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Abstract

In information retrieval (IR), the objective of ranking problem is to construct and return a ranked list of relevant
documents to the user. The document ranking list is demandedto satisfy user’s information need as much as possible
with respect to a user’s query. To evaluate the goodness of the returned document ranking list, performance measures,
such as Normalized Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP), are adopted.

Many learning to rank algorithms, which automatically learn ranking function through optimizing specially
designed objective functions, are proposed to resolve the ranking problem. Intuitively, the IR performance measures
are the ideal objective functions to be optimized to learn ranking function. However, IR performance measures,
such as NDCG and MAP, are non-smooth and non-differentiablewith respect to the ranking function parameter.
Thus, most existing learning to rank algorithms are designed to optimize objective functions that are loosely
related to the IR performance measures. As a result, such algorithms may only achieve sub-optimization of the IR
performance measures even they can perform very well on optimizing their adopted objective functions. Therefore,
it is highly demanded that learning to rank algorithms should be improved to be able to directly or approximately
directly optimize information retrieval performance measures. To tackle the challenge of direct optimization of IR
performance measures, several approaches, such as SoftRank[1] and SVM-MAP[2] are proposed. Although these
algorithms can achieve good empirical performance, there are still some questions that are unclear and not yet
answered: a) can ranking function learned by direct optimization of IR performance measures still perform well
over unseen queries with respect to the optimized IR performance measures? b) how directly are IR performance
measures optimized by the proposed approaches?

In this report, we will attempt to answer the above questions. We first point out that, under some conditions,
the ranking function learned by direct optimization of IR performance measures can also perform well upon unseen
queries with respect to the optimized IR performance measures. Then, to study how directly IR performance measures
are optimized by previous approaches, we proposed a directness evaluate metric. Based on this metric, SoftRank is
analyzed and corresponding results are presented.

I. INTRODUCTION

In information retrieval (IR), the objective of ranking problem is to construct and return a ranked list of relevant
documents to the user. The document ranking list is demandedto satisfy user’s information need as much as possible
with respect to a user’s query.

Recently, learning to rank algorithms, which automatically resolves the ranking problem with the help of
supervised learning techniques, gains more and more attentions because of their good performance. In general,
learning to rank algorithm consists of two processes: the training process and the testing process. The goal of the
training process is to learn a ranking function that predicts the document ranking list for a given query. Usually,
it is achieved by solving an optimization problem with regard to a specially designed objective function. The goal
of the testing process is to evaluate the prediction goodness of the ranking function when facing unseen queries.
Usually, IR performance measures such as Normalized Discount Cumulative Gain (NDCG) and Mean Average
Precision (MAP) are utilized to perform the evaluation. Intuitively, the objective function, which is optimized by the
training process, should be (or be directly related to) the IR performance measures themselves. However, typical IR
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performance measures are non-smooth and non-differentiable with regard to ranking function parameter. Therefore,
it is not easy to learn a ranking function in practical time bydirectly optimizing the IR performance measures.
The difficulty comes from the fact that most existing optimization techniques are developed to handle smooth and
differentiable cases. Therefore, most existing learning to rank algorithms only optimize objective functions that are
loosely related to the IR performance measures. As a result,they may only achieve sub-optimization of the IR
performance measures even they can perform very well upon optimizing their adopted objective functions. Noticing
the gap between IR performance measures and actually utilized objective functions, several approaches are proposed
to directly optimize IR performance measures. For example,SoftRank[1] smoothes the deterministic document score
with Gaussian distribution and then optimizes the softenedNDCG derived from the score distribution. SVM-MAP[2]
adopts structural SVM to optimize a hinge loss that is a convex upper bound of IR performance measures. Although
such algorithms can achieve good empirical performance, there are still some questions that are unclear and not yet
answered: a) can ranking function learned by direct optimization of IR performance measures still perform well
over unseen queries with respect to the optimized IR performance measures? b) how directly are IR performance
measures optimized by the proposed approaches?

