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A continuum damage mechanics model with the strain-based 
approach to biaxial low cycle fatigue failure 

 
A. Zolochevsky, T. Itoh, Y. Obataya, J. Betten 
 
Abstract  A continuum damage mechanics model for low cycle fatigue failure of initially isotropic materials 
under biaxial loading conditions is presented. The expression for the equivalent strain in the fatigue damage 
evolution equation contains the three material parameters, and the strain intensity as well as the maximum 
principal strain and the volume strain for amplitudes. It is shown how these material parameters can be 
determined from a series of basic experiments using a cruciform specimen. Particular expressions for the 
equivalent strain with a smaller number of material parameters and invariants are obtained. Model predictions 
are found to be in satisfactory agreement with the experimental low cycle fatigue data under full ranged biaxial 
loadings obtained in the test using a cruciform specimen. 
 
 
Ein mechanisches Kontinuumsschadenmodell mit einem Ansatz, der auf 
Spannungen basiert, für Bruch wegen zweiachisger zyklischer Ermüdung.  
 
Zusammenfassung   Ein mechanisches Kontinuumsschadenmodell für Bruch wegen zweiachsiger zyklischer 
Ermüdung von ursprünglich isotropen Materialien unter zweiachsigen Belastungsbedingungen wird dargestellt. 
Der Ausdruck für die äquivalente Spannung in den Gleichungen für die Entwicklung des Ermüdungsschadens 
beinhaltet 3 Materialparameter, die Amplituden der Spannungsintensität, der maximalen Hauptspannung und die 
der Volumenspannung. Es wird gezeigt, wie diese Materialparameter mittels einer Reihe grundlegender 
Experimente an kreuzförmigen Probekörpern bestimmt werden können. Besondere Ausdrücke für die 
äquivalente Spannung mit einer geringeren Anzahl von Materialparametern und Invarianten resultieren. 
Modellvorhersagen stehen in befriedigender Übereinstimmung mit den experimentellen Ermüdungsdaten nach 
wenigen Zyklen unter im ganzen Bereich von zweiachsigen Belastungen. Für diese Testexperimente wurden 
kreuzförmige Probekörper benutzt.  
 
 
List of symbols 
A, B, C   Material constants 
a, b, d, r, f, m, k Material parameters 
N     Number of cycles  
N*   Number of cycles to failure 
φ    Principal strain ratio  
εkl Components of the strain tensor for 

amplitudes  
ekl Components of the strain deviator 

for amplitudes  
α , γ Numerical coefficients  
δkl Kronecker’s delta  
λ1 , λ2 , λ3  Material parameters  
εe  Equivalent strain 
εi  Strain intensity for amplitudes 
ε0  Volume strain for amplitudes 
ε11, ε22, ε33 Amplitudes of the principal strains 
χ(εe)  Some function of the equivalent 

strain 
ω  Damage variable 
ν  Poisson’s ratio 
 
1 
Introduction 
A comprehensive review of low cycle fatigue damage 
models for polycrystalline materials has been given 
by Fatemi and Yang [1]. Existing multiaxial low 
cycle fatigue damage theories can be divided into 
three groups. They are stress-based [2-5], strain-

based [2,6-8] and energy-based [3,9-11] models.  
However, these fatigue damage theories were 
developed under the limited multiaxial stress/strain 
states. 

Multiaxiality of loading affects on low cycle 
fatigue lives of materials largely. The features of this 
influence may be investigated experimentally. In this 
way, a large number of tests on laboratory specimens 
have been performed in realistic environmental 
conditions. Therefore, different types of laboratory 
specimens may be used to vary the degree of 
multiaxiality, such as hollow cylindrical specimens 
under combined tension and torsion [2,7-9,12-14], an 
annular disk specimen with a reduced testing section 
[10], thin-walled tubes under tension and 
internal/external pressure [15-17], cruciform 
specimens [11,18-22], notched cylindrical specimens 
[23,24], etc. 

