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Optimal contours for heads of cylindrical pressure vessels are discussed. As opposed 
to the common method of preventing buckling in pressure vessel ends by means of 
increased wall thickness or local reinforcements, this paper proposes a design for 
"buckle-free" shapes in which the contour is established/adjusted so as to ensure 
stable behavior. A previous analysis by the authors, in which compressive stresses 
were eliminated, is extended so as to take into account the actual flexural rigidity of 
the wall. The shapes obtained from such buckle-free designs appear to be similar to 
standard ellipsoidal and torispherical ends and should be acceptable from various 
design and aesthetic viewpoints. 

1 Introduction 

Cylindrical pressure vessels are usually closed by axisym-
metric end elements the shapes of which are chosen on the 
basis of fabrication and strength requirements. From a 
fabrication/production viewpoint, the end should be as 
shallow as possible, while stress analysis suggests a higher con
tour for the head so as to result in a smooth membrane stress 
transition from the end to the cylinder while, at the same time, 
also minimizing bending effects at their juncture. The simplest 
end for a cylindrical pressure vessel, from a fabrication view
point, is a flat plate. Unfortunately, stresses in such a plate 
element as well as the bending stresses at its juncture to the 
cylinder are unacceptably high. Consequently, spherical or 
ellipsoidal pressure vessel ends are normally used. For exam
ple, the hemispherical closure shows favorable stress distribu
tion and minimal bending effects at the juncture, but its 
fabrication may present problems. Between the flat plate and 
the hemispherical closure, representing the two "extremes" in 
shapes, there are "compromise" contours, including ellip
soidal and torispherical ends, which are recommended by 
standard codes [1]. Particularly common shapes used in prac
tice include the 2:1 ellipsoidal and the torispherical heads, with 
a radii ratio for the latter of RS = 2RC (see Fig. 1), shapes for 
which the membrane stress resultants in the apex region are 
equal to the maximum "circumferential" membrane stress 
resultants in the cylinder, thereby permitting use of the same 
wall thickness throughout the pressure vessel. 

The effectiveness of these "standard" ends has been 
verified by countless applications for small pressure vessels. 
When such heads are used on large pressure vessels for which 
the diameter/thickness ratio, D/t, is relatively large ((D/t) > 
700 [2]), difficulties are encountered in terms of wrinkling in 
the compressive stress zone, a phenomenon which can easily 
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be explained on the basis of a simple membrane stress 
analysis, typical examples for which are given on Figs. 1(b) 
and (c) for the 2:1 ellipsoidal and the torispherical (Rs = 2RC) 
ends, respectively. Both figures indicate regions of cir
cumferential compressive stresses which obviously become 
dangerous in the case of thin-walled structures and are respon
sible for such local buckling. Even though such local instabil
ity does not represent total failure, as one would normally ex
pect in the case of buckling due to external pressure, the ap
pearance of wrinkles may interfere with the use/function of 
the vessel and could even lead to local fracturing in the vicinity 
of the buckles [2]. Numerous investigations have been carried 
out in recent past, studies which were directed at gaining a bet
ter understanding of this phenomenon and finding methods 
for the prevention of such local buckling. The main purpose 
of most of these investigations, however, was to establish safe 
internal pressure ranges for standard ellipsoidal or 
torispherical pressure vessel ends. Experimental [3, 4] and 
numerical [5-10] studies revealed the complexity of this type 
of behavior of the vessel ends, behavior in which geometrical 
and material nonlinearities interact and play a significant role. 
A review of this problem was presented in [2], where approx
imate simple formulas defining the critical internal pressure 
were also given. 

The most commonly used method for ensuring stability in 
pressure vessel closures is to either increase the wall thickness 
or to apply local reinforcements (stringers) in regions of com
pressive stresses, thereby increasing the bending stiffness of 
the wall in such regions. Such preventive measures lead to 
structures in which some portion of the material is sacrificed 
exclusively for prevention of instability. In that sense, such 
structures are not "optimal." 