In this report, we will attempt to answer the above questions. Firstly, according to the consistency and gener-
alization ability of empirical risk minimization (ERM), wepoint out that if the is the ranking function space is
not very complex, when the number of training examples become infinity, the ranking function learned by directly
optimizing the IR performance measures can achieve optimalperformance upon unseen queries with respect to
the optimized IR performance measures. In other words, direct optimization of IR performance measures is not
only intuitively but also theoretically reasonable. Then,to investigate how directly IR performance measures are
optimized by previous direct methods, we propose a metric toevaluate the directness of the objective functions that
are actually optimized by such methods. Finally, based on the proposed directness evaluation metric, we analyze
SoftRank and present the corresponding results we get.

The rest of this report is organized as follow. In section II,we describe the general framework of learning to rank
algorithms. Then we introduce the formulation of SoftRank in section III. In section IV, we theoretically justify
that it is reasonable to directly optimizing IR performancemeasures under empirical risk minimization framework.
In section V a metric which can be used to evaluate the directness of direct method is proposed. Finally, based on
the proposed metric, we present analyze SoftRank and present our analysis results in section VI.

II. GENERAL FRAMEWORK OF LEARNING TO RANK

In this section, we describe the general framework of learning to rank. In the training process, a set of queries
Q = {q(1), q(2), . . . , q(m)} is given. Each queryq(i) is associated with a list of documentsd(i) = {d(i)

1 , d
(i)
2 , . . . , d

(i)
nq
}

and a rankingy(i) = {τ (i)(1), τ (i)(2), . . . , τ (i)(nq)} over the documents, wherenq denotes the size ofd(i), d
(i)
j

denotes thejth document ind(i), τ ∈ T is a bijection from{1, 2, . . . , nq} to itself, andτ (i)(j) denotes the position
of documentd(i)

j in y(i). From each query-document pair(q(i), d
(i)
j ), a feature vectorx(i) = {x(i)

1 ,x
(i)
2 , . . . ,x

(i)
nq
}

is constructed, wherex(i)
j = φ(q(i), d

(i)
j ) ∈ Rn. The goal of the training process is to learn a ranking function

h : X → Y through optimizing an objective functionO(ωωω,x(i),y(i)). X is the space ofx andY is the space of
all possible permutations over documents.O(ωωω,x(i),y(i)) represents the penalty for making predictionh(ωωω,x(i))
if the correct output isy(i), whereωωω is the parameter ofh.

In the testing process, given a new queryq associated with feature vectorx and ranking listy, a document
ranking list ŷ is predicted byh(ωωω,x).1 To evaluate the goodness of the prediction ofh, IR performance measures,
such as NDCG and MAP, are adopted. Here, we present the definitions of NDCG:

G(ωωω,x,y) =
1

Gmax

nq
∑

j=1

g(dj)D(rj), g(dj) = 2lj , D(rj) =
1

log 2 + rj
,

whereGmax is a normalization factor,lj is the label of documentdj , andrj is the position of documentdj in y.

1We will ignore the upper script(i) when content is clear.
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III. T HE FORMULATION OF SOFTRANK

SoftRank is proposed in [1] to optimize a smooth approximation of the IR performance measure NDCG. There
are three key steps in the SoftRank algorithm.

The first step is to smooth the deterministic score of document x
(i)
j of query q(i). Originally, the score is a

deterministic value outputted by the ranking functionf(ωωω,x
(i)
j ) : Rn ×Rn → R. After smoothened by a Gaussian

distribution whose variance isσs and mean is the original deterministic score, the score of documentx(i)
j is regarded

as a random variable having probability density as follow.

p(s
(i)
j ) = N (s

(i)
j |f(ωωω,x

(i)
j ), σ2

s)

The second step is to define the rank distribution of documentx
(i)
j . To achieve this, the probability that a document

is ranked before another is deduced as follow.

π
(i)
ij = Pr(S(i)

i − S
(i)
j > 0) =

∫ ∞

0
N

(

s|f(ωωω,x
(i)
j ) − f(ωωω,x

(j)
j ), σ2

s

)

ds.