The aim of this paper is to propose a new 
continuum damage mechanics model based on the 
equivalent strain concept for evaluating the damage 
growth and fatigue life under biaxial loading 
conditions for initially isotropic polycrystalline 
materials. We will use the results of strain controlled 
biaxial low cycle fatigue tests obtained on the basis 
of cruciform specimens [20,21]. These experimental 
results shown in Fig.1 clearly demonstrate the effect 
of the amplitude of the maximum principal strain as 
well as the strain biaxiality which is defined by the 
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principal strain ratio φ=ε22/ε11 on biaxial low cycle 
fatigue lives for type SUS304 stainless steel at 923K 
[20,21]. Here, ε11 and ε22 are the maximum and 
minimum principal strains in the plane of cruciform 
specimen surface. Testing machine on the basis of 
cruciform specimens can perform biaxial low cycle 
fatigue tests in the range of −1≤φ≤1, which is full 
range of biaxial strain state under plane stress 
condition. 
 
2 
Continuum damage mechanics model 
A number of comments need to be made. Firstly, 
equivalent strain concept gives an opportunity to 
relate all fatigue endurance data under multiaxial 
loading to corresponding primary fatigue endurance 
data from simple tests (basic experiments). Secondly, 
an approach based on the strain intensity introduced 
and used in classical theory of plasticity and on one 
material parameter which can be found from the one 
type basic experiments is not applicable to describe 
the fatigue behavior for many materials 
[2,8,10,18,22,23]. Thirdly, Nurtjahjo et al. [19] made 
a conclusion on the basis of biaxial experiments on 
cruciform specimens that a number of one parameter 
approaches as well as the two parameter approach 
proposed by Brown and Miller [6] can not reproduce 
the actual biaxial fatigue behavior of the Al7475-
T7351 material. 

In the following, we shall use the basic 
aspects of continuum damage mechanics based on the 
original concepts of Kachanov [25] and Rabotnov 
[26]. The fundamental aspects of continuum damage 
mechanics can be found in references [27-33].  

In order to describe fatigue damage 
accumulation per cycle, we introduce the damage 
variable ω∈ [0, 1] which may be defined according to 
Rabotnov [28] as the microcrack area density or net 
area reduction in the observed plane. The damage 
variable is a function of number of cycles, i.e. 

ω=ω(N). An initial value ω=0 corresponds to the 
undamaged state for N=0, while a critical value ω=1 
corresponds to fatigue failure for number of cycles to 
failure N=N*. It is possible to describe the damage 
growth by the following fatigue damage evolution 
equation [4,5,28]: 

( ) ( )e
k1 εχω1

Nd
ωd −−=    (1) 

where εe is the equivalent strain, k is material 
parameter, exponent “1-k” is taken in order to receive 
the simple formula in the following. The function 
χ(εe) in Eq.(1) may be determined through the 
experimental data related the strain amplitudes to the 
number of cycles to failure in basic experiments. This 
function may be written in one of the following form: 
the power relation χ(εe)= εe

r, the hyperbolic sine law 
χ(εe)=sinh(εe/d) or exponential relation law 
χ(εe)=exp(εe/f). In order to describe the fatigue 
behavior, when the equivalent strain varies in the 
interval εe∈ (a, b), it is conveniently to use the 
following formula: 

( )
m

e

e
e εb

aε
εχ 





−
−

=     (2) 

Here r, d, f, a, b and m are material parameters. 
 We shall consider in-plane symmetrical 
cyclic loading. In this case the equivalent strain can 
be introduced as: 

 