In the method of design for "safe ends," presented here, in
stead of designing for bending stiffness to prevent buckling, 
the shape of the pressure vessel head is corrected so as to 
reduce the compressive membrane forces to allowable/con
trolled levels. Consequently, such "corrected shapes" ensure 
buckle-free behavior. In addition, in such contours the entire 
strength of the material is available for carrying internal 
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(a) Some end profiles 

N„=R,RC 

Ng, Circumferential Membrane Force 

N+, Meridional Membrane Force7 / N 8 (bending, effects included) 

Ellipsoid Cylinder 

(b) Membrane force distribution for 2:1 ellipsoidal end 

Ng , Circumferential Membrane Force -
Meridional Membrane Force , N^,-

r-Ng ( bending effects included) 

(c) Membrane force distribution for torispherical end 

Fig. 1 Typical ends of cylindrical pressure vessels 

pressure. Buckle-free shapes were introduced in [11, 12], 
where only tensile membrane stress states were allowed. In the 
present work, such designs are relaxed and further improved 
by taking into account the actual compressive stiffness of the 
wall and permitting some "controlled" circumferential com
pressive membrane force. 

The shapes obtained from these buckle-free designs, though 
quite similar to the shapes of standard vessel ends, have 
significantly different curvatures. Special attention needs to be 
paid therefore in the manufacturing of such vessel closures. 
The shape correction is based primarily on the membrane 
stress state. However, bending stresses are calculated for the 
"final shapes," which due to the reduced discontinuities in the 
membrane stress state, are found to be smaller than the flex-
ural stresses in typical pressure vessel ends. Such reduced 
bending stresses at the juncture of the vessel end and the cylin
drical portion may be a further design advantage, particularly 
when the pressure vessel is subjected to cyclic loading and/or 
is made of brittle materials. 

_Rc_ 

/-
Part of 
Cylindrical Portion 

Fig. 2 Notation and coordinate system 

2 Tension-Only Heads 

Since under internal pressure loading, the meridional stress 
resultant, A^, is tensile, we are looking for a shape in which 
the circumferential stress, Ne is, at worst, zero, this case 
representing the boundary between the desirable tensile, and 
the unacceptable compressive stress state. The governing 
equations for shapes of this type subjected to arbitrary loading 
conditions were discussed in [12]. For the case of the constant 
internal pressure, p0, the shape is readily determined from the 
static equilibrium equations for such structures, written in the 
form 

Ak=-
P0r PoRo NA 

= Po (\a,b) 
2 sin 4> 2 R^ 

where R^ and Re denote radii of meridional and circumferen
tial curvatures, respectively, r and <t> are coordinates (see Fig. 
2) and Ne is assumed to vanish. From equations (1), one ob
tains 

Re — 2R$ 

Using the geometric relations 

r 1 
i?„=-T—; R* 

dr 

sinr/> 

in equation (2), leads to 

dr r 

cosf/> d<t> 

d<t> 
cot <j>~r(4>)--

(2) 

Qa,b) 

(4a,b) 

where C0 represents a constant of integration. 
The shape defined by equation (4) has to be joined to the 

cylindrical portion of the vessel; therefore, 

(-f)-*- •'• C„ —Rr 

allowing determination of all parameters as functions of the 
angle 4> in the form 

R* = 

NA = 

vsin</>; 

1 
R» = 

1 f T/2 
— \ vsin </> d4> (5a,b) 

2 J 4> 

- F ^ ; (5c,d) 

, . - ; Ne = 0 (5eJ) 
2vsm</> 

where h is the height coordinate shown in Fig. 2 and f=r/Rc, 
h = h/Rc, Rt = R/R,., Nt = Ni/(p0Rc) (/ = </>, or 6). Since 
the variable h is expressed in the form of an integral, a 
numerical treatment is required, in general, for its evaluation. 
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Table 1 Coordinates for buckle-free shape 'Buckle-Free' Contour 

<t> 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

r 

0 
0.4167 
0.5848 
0.7071 
0.8017 
0.8752 
0.9360 
0.9694 
0.9924 
1.0000 

h (exact) 

0.5991 
0.5748 
0.5306 
0.4740 
0.4080 
0.3347 
0.2558 
0.1728 
0.0870 
0.0000 

h (from 
equation 6) 

0.5991 
0.5748 
0.5306 
0.4740 
0.4080 
0.3347 
0.2559 
0.1730 
0.0874 
0.0007 

h (from 
equation 7) 