Then the rank distribution can be calculated from a recursive process as follow.

p
(i)(1)
j (r) = δ(r)

p
(i)(k)
j (r) = p

(i)(k−1)
j (r − 1)πkj + p

(i)(k−1)
j (r)(1 − πkj)

whereδ(r) = 1 only whenr = 0 and zero otherwise.
Third, SoftNDCG is defined as the expectation of NDCG in termsof the rank distribution.

G(ωωω,x(i),y(i)) =
1

G
(i)
max

nq
∑

j=1

g(d
(i)
j )

nq−1
∑

r=0

D(r)p
(i)
j (r)

In order to maximize SoftNDCG, an artificial neural network framework is utilized.
Refer to the learning to rank framework described in above section, we can know, in the training process,

SoftRank learns the ranking function parameterωωω by resolvingOptimization Problem 1 presented below.

Optimization Problem 1.

min
ωωω

1

m

m
∑

i=1

[

1 − G(ωωω,x(i),y(i))
]

In the testing process, given a new queryq associated with feature vectorx and ranking listy, a ranking listŷ
is predicted through sorting the documents byf(ωωω,xj) in descending order.

From the formulation ofOptimization Problem 1, we can define

O1(ωωω,x(i),y(i)) = 1 − G(ωωω,x(i),y(i))

O2(ωωω,x(i),y(i)) = 1 − G(ωωω,x(i),y(i)),

It is obviously that the objective function actually optimized and the objective function intended to be optimized
by SoftRank are1

m

∑m
i=1 O1(ωωω,x(i),y(i)) and 1

m

∑m
i=1 O2(ωωω,x(i),y(i)) respectively.

IV. I S DIRECT OPTIMIZATION OF IR PERFORMANCEMEASURE REASONABLE?

Intuitively, people think the ranking function learned by directly optimizing IR performance measures can perform
well with respect to the optimized measure upon unseen queries. To theoretically justify this intuition, we should
refer toLemma 1 as follow.
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Lemma 1. Given a training set{(x(i),y(i)}m
i=1, which is sampled from distributionP (x,y). Let O(ωωω,x,y) :

X × Y → R be an objective function parameterized byωωω. Denote

R(ωωω;O) = EX,Y[O(ωωω,x,y)]

R̂m(ωωω;O) =
1

m

m
∑

i=1

O(ωωω,x(i),y(i))

ωωω? = arg min R(ωωω)

ω̂ωωm = arg min R̂m(ωωω)

The following inequality is ensured

R(ω̂ωωm;O) − R(ωωω?;O) ≤ 2 sup |R(ωωω;O) − R̂m(ωωω;O)|
According to the consistency and generalization ability ofempirical risk minimization, if the space ofO is not

very complex2, we know when the number of training examples become infinity, sup |R(ωωω;O) − R̂m(ωωω;O)| → 0.
In other words, we haveR(ω̂ωωm;O)

m→∞−−−−→ R(ωωω?;O). As for the ranking problem, we can considerO to be directly
related to the IR performance measures, such as1 − NDCG or 1 − MAP. Correspondingly,̂ωωωm

3 is the ranking
function obtained by directly optimizing a IR performance measure over the queries in the training set. According
to Lemma 1, we know if a ranking function is learned by directly optimizing a IR performance measure over
infinity queries, the ranking function can achieve optimal performance with respect to that IR performance measure
over any query. Therefore, we can believe that direct optimization IR performance measures is reasonable.

V. D IRECTNESSEVALUATION METRIC

According to the formulation of SoftRank inOptimization Problem 1, we know it does not actually optimize
NDCG directly. Instead, it optimizes a smooth approximation of NDCG, named as SoftNDCG, to learn the ranking
function4. Although, the previous direct methods can achieve optimalperformance in terms of their own objective
functions, it is not clear whether optimal performance in terms of IR performance measures can be achieved by
their learned ranking function. To answer this question, wepropose a metric, as depicted inTheorem 1, to evaluate
how directly IR performance measures is optimized when an algorithms achieve optimization of its own objective
function.