03112i1e εγλεαλελε ++=   (3) 
where λ1, λ2 and λ3 are material parameters, α and γ 
are numerical coefficients which take into account 
the specific weight for different terms in Eq.(3). εi 
and ε0 in Eq. (3) are the strain intensity and the 
volume strain for the amplitudes, respectively, which 
are defined as: 

klkl0klkli εeeε ,
3
2 δε==   (4) 

where 

( ) klmnmnklkl δδεεe
3
1−=    (5) 

are components of the strain deviator for the 
amplitudes, δkl is the Kronecker’s delta. 
 It is seen that the equivalent strain given by 
Eq.(3) is assumed to consist of three terms. The first 
term reflects the influence of movement of 
dislocations and slipping on the fatigue damage 
growth. The last two terms in the expression for the 
equivalent strain reproduce the influence of the 
maximum principal strain and the volume strain on 
the fatigue damage. If these invariants have no 
influence on the fatigue damage growth, then we 
must put α =γ =0  in Eq.(3). Obviously, numerical 
coefficients α and γ reflect the influence of the 
maximum principal strain and the volume strain, 
respectively, on the damage development.  

In the case of constant amplitude loading, the 
number of cycles to failure can be obtained by 
integrating Eq.(1), and is equated as 
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Fig.1.  Relationship between biaxial fatigue life 
and principal strain ratio 
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 ( )eεkχ
1N* =      (6) 

 
3 
Basic experiments 
We now consider a procedure for the determination 
of three parameters λ1, αλ2 and γλ3 in Eqs (2), (3) and 
(6) for the case of constant amplitude loading which 
needs the results of the basic experiments on 
cruciform specimens. Let the Cartesian coordinate 
axes 1 and 2 are located in the plane of the specimen 
surface. Then the axis 3 will be to coincide with the 
normal direction to this plane. We recall that ε11 and 
ε22 are the amplitudes of the maximum and minimum 
principal strains in the plane of the specimen surface, 
respectively, i.e. ε11≥ε22, and φ=ε22/ε11 is the principal 
strain ratio.  
 A number of comments need to be made. 
Firstly, the experimental determination of the strain 
ε33 presents greater technical difficulties while 
comparing the strains ε11 and ε22. Secondly, due to the 
technical impossibility to experimentally determine 
the strain ε33 using a biaxial fatigue testing machine, 
many authors [18-22] assume the condition of 
incompressibility, i.e.  

( )221133 εεε +−=    (7) 
In other words, they assume that in low cycle fatigue 
the Poisson’s ratio  

5.0=ν     (8) 
However, applicability of Eqs (7) and (8) for 
practical problems is very questionable. For example, 
even under the condition (7) number of cycles to 
failure for the 316FR steel in case with φ=−1 is more 
than 7 times as high as the analogous magnitude in 
the case with φ=0 for one and the same value of strain 
intensity εi=10-3 calculated on the basis of Eqs (4), (5) 
and (7) [22]. Thirdly, the expression (3) for the 
equivalent strain together with Eq. (4) can be 
rewritten for the case under consideration in the 
following form 

=eε ( ) ( ) ( )2
3322

2
3311

2
2211 εεεεεε13

2
−+−+−λ  

03112 εγλελα ++    (9) 
Then we note that in contrast to the strain ε33, the 
strains ε11 and ε22 can be controlled independently 
and with necessary accuracy. Furthermore, we have 
no information about the effect of the strain ε33 on the 
fatigue life of cruciform specimen. Therefore, we can 
assume that the strain ε33 has much smaller effect on 
the fatigue damage accumulation while comparing 
the strains ε11 and ε22. In this regard, we arrive at the 
assumption that 

033 ≅ε    (10) 
in the expression (9) for the equivalent  strain. Thus, 
in the following we can use the equivalent strain 
given by Eq. (3) together with the following 
expressions for the strain intensity and the volume 
strain 

22110
2
222211

2
11i εεεεεεεε , +=+−

3
2=   (11) 

We shall later show that assumption (10) gives the 
opportunity to predict satisfactory biaxial fatigue 
lives. 

