OF SOFTRANK

From above section, we know that if a surrogate meadiiis related to a IR performance measure directly
enough, the ranking function learned by optimizing that@gate measure over a big enough training set is ensured
to perform optimally upon unseen queries. Therefore, thecthiess of the surrogate measure can depict the goodness
of a direct method. Taking SoftRank as an example, we stueyditectness of its surrogate measure SoftNDCG
and present the analysis result as follow.

®In this proof, we simplifyO;(w,x,y) asO;(w), wherei = 1, 2.



Theorem 2. Suppose a query, its associated feature and document ranking liskiand y respectively. For any
w, let

O1(w,x,y) =1-G(w,x,y)
02(‘07?{7}’) = 1 - G(&),X, y)7

be the objective function and its corresponding IR perfaroeameasure defined Mptimization Problem 1. Assume
|sij| > ¢, ng < N and there are in total K ordered categories in the groundfirlabel, i.e.,{0,--- , K —1}. Then
wheneo, < 9 ) , the difference betweefl and £ satisfies:

’Ol(M,X, y) - 02(‘07?{,}’)’ < 2K_1 -N - (51 + 52)
where

(N—-1)os —25 B e3(os) B ]
NG e 93, g9 = = 5es(0d) + 5e3(0), e3=|1—erf %

erfle) = — [Pt sy = si— = fox) — f@x). @) R <R <R

g1 =

Before giving the proof offTheorem 2, we first prove a lemma as below.

Lemma 2. Assume a discrete random varialie= 0,1, ...,n — 1 follow distributionp(r|u, o2), wherey and o
is expected value and variance. Dengfeas the closest integer to, 1/ as the second closest integer /ip then

Pr(R= ') >1— 50>
Pr(R = ") < 40
Z Pr(R=r) < o*
rEW W
Proof: According to the definitions ofnu; and i, we have
1
0< | —pl < 3
1
3 <" —pl <1
vr#:u/?:u//a ‘T_/j” =21
According to the definition ob2, we have

n—1
= Z_;) Pr(R = r)(r — p)*

= PH(R = )4 — ) + PHLR = ") (" — p)?
+ Y PHR=r)(r—p)’

rHEN W

1
> PR = )i — p)* + PR =p") + > PHR=1)
7“75#/7/1”



Therefore,

= Pr(R = ") < 40?

P(R=p)=1-P(R=y")— > PHR=r)
7“75#'7/1”
=Pr(R=y)>1-0?

Then we give the proof o heorem 2.
Proof: Because

ng—1
|01 (wv X, Y) - Og(w,X, y)| < 2K_1N Z D(’r’)pj(’f') - D(Tj)
r=0
ng—1 ng—1
> D(r)pj(r) = D(rj)| < [D(uj) = D(r)| + | > D(r)p;(r) —
r=0 r=0
pj = E[R;]
If we can prove
[D(pj) = D(rj)| < e1
ng—1
> D(r)p;(r) — D(y)| < e,
r=0

thenTheorem 2 is proved. )
We first construct a random variable;; as follow:

-1 s> s
Rij = X
O, if Sz < Sj

Let m;; = Pr(S; — S; > 0), we have:

1) = 7Tij

PI’(RU =
Pl’(Rij = 0) =1- 5

We know

5 = PF(SZ — Sj > O) = /0 N(S’Sij,QO'g)dS

0
=1- / N(S’Sij, 20’3)d$ =1- (I)Sithg (0)

. 1 O—Sij _l Sij
=1 5 [1+erf< 5. ﬂ =3 [1+erf<208>]

D(uy)

(1)
)



On the other hand, we knoW,; ~ p;(r) can be calculated fronk; = 3", .. R;;

i#j
1 i

=Y mi= 25 [1 +erf<;0_”s>}

i#] i#]

0]2 2 Var[R)] = Z Var[Ri;] = Z {E[R?]] - E2[Rzg]}
i#] i#£j
1 i

= ZWU(I Tij) = Z 2 [1 —erf? (502)]

i#£] i#]

Now, we first prove Eqgn.(1) here. The deterministic rank ofutoent; can be calculated by

1 ifs; >0
Tj = E I[Sij>0], I[SZ’J’>0]: {O if s-j-<0
i#j Y

The difference between; and; is:

[rj = il = | Ilsij > 0] _Z; [1+erf<2os>}
|

i#] i#]

1 1
= —5 1+erf<2 )} 3 1+erf<2 >]
z;éys i>0 Is z;éjs <0 Ts

= —erfc ( 5ij > 1en‘c < —5ij
20'5 2 s
( o5

20 >
7/75] S'LJ>O 7/75] 51]<0
< —erfc 5ij “erfc( =24
20, 2 20
z;éys >0 z;éys <0
-3 Lo L)
i#] s

In above erf¢r) = 1 — erf(x). In above erf€¢x) = 1 — erf(z). Based on the properties of Normal Distribution, we

have
1 1 1 2

1 T _r_
x>0, ierfc (ﬁ) =1-®(z) < —¢(x) = z.

T 27T

Therefore,

1 |Sz|> Os _
—erfc 2L ) < e 7,
2 <20's Vsl

2

- (N —1os -2

In summary, we have

I~y < o WU~y
’ \/_Z\ m\ o/
1 1
D = _
T —,uj
< sup J '
0€[0,nq+e1—1] (2 + 9) log2(2 + 9)

<er



We then prove Eqn.(2). Assumeg. is the closest integer tp; and M;-' is the second closest integer tg.
According toLemma 2, we have:

Z Pr R = 7‘
log(2 4 r)
 Pr(R; = Mj) Pr(R; = u1f)) 3 PH(R; =7)
 log(2+44f)  log(2+ pf) i log(2 + )

Hj o7
PI’(R]' = ,u;) ~ -
<—— L 4PiRj=p)+ > PrR;=r)
1 2 / 7 i 7
Pr(R; = uf) 2, 2
R e Cy :
= Tog(2 + ]) +4do; + 0
1 2
< - - ;
< log(2—|—,u;.) + 507
Therefore,
- - Pr(R =r) 1
(BID(R)] - DEIR)| = | B T
~ r 0g(2 + p;)
1 1

< —
T |log(2 4 4f)  log(2 + py)

 log(2 4 py) — log(2 + pj)]| L 502
 log(2 + ) - log(2 + 1) ’
< [log(2 + p1;) — log(2 + pj)| + 5075

+ 50]2-

1) If p; <, we have

|E[D(R;)] — D(E[R;])| < log(2 + ) —log(2 + p;) + 507

1y — 1y 1 — py

=log(1 + i
og(l+ 35— 15

< Wi — pj + 507

)+5J2-<

2) If p; > pl;, we have

|E[D(R;)] — D(B[R;])| < log(2 + j) — log(2 + 4}) + 507

: o
= log(1 + 2]+Zj)+5a§ < /;]T:;—i-f)ajz
< pj — i + 507
In summary ) )
|E[D(R;)] = D(E[R])] < |nj — pj] + 50
Because

Therefore, Wherar]? <1
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In summary

[BID(R,)] — D(B[R,))] < |+ + 502

Becausds;;| > 6 > 0 and2 < n, < N, we havé

o2 = iz [1 — erf? <;;JS>} - iz [1—erf2 <|28<ij5|>}

i

<nq—1[1 rf2<5>]<N_1[1 rf2<5>]
- 4 20, 4 20,
On the other hand,

N4—1 [1 erF2< 1)

N -1 1) 1 1) 4 1
— [1—erf2 <203>} <z= [l—erf2 <20_s>} < SV 1) <% 31

)

2erf—1 (\/ g)

Therefore, whenr, <

30— D(EIR I CON
[BID(R) = DIBIR))] < 4|7 =525 +52(0)
wherees(os) = [1 —erf (%)] is a strict increasing function of;. [ |

From Theorem 2, we can see that when the parameteris small, the bound ofNDCG — SoftNDCG will
be an increasing function af,. Wheno, approaches zefp SoftNDCG will approximate NDCG with any given
accuracy, and thus the ranking function learned by maximgi8oftNDCG will have very similar test performance
to that of the function learned by “directly” optimizing NGE
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®When N = 1, it can be proved thak[D(R;)] — D(E[R;]) = 0. However, it is not practical to assuné = 1, so we ignore the proof
here.

"Note that in practice one can hardly g&tto be very small. Otherwise the optimization process will be robust.