Theorem 1. For any queryq(i), suppose its associated feature vector and document ranking list is x(i) and y(i)

respectively. DenoteO1(ωωω,x,y), O2(ωωω,x,y) : X × Y → R as two objective functions, which are parameterized
by ωωω. Let

ωωω1 = arg min
1

m

m
∑

i=1

O1(ωωω,x(i),y(i))

ωωω2 = arg min
1

m

m
∑

i=1

O2(ωωω,x(i),y(i))

For any (x,y) ∼ P (x,y), if O1 and O2 satisfy

|O1(ωωω1,x,y) − O2(ωωω1,x,y)| ≤ ε1

|O1(ωωω2,x,y) − O2(ωωω2,x,y)| ≤ ε2

The following inequality is ensured

|EX,Y[O2(ωωω1,x,y)] − EX,Y[O2(ωωω2,x,y)]| ≤ 2ε1 + ε2

2For example, if the space ofO is finite, which is just the case in the practical optimization process since one can only try finite number
of different parameters.

3We useωωω to represent a ranking function when context is clear
4Similarly, it is easy to know that SVM-MAP actually optimizes a convex upper bound of MAP to learn the ranking function.
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Here we give the proof ofTheorem 15.
Proof: Let From the condition ofTheorem 1, we have:

O1(ωωω2) ≥ O1(ωωω1)

O2(ωωω1) ≥ O2(ωωω2)

1) If O1(ωωω2) ≥ O2(ωωω1)

|O1(ωωω1) − O2(ωωω2)| = |O1(ωωω1) − O2(ωωω1) + O2(ωωω1) − O2(ωωω2)|
≤ |O1(ωωω1) − O2(ωωω1)| + |O2(ωωω1) − O2(ωωω2)|
≤ ε1 + |O1(ωωω2) − O2(ωωω2)|
≤ ε1 + ε2

2) If O1(ωωω2) < O2(ωωω1)

|O1(ωωω1) − O2(ωωω2)| = |O1(ωωω1) − O1(ωωω2) + O1(ωωω2) − O2(ωωω2)|
≤ |O1(ωωω1) − O1(ωωω2)| + |O1(ωωω2) − O2(ωωω2)|
≤ |O2(ωωω1) − O1(ωωω1)| + ε2

≤ ε1 + ε2

In summary
|O1(ωωω1) − O2(ωωω2)| ≤ ε1 + ε2

Therefore

|O2(ωωω1) − O2(ωωω2)| = |O2(ωωω1) − O1(ωωω1) + O1(ωωω1) − O2(ωωω2)|
≤ |O2(ωωω1) − O1(ωωω1)| + |O1(ωωω1) − O2(ωωω2)|
≤ 2ε1 + ε2

|EX,Y[O2(ωωω1,x,y)] − EX,Y[O2(ωωω2,x,y)]| ≤
∫

x×y

|O2(ωωω1) − O2(ωωω2)|P (dx, dy) ≤ 2ε1 + ε2

When considering our direct optimization problem, we can assumeO2(ωωω,x,y) = 1−E(ωωω,x,y) andO1(ωωω,x,y) =
1− Ê(ωωω,x,y), whereE is a specified IR performance measure andÊ is the objective function, we call it surrogate
measure, optimized by a direct optimization algorithm.ωωω1 andωωω2 correspond to two ranking functions that are
obtained by optimizingÊ andE respectively.Theorem 1 indicates that, for any query, if the surrogate measureÊ

can have similar value as IR performance measureE with respect to bothωωω1 andωωω2, thenωωω1 can achieve similar
expected risk with respect to IR performance measureE asωωω2.

Combining Theorem 1 and Lemma 1, we can know that given a big enough training set, once a surrogate
measureÊ can satisfy the condition ofTheorem 1, then, the ranking function learned by optimizinĝE over the
training set can perform optimally upon any unseen query when evaluated by the corresponding IR performance
measureE.

VI. A NALYSIS OF SOFTRANK

From above section, we know that if a surrogate measureÊ is related to a IR performance measure directly
enough, the ranking function learned by optimizing that surrogate measure over a big enough training set is ensured
to perform optimally upon unseen queries. Therefore, the directness of the surrogate measure can depict the goodness
of a direct method. Taking SoftRank as an example, we study the directness of its surrogate measure SoftNDCG
and present the analysis result as follow.