Considering basic experiments on cruciform 
specimens, we obtain for each principal strain ratio φ 
such relations between the number of cycles to failure 
and the amplitude of maximum principal strain as: 

m
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−

−
=        for  1−=φ         

Here A,B,C,k and m are material constants that may 
be found from the approximation of experimental 
data curves in relationship between the amplitude of 
the maximum principal strain and the number of 
cycles to failure. The method for determination of 
these material constants based on the multipoint 
approximation concept is discussed in details in [34]. 
 On the other hand, we can use Eqs (2), (3), 
(6) and (11) to show analogous relations in these 
basic experiments.  

Considering loading with the strain ratio 
φ=1 we obtain from Eqs (2), (3), (6) and (11)  

m
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 Similarly, the relation in the case of loading 
with the strain ratio φ=0 is  

m
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 In the case of loading with the strain ratio 
φ=−1, it is not difficult to obtain from Eqs (2), (3), (6) 
and (11) the following relation  

m
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 Comparing formulas of Eq. (12) with Eqs 
(13)- (15), respectively, we obtain  
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 Now it is not difficult to find material 
parameters 
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4 
Particular cases 
Using Eq.(17), we analyze certain possible particular 
cases, resulting from Eqs (2), (3), (6) and (11), and 
containing a smaller number of material parameters. 

(I) If the results from a set of basic experiments 
show that  

A3C,BA ==   (18) 
then together with Eq.(17) we obtain 

0γα,Aλ 2
3

1 ===   (19) 

Making use of Eq.(19) we can rewrite the equivalent 
strain given by expression (3) as 

ie Aε2
3ε =   (20) 

Thus, in the case under consideration the equivalent 
strain includes with the accuracy of the material 
parameter the stress intensity. The conditions given 
by Eq.(18) are recommendations for using expression 
(20) for the equivalent strain in the fatigue damage 
evolution equation. Non-existence of even one of the 
equalities in Eq. (18) shows the impossibility of using 
Eq.(20). 

(II) We now assume that from a set of basic 
experiments, we obtain  

( ) B13AC,BA +−=≠  (21) 
Substituting Eq.(21) into Eq.(17), we arrive at the 
following relation 

0=γ   (22) 
Therefore, the equivalent strain given by Eq.(3) has 
the following structure 

+λ= ie ε1ε 112εαλ   (23) 
Thus, in this case the expression for the equivalent 
strain in the fatigue damage evolution equation 
contains only the strain intensity and the maximum 
principal strain for amplitudes. 

(III)  We assume the following data are obtained 
from a set of basic experiments 

( )ABCBA −=≠ 23,   (24) 

Using then Eq.(17) together with Eq.(24) we arrive at 
the following relation 

0=α  (25) 
Equivalent strain given by Eq.(3) can now be 
rewritten as follows: 

+= ie εε 1λ 03εγλ  (26) 
Thus, in the case under consideration the expression 
for the equivalent strain in the fatigue damage 
evolution equation contains the strain intensity and 
the volume strain for amplitudes. 

(IV)  If a set of basic experiments yields 

( ) B13AC,BA +−≠≠ , ( )AB2C 3 −≠  
   (27) 

we have the most general case of material behavior 
during low cycle fatigue. The equivalent strain is 
defined by expression (3) where the appropriate 
material parameters may be found from Eq.(17).  
 
5 
Comparison of theoretical and experimental 
results 
The material tested was the type SUS304 stainless 
steel at 923K. The detailed description of chemical 
composition, heat treatment and experimental 
procedure can be found in [20,21]. 
 First of all we determine the material 
parameters in the proposed expression (3) for the 
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equivalent strain. Figure 2 shows a comparison of 
experimentally observed lives of cruciform 
specimens for basic experiments with the analogous 
values calculated on the basis of Eq. (12) with the 
material constants taken as: 

66.569C,54.801B,47.1284A

380.14b,1a,018700.0k,8830.1m

===

====
 (28) 

Then using Eqs (17) and (28) we obtain the following 
values of the material parameters: 

230.7,70.475,60.499 231 −=αλ=γλ=λ  (29) 
 Now we can demonstrate a comparison of 
model predictions on the basis of Eqs (2), (3), (6), 
(11) and (29) with the experimentally observed 
fatigue lives of cruciform specimens of the type 
SUS304 stainless steel for the other levels of the 
principal strain ratio. This comparison is given in 
Fig.3. It is seen that the theoretical and experimental 
results are in satisfactory agreement. Table 1 shows a 
summary of the model and experimental results. The 
calculated and experimentally observed fatigue lives 
can be found in Table, and their graphical form is 
presented in Fig.4. It is seen that majority of the 
model results are inside of the scatter band of a factor 
of 2. 