0.6239 
0.5847 
0.5349 
0.4757 
0.4086 
0.3349 
0.2558 
0.1728 
0.0870 
0.0000 

An approximate closed-form solution can be obtained by rear
ranging equation (5b) as 

h -i 11: 
(6a) 

where 

r (4-)-r Q 

"Of) 
= 0.55907 

and where T denotes the Gamma function. Expanding the re
maining intergral in equation (6a) into a Taylor series, one ob
tains 

h (0) 3 7 - 1 * 3 / 2 
( ' - * * ) 

(6b) 

which approximates the exact relation (equation (6a)) with 
surprising accuracy over the full range of <f> (see Table 1). For a 
better approximation in the vicinity of the junction between 
the vessel end and the cylinder, one could use the relation 

^^(^-•M'-iU-f-*)2] (7) 

From equations (5a, c, d) it is clear that the curvatures of 
the vessel end are proportional to the distance f resulting in a 
very flat contour in the vicinity of the apex. Expression (5e) in
dicates that the membrane stress resultant N^, — oo at the 
apex. However, the standard vessel ends perform quite 
satisfactorily in this region and can therefore be used as the 
central portion of the closure. Thus, the main purpose of this 
paper is to describe and define a correction to the standard 
ends in the regions of compressive membrane forces. Such a 
correction of the torispherical contour is shown in Fig. 3(a) . 
All parameters associated with such a corrected buckle-free 
shape are denoted by a sub/superscript b. The original 
torispherical contour is denoted in Fig. 3 by the sub/super
script t. The juncture between the central (spherical) portion 
and the outer buckle-free shape, defined by point B in Fig. 
3 (a), is determioned by means of the equations 

rB = Vsin*B = Rs sin0B; .". sin</>B = (8) 

The torispherical end with R, = R,/Rc = 0.4 is also shown 
on Fig. 3(a) . Although the two contours are quite similar, the 
meridional curvatures of the buckle-free shape are almost 
twice those of the torispherical contour (see Fig. 3(b)). This 
difference in curvature affects the membrane force distribu
tion significantly, as indicated in Fig. (3c), a distribution 
which was calculated on the basis of the standard "edge-

Zone 
(b) Variation of radii of curvatures 

(c) Variation of membrane stress resultants 

Fig. 3 Corrected torispherical shape 

effect" bending solution. Note also that for the buckle-free 
shape the membrane stress state is tensile, with N§ vanishing in 
most of the region AB, while the torispherical contour exhibits 
large compressive hoop membrane effects, with sharp gra
dients, in the same region, which may necessitate a 
geometrically nonlinear analysis in that zone [7]. The only 
disadvantage of the buckle-free shape shown on Fig. 3(a) , is 
its height Hb = 0.620 Rc as compared with the corresponding 
value for the torispherical end H, = 0.517 Rc. 

The buckle-free correction for the 2:1 ellipsoidal end is 
shown on Fig. 4(a) . The location of the juncture, point B, is 
found from the relation 

2 sin</>B 

Vl + 3 sin2$B 

As can be seen, the ' 

= r 6=Vsin$B ; .". sin$B (9) 

'correction" is now even smaller than in 
the torispherical case. Nevertheless, the differences in cur
vatures between the original and the corrected contour are 
quite substantial (see Fig. 4(b)), leading to significant dif
ferences in hoop membrane stress distributions, the shape cor
rection again eliminating what was a sizeable compressive 
membrane stress zone (see Fig. 4(c)). The corrected shape has 
a height Hb = 0.620 Rc, which is approximately the same as 

370/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded From: https://pressurevesseltech.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



El l ipsoid — + + « — - Buckle-Free 
Zone 
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'B 
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/ 
Arc Length, s —*~ 

(c) Variation of membrane stress resultants 

Fig. 4 Corrected ellipsoidal shape 

that of the buckle-free contour for the torispherical case, while 
the original elliptical contour is slightly lower, He = 0.500 Rc. 

An examination and comparison of Figs. 3 and 4 also 
reveals that in the uncorrected (torispherical and ellipsoidal) 
shapes there are nonzero meridional and hoop membrane 
forces of opposite sign in the region of high curvature, a mem
brane stress state which is much more conducive to initiation 
of yielding than the corresponding stress state for the buckle-
free shapes in which the hoop membrane force vanishes in the 
same region. Thus, the shape correction proposed here allows 
further optimization of the design leading to a more uniform 
stress distribution throughout the vessel end. 