5In this proof, we simplifyOi(ωωω,x,y) asOi(ωωω), wherei = 1, 2.
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Theorem 2. Suppose a queryq, its associated feature and document ranking list isx andy respectively. For any
ωωω, let

O1(ωωω,x,y) = 1 − G(ωωω,x,y)

O2(ωωω,x,y) = 1 − G(ωωω,x,y),

be the objective function and its corresponding IR performance measure defined inOptimization Problem 1. Assume
|sij| ≥ δ, nq ≤ N and there are in total K ordered categories in the ground truth label, i.e.,{0, · · · ,K − 1}. Then
whenσs < δ

2erf−1

(√

N−2

N−1

) , the difference betweenO and E satisfies:

|O1(ωωω,x,y) − O2(ωωω,x,y)| ≤ 2K−1 · N · (ε1 + ε2)

where

ε1 =
(N − 1)σs

2δ
√

π
e
− δ2

4σ2
s , ε2 =

√

ε3(σs)

1 − 5ε3(σs)
+ 5ε3(σs), ε3 =

[

1 − erf2
(

δ

2σs

)]

erf(x) =
2√
π

∫ x

−∞

e−t2dt, sij = si − sj = f(ωωω,xi) − f(ωωω,xj), f(ωωω,xj) : Rn ×Rn → R

Before giving the proof ofTheorem 2, we first prove a lemma as below.

Lemma 2. Assume a discrete random variableR = 0, 1, . . . , n− 1 follow distributionp(r|µ, σ2), whereµ and σ2

is expected value and variance. Denoteµ′ as the closest integer toµ, µ′′ as the second closest integer toµ, then

Pr(R = µ′) ≥ 1 − 5σ2

Pr(R = µ′′) ≤ 4σ2

∑

r 6=µ′,µ′′

Pr(R = r) ≤ σ2

Proof: According to the definitions ofmu1 andµ′′, we have

0 ≤ |µ′ − µ| ≤ 1

2
1

2
≤ |µ′′ − µ| ≤ 1

∀r 6= µ′, µ′′, |r − µ| ≥ 1

According to the definition ofσ2, we have

σ2 =

n−1
∑

r=0

Pr(R = r)(r − µ)2

= Pr(R = µ′)(µ′ − µ)2 + Pr(R = µ′′)(µ′′ − µ)2

+
∑

r 6=µ′,µ′′

Pr(R = r)(r − µ)2

≥ Pr(R = µ′)(µ′ − µ)2 +
1

4
Pr(R = µ′′) +

∑

r 6=µ′,µ′′

Pr(R = r)
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Therefore,

Pr(R = µ′)(µ′ − µ)2 + Pr(R = µ′′)(µ′′ − µ)2 ≥ 0

⇒
∑

r 6=µ′,µ′′

Pr≤ σ2

Pr(R = µ′)(µ′ − µ)2 +
∑

r 6=µ′,µ′′

Pr(R = r) ≥ 0

⇒ Pr(R = µ′′) ≤ 4σ2

Pr(R = µ′) = 1 − Pr(R = µ′′) −
∑

r 6=µ′,µ′′

Pr(R = r)

⇒ Pr(R = µ′) ≥ 1 − σ2

Then we give the proof ofTheorem 2.
Proof: Because

|O1(ωωω,x,y) − O2(ωωω,x,y)| ≤ 2K−1N

∣

∣

∣

∣

∣

nq−1
∑

r=0

D(r)pj(r) − D(rj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

nq−1
∑

r=0

D(r)pj(r) − D(rj)

∣

∣

∣

∣

∣

≤ |D(µj) − D(rj)| +
∣

∣

∣

∣

∣

nq−1
∑

r=0

D(r)pj(r) − D(µj)

∣

∣

∣

∣

∣

µj = E[R̃j ]

If we can prove

|D(µj) − D(rj)| ≤ ε1 (1)
∣

∣

∣

∣

∣

nq−1
∑

r=0

D(r)pj(r) − D(µj)