We can integrate Eq.(1) and obtain the 
following expression for the fatigue damage variable 
as a function of the number of cycles 

( )[ ] keεNkχω
1

11 −−=   (30) 
Figures 5(a-e) illustrate the results of calculations of 
the fatigue damage growth in the type SUS304 
stainless steel for various maximum principal strains 
and strain ratios obtained on the basis of Eqs. (2), (3), 
(11), (29) and (30). It is seen the features of the 
influence of the maximum strain as well as the strain 
ratio on the fatigue damage evolution. Note that a law 
of the fatigue damage growth in Figs 5(a-e) is similar 
to the evolution law for microcrack density 
experimentally observed in the 316L stainless steel 
[35]. 
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6 
Conclusion 
A new model of continuum damage mechanics 
associated with the equivalent strain concept has been 
proposed to describe the fatigue damage evolution in 
polycrystalline materials under biaxial loading 
conditions. The proposed expression for the 
equivalent strain has a general form and includes as 
particular cases a number of special expressions with 
a smaller number of material parameters and 
invariants. Basic experiments for determination of the 
material parameters in the proposed model have been 
formulated. Experimentally observed fatigue lives of 
cruciform specimens for other levels of the principal 
strain ratios have been compared with the 
corresponding theoretical values. Experimental data 
for steel and theoretical results are in satisfactory 
agreement. Condition of absence of the strain in the 
normal direction to the specimen surface can be used 
in the fatigue damage model outlined in this paper. 
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Table 1. Summary of the theoretical and experimental results for the type SUS304 stainless steel at 923K  
N* φ    2ε11 

(%) n1 n2 n3 m1 m2 m3 εe Exp.      Theory 

0.7 - - - 21  21  0 4.4872     370     377 

0.5 - - - 21  21  0 3.4051     700   1131 

0.4 - - - 21  21  0 2.5641   2400   2392 
1.0 

0.3 - - - 21  21  0 1.9231 11000   7285 

1.0 1 0 0 21  21  0 4.9751     410     189 

0.7 1 0 0 21  21  0 3.4825     440     669 

0.5 1 0 0 21  21  0 2.4875   3300   2248 

0.4 1 0 0 21  21  0 1.9900   4800   5414 

0.5 

0.3 1 0 0 21  21  0 1.4925 41000 20702 

1.0 1 0 0 21  21  0 4.0000     630     530 

0.7 1 0 0 21  21  0 2.8000   1550   1772 

0.5 1 0 0 21  21  0 2.0000   5150   6097 

0.4 1 0 0 21  21  0 1.6000 41000 15875 

0.0 

0.3 1 0 0 21  21  0 1.2000 80000 >100000 

1.0 1 0 0 21  21  0 3.3557   1040      803 

0.7 1 0 0 21  21  0 2.3490   2800    2888 

0.5 1 0 0 21  21  0 1.6778 10150 12318 

0.4 1 0 0 21  21  0 1.3423 >100000 41318 

-0.5 

0.3 1 0 0 21  21  0 1.0067 >100000 >100000 

1.0 1 0 0 21  21  0 2.8490   2200   1701 

0.7 1 0 0 21  21  0 1.9943   5300   6217 

0.5 1 0 0 21  21  0 1.4245 30500 33121 
-1.0 

0.3 1 0 0 21  21  0 0.8547 >100000 >100000 
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