3 Heads With Controlled Compressive Membrane 
Forces 

Pressure vessel closures made of metal have a finite 
thickness and some (nonzero) bending rigidity. Consequently, 
they can carry some compressive membrane forces. Deter
mination of the allowable membrane compressive stress at 
each point in the vessel end is, in general, a complex problem. 
A conservative estimate can be obtained, however, by assum
ing that the compressive stiffness of the doubly curved vessel 
depends only on the meridional curvature of the contour, 
thus, in effect, approximating the doubly curved shape by a 
corresponding cylindrical panel (see Fig. 5(a)). The stability 
of such a doubly curved surface element was discussed in [13] 
with some of the results shown in Fig. 5(b)). As there results 
indicate, the circumferential curvature (Rfl >0) increases the 

(a) Doubly curved and corresponding cylindrical panel 

n 

kL « O.I6 

m 0 _ 
Relative Circumferential Shortening *• 

(ft) Load-deflection characteristics of doubly and singly curved panels 
(from [13]) 

Fig. 5 Stability behavior of shell elements 

nondimensional bifurcation buckling load parameter, ku, 
significantly, while the lowest post-buckling load-carrying 
capacity, kL, is unaffected by this parameter, indicating that 
the doubly-curved element and the corresponding cylindrical 
panel have approximately the same postbuckling strength. 
Figure 5 (b) also indicates the high imperfection sensitivity of 
these types of surface elements and the fact that the limit load 
for the imperfect structure is always larger than the minimum 
post-buckling strength, kL, of the perfect structure. 

On the basis of the above stated approximation, one can 
conservatively assume the allowable circumferential com
pressive membrane force to be restricted by 

\N,\ R* 
=£ k. (10) 

Etb tb 

where E is Young's modulus, kL = 0.16 and tb denotes the 
wall thickness of the buckle-free shape. On the basis of data 
presented in [2], the bifurcation buckling load parameter, ku, 
was calculated for the 2:1 ellipsoidal and the torispherical 
heads indicating values for this parameter in the ranges 
0.7-1.1 and 0.8-1.5 for these shapes, respectively. These 
ranges are above the single ku value of 0.605 calculated for the 
corresponding cylindrical panels and certainly are much 
higher than the minimum post-buckling strength, kL. Thus 
these results, justify, in some sense, the use of the foregoing 
assumption and equation (10). 

Using equation (10), one can admit circumferential mem
brane stress resultants in magnitude given by 

N.= -
R^ 

(ID 

Since Nt is given by equation (la) and the radii of cur
vatures are defined by equations (3a,b), these expressions used 
in the equation of equilibrium for the surface normal direction 
leads to 

N6 

Re 
where 

N-t> 

~R~1 --Po\ 
df 

= — cot<t> - c sin2(f>/r (12a,b) 
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Buckle-Free Contours 
for Various c: 

0" O 
c •= 0.05 
c> 0.1 
c = 0.15 

0.2 

Buckle-Free Zone 

Fig. 7 Variation of curvature and membrane stress resultants in 
buckle-free design for c = 0.1 

Fig. 6 Variation of buckle-free profiles with c 

tit)' (12c) 
2 Po 

Integrating equation (12ft) and using the boundary condition 
r(ir/2) = 1 leads to 

f ((£) = Vsin(MTT4c(T-sin<M] (13) 

which reduces to equation (5a) for kL -» 0. The second 
(height) coordinate is expressed in the form 

l + 4 c ( l - 2 sin<£) 

[ l + 4 c ( l - s i n ^ ) ] ' 
d4> (14) 

while the remaining parameters are obtained in the form 

R ^ = . 1 [ l+4c(l-2sin<A)]/ / ; (15a) 

R„ = r/sirap (156) 

7V0 = r/(2sm^);Ne=~2c/R^, (I5c,d) 

The calculated buckle-free profiles for various values of c 
are shown on Fig. 6. The central portion of the head is again 
assumed to be spherical with Rs = 2RC. The parameters defin
ing the juncture between the spherical and the corrected shape 
portions, points Bh are given by 