∣

∣

∣

∣

∣

≤ ε2, (2)

thenTheorem 2 is proved.
We first construct a random variablẽRij as follow:

R̃ij ,

{

1, if Si > Sj

0, if Si ≤ Sj

Let πij , Pr(Si − Sj > 0), we have:
{

Pr(R̃ij = 1) = πij

Pr(R̃ij = 0) = 1 − πij

We know

πij , Pr(Si − Sj > 0) =

∫ ∞

0
N (s|sij , 2σ

2
s)ds

= 1 −
∫ 0

−∞

N (s|sij , 2σ
2
s)ds = 1 − Φsij ,2σ2

s
(0)

= 1 − 1

2

[

1 + erf

(

0 − sij

2σs

)]

=
1

2

[

1 + erf

(

sij

2σs

)]
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On the other hand, we know̃Rj ∼ pj(r) can be calculated from̃Rj =
∑

i6=j R̃ij .

µj , E[R̃j ] =
∑

i6=j

E[R̃ij ]

=
∑

i6=j

πij =
∑

i6=j

1

2

[

1 + erf

(

sij

2σs

)]

σ2
j , V ar[R̃j ] =

∑

i6=j

V ar[R̃ij] =
∑

i6=j

{

E[R̃2
ij ] − E2[R̃ij ]

}

=
∑

i6=j

πij(1 − πij) =
∑

i6=j

1

4

[

1 − erf2
(

sij

2σs

)]

Now, we first prove Eqn.(1) here. The deterministic rank of documentj can be calculated by

rj =
∑

i6=j

I[sij > 0], I[sij > 0] =

{

1 if sij > 0

0 if sij < 0

The difference betweenrj andµj is:

|rj − µj| =

∣

∣

∣

∣

∣

∣

∑

i6=j

I[sij > 0] −
∑

i6=j

1

2

[

1 + erf

(

sij

2σs

)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i6=j,sij>0

1 − 1

2

[

1 + erf

(

sij

2σs

)]

−
∑

i6=j,sij<0

1

2

[

1 + erf

(

sij

2σs

)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i6=j,sij>0

1

2
erfc

(

sij

2σs

)

−
∑

i6=j,sij<0

1

2
erfc

(−sij

2σs

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

i6=j,sij>0

1

2
erfc

(

sij

2σs

)

+
∑

i6=j,sij<0

1

2
erfc

(−sij

2σs

)

∣

∣

∣

∣

∣

∣

=
∑

i6=j

1

2
erfc

( |sij|
2σs

)

.

In above erfc(x) = 1 − erf(x). In above erfc(x) = 1 − erf(x). Based on the properties of Normal Distribution, we
have

x > 0,
1

2
erfc

(

x√
2

)

= 1 − Φ(x) <
1

x
φ(x) =

1

x

1√
2π

e−
x2

2 .

Therefore,
1

2
erfc

( |sij |
2σs

)

<
σs√
π|sij|

e
−

s2

ij

4σ2
s .

In summary, we have

|rj − µj| <
1√
π

∑

i6=j

σs

|sij|
e
−

s2

ij

4σ2
s ≤ (N − 1)σs

δ
√

π
e
− δ2

4σ2
s = 2ε1

|D(rj) − D(µj)| =

∣

∣

∣

∣

1

log(2 + rj)
− 1

log(1 + µj)

∣

∣

∣

∣

≤ sup
θ∈[0,nq+ε1−1]

∣

∣

∣

∣

rj − µj

(2 + θ) log2(2 + θ)

∣

∣

∣

∣

< ε1
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We then prove Eqn.(2). Assumeµ′
j is the closest integer toµj and µ′′

j is the second closest integer toµj.
According toLemma 2, we have:

E[D(R̃j)] =

nq−1
∑

r=0

Pr(R̃j = r)

log(2 + r)

=
Pr(R̃j = µ′

j)

log(2 + µ′
j)

+
Pr(R̃j = µ′′

j )

log(2 + µ′′
j )

+
∑

r 6=µ′

j ,µ′′

j

Pr(R̃j = r)

log(2 + r)

≤
Pr(R̃j = µ′

j)

log(2 + µ′
j)

+ Pr(R̃j = µ′′
j ) +

∑

r 6=µ′

j ,µ′′

j

Pr(R̃j = r)

≤
Pr(R̃j = µ′

j)

log(2 + µ′
j)

+ 4σ2
j + σ2

j

≤ 1

log(2 + µ′
j)

+ 5σ2
j

Therefore,

|E[D(R̃j)] − D(E[R̃j ])| =

∣

∣

∣

∣

∣

nq−1
∑

r=0

Pr(R̃j = r)

log(2 + r)
− 1

log(2 + µj)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

log(2 + µ′
j)

− 1

log(2 + µj)

∣

∣

∣

∣

∣

+ 5σ2
j

=
| log(2 + µj) − log(2 + µ′

j)|
log(2 + µj) · log(2 + µ′

j)
+ 5σ2

j

≤ | log(2 + µj) − log(2 + µ′
j)| + 5σ2

j

1) If µj ≤ µ′
j , we have

|E[D(R̃j)] − D(E[R̃j ])| ≤ log(2 + µ′
j) − log(2 + µj) + 5σ2

j

= log(1 +
µ′

j − µj

2 + µj
) + 5σ2

j ≤
µ′

j − µj

2 + µj
+ 5σ2

j

≤ µ′
j − µj + 5σ2

j

2) If µj > µ′
j , we have

|E[D(R̃j)] − D(E[R̃j ])| ≤ log(2 + µj) − log(2 + µ′
j) + 5σ2

j

= log(1 +
µj − µ′

j

2 + µ′
j

) + 5σ2
j ≤

µj − µ′
j

2 + µ′
j

+ 5σ2
j

≤ µj − µ′
j + 5σ2

j

In summary
|E[D(R̃j)] − D(E[R̃j ])| ≤ |µj − µ′

j | + 5σ2
j

Because

σ2
j ≥ Pr(R̃j = µ′

j)(µ
′
j − µ)2

Pr(R̃j = µ′
j) ≥ 1 − 5σ2

j

Therefore, whenσ2
j < 1

5

|µ′
j − µj| ≤

√

σ2
j

1 − 5σ2
j
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In summary

|E[D(R̃j)] − D(E[R̃j ])| ≤
√

σ2
j

1 − 5σ2
j

+ 5σ2
j

Because|sij | ≥ δ > 0 and2 ≤ nq ≤ N , we have6

σ2
j =

1

4

∑

i6=j

[

1 − erf2
(

sij

2σs

)]

=
1

4

∑

i6=j

[

1 − erf2
( |sij |

2σs

)]

≤ nq − 1

4

[

1 − erf2
(

δ

2σs

)]

≤ N − 1

4

[

1 − erf2
(

δ

2σs

)]

On the other hand,

N − 1

4

[

1 − erf2
(

δ

2σs

)]

<
1

5
⇒ σ2

j <
1

5

N − 1

4

[

1 − erf2
(

δ

2σs

)]

<
1

5
⇒

[

1 − erf2
(

δ

2σs

)]

<
4

5(N − 1)
<

1

N − 1

⇒ erf

(

δ

2σs

)

>

√

N − 2

N − 1

⇒ σs <
δ

2erf−1
(√

N−2
N−1

)

Therefore, whenσs < δ

2erf−1

(√

N−2

N−1

)

|E[D(R̃j)] − D(E[R̃j ])| ≤
√

ε3(σs)

1 − 5ε3(σs)
+ 5ε3(σs)

whereε3(σs) =
[

1 − erf2
(

δ
2σs

)]

is a strict increasing function ofσs.
From Theorem 2, we can see that when the parameterσs is small, the bound on|NDCG− SoftNDCG| will

be an increasing function ofσs. Whenσs approaches zero7, SoftNDCG will approximate NDCG with any given
accuracy, and thus the ranking function learned by maximizing SoftNDCG will have very similar test performance
to that of the function learned by “directly” optimizing NDCG.
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