1 l + 4 c . . l + 4 c 1 . 
- rE (160,6) rR=-

l + 4 c l + 4 c 
-; sm<£B=-1+c 4 +4c 

As can be observed from Fig. 6, the height of the closure 
decreases with increasing c, a parameter which depends on the 
internal pressure, p0. If one assumes p0 to be a function of the 
allowable membrane stress in the spherical and cylindrical 
portions of the vessel, both of which have wall thickness t, the 
pressure is expressed as 

/ 
Po = CTall 

i?. 
(17) 

Rr \t / 
(18) 

which when substituted into equation (12c) leads to 

kL E 
2 °all 

For steels generally used in pressure vessel production, the 
order of magnitude of some of these parameters is given by 
E/oM = O(l03);t/Rc = 0(2.0xlO~3) ; assuming further that 
tb - t, one arrives at c = 0{kL). 

Finally, the variation of curvatures and membrane stress 
resultants for a closure with c = 0.1 is given on Fig. 7. This 
diagram indicates the presence of a circumferential compres
sion zone which, in comparison with the corresponding com
pressive stress area for the 2:1 ellipsoidal head of approx
imately the same height, is larger and exhibits a smoother Ne 

distribution with maximum values of this stress variable also 
reduced substantially. 

From an optimal design viewpoint, one strives for a mem

brane stress distribution in the vessel which is as uniform as 
possible. In order to ensure uniform membrane strength 
(against yielding) for all portions of the vessel and since for the 
spherical and cylindrical portions max (N^—Ng) = 1, the 
stress resultants must satisfy the following condition in the 
buckle-free shape: 

( # , - # , ) - 1 (19) 

An analysis of the membrane stress resultants, including 
bending effects, for 0 < c < 0.2 indicates that 

( # • -^ )max = max [ l ; ^ ^ ] (20) 

which suggests that condition (19) is approximately satisfied 
provided 

l + 2 c 

2(1-4c) 
» 1 ; .-. c 0.1 (21) 

Figure 7 indicates the validity of equation (19) in the zone of 
compressive stresses thereby confirming the optimal design of 
the closure with a value of c = 0.1. For c < 0.1 the buckle-
free shape would be "understressed," as for example the 
heads shown on Figs. 3 and 4, while for c > 0.1 the com
pressive membrane forces will become higher leading to possi
ble premature plastification. The meridional (tensile) mem
brane stress resultants are almost totally insensitive to the 
variation in c. One should note that the discussion concerning 
stability of the compressive region of the closure was based on 
equation (11), and therefore does not include plastic deforma
tions or plastic buckling. If one requires or desires a vessel end 
with low height, Fig. 6 indicates that in such cases c > 0.1 
which, in turn, suggests an increase in wall thickness in the 
buckle-free zone, tb > t. 

Conclusions 

In the design approach for pressure vessel ends presented 
here, the circumferential compressive membrane stress 
resultants are either completely eliminated or effectively con
trolled. In the first case, the corrected portion of the closure, 
referred to as the buckle-free zone, is slightly understressed 
from a optimal design point of view and leads to heads with 
relatively large heights. Admitting some circumferential com
pression allows shallower profiles and results in almost 
uniform membrane strength throughout the pressure vessel 
end, signifying an optimal design. 

The analysis indicates that such buckle-free shapes are ob
tained by relatively small corrections of the commonly used 
profiles, corrections which, however, have substantial meri
dional curvature changes associated with them. Consequently, 
even such small corrections require properly shaped dyes for 
the reforming and reshaping of the standard profiles. 

What does buckle-free really mean? Consider a standard 
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closure for a pressure vessel, subjected to internal pressure. At 
a certain pressure level wrinkling may occur in the compressive 
zone of the head. The wrinkled profile would tend to move 
"inward," resulting in a reduction in the circumferential com
pressive membrane forces. The final "average" wrinkled, 
(deflected) geometry, discussed in [14], is a good first approx
imation for the buckle-free profile discussed in this paper. 
Thus, wrinkling may, in some sense, be considered as the 
structure's self-defence against design deficiencies. Indeed, the 
post-buckling average profile determined experimentally 
might be utilized to define contours approaching the buckle-
free shape. Naturally, we are not suggesting that wrinkled 
pressure heads are proper closures for high-pressure contain
ment vessels, nor are we suggesting that buckle-free shapes be 
determined experimentally. On the contrary, we believe that 
the analysis presented here provides an effective and 
economical method for establishing contours resulting in 
buckle-free behavior. 
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