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Abstract

We develop a new high order accurate time-discretisation technique for initial value
problems. We focus on problems that originate from a space discretisation using
high order finite difference methods on summation-by-parts form with weak bound-
ary conditions, and extend that technique to the time-domain. The new time-
discretisation method is global and together with the approximation in space, it
generates optimal fully discrete energy estimates, and efficient methods for both stiff
and non-stiff problems. In particular, it is shown how stable fully discrete high order
accurate approximations of the Maxwells’ equations, the elastic wave equations and
the linearised Euler and Navier-Stokes equations are obtained. Even though we focus
on finite difference approximations, we stress that the methodology is completely
general and suitable for all semi-discrete energy-stable approximations.

Key words: time integration, initial value problems, weak initial conditions, high
order accuracy, initial value boundary problems, weak boundary conditions, global
methods, stability, convergence, summation-by-parts operators, energy estimates,
stiff problems

1 Introduction

For time integration of non-stiff initial value problems (IVP), the time-step
limitation is moderate and dictated by accuracy requirements only. Explicit
methods such as various forms of Runge-Kutta or linear multi-step methods
often suffice [5]. However, when the system of ordinary differential equations
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come from the spatial discretisation of an initial boundary value problem
(IBVP), it gets more complicated.

For systems coming from IBVP there are two major complications and some-
times three. Firstly, the number of equations increase with increasing reso-
lution of the spatial domain. Secondly, the ratio of the largest eigenvalue to
the smallest eigenvalue often increases without bound. When this happens,
the problem is called stiff. Stiffness can be generated by the physics itself, as
in chemical reaction problems or problems with boundary layers or shocks.
It can also be generated by the spatial discretisation itself, and be due to
nonuniform irregular meshes. A third major complication is non-linearity, of-
ten originating from the spatial discretisation. Typical examples include the
Navier-Stokes equations in fluid dynamics, the Black-Scholes equation in fi-
nance and the nonlinear Schrödinger equation in optics.

Stiffness, although hard to define [30], forces the use of implicit methods in or-
der to reduce the stability requirements on the time-step. Methods such as the
BDF (backward differentiation) methods [10],[9], implicit Runge-Kutta meth-
ods [19],[7], linear multi-step methods [16],[15] and various types of general
linear methods [3],[4] are used. Both single and multi-step as well as multi-
stage methods exist. Roughly speaking, the linear multi-step methods are
cheap and efficient but lacks certain stability properties. On the other hand,
implicit Runge-Kutta methods have good stability and accuracy properties
but can be very expensive. Often, the efficiency can be increased if combi-
nations of implicit and explicit methods [17],[18] are used, so called IMEX
methods.

All the previously mentioned methods are local, i.e. the solution at the next
time level is computed by using one or a few previously computed time levels.
In global methods, the whole time interval from zero to final time T is con-
sidered. Global methods using collocation and spectral approximations have
been considered previously (see [1],[11],[13],[34]) but are often considered un-
practical. However, the unconditional stability in combination with the very
high accuracy cannot be matched by the local methods. Also, energy esti-
mates which precisely match the continuous estimates can be obtained. This
is seldom (if ever) possible for local methods.

The goal of this paper is to develop a new high order accurate time-discretisation
technique for IVP. We aim for methods that are efficient for both stiff and
non-stiff problems, but focus on the stiff case. In most cases we consider
IBVP that are discretised in space with high order finite difference meth-
ods on summation-by-parts (SBP) form complemented with weak boundary
conditions using the simultaneous approximation term method (SAT). Even
though we focus on problems discretised by the SBP-SAT technique, we stress
the the methodology is completely general and suitable for all semi-discrete
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stable problems.

SBP operators [21,31,8,23] mimic integration by parts perfectly. Given the
SBP discretisation, the boundary conditions are imposed weakly using penalty
terms in the SAT method [6,8,32,33]. The combination of this technique to-
gether with well posed boundary conditions for the IBVP guarantees semi-
discrete stability via the energy-method. For application of the SBP-SAT tech-
nique to high order finite difference methods see [24,32,33,20,2,26,27] where
many different problems including fluid flow, wave propagation and conjugate
heat transfer have been considered. In the sequel of this paper we will as-
sume that the reader is familiar with the SBP-SAT technique presented in the
references above.

In this paper we will explore the use of this technique in time. The stability,
efficiency, solvability as well as the particular organisation of the technique
applied to IBVP will be explored. We will limit ourselves to constant coeffi-
cient problems in this initial study. In particular we will show that together
with the energy-stable semi-discrete approximations in [24,32,33,20,2,26,27],
it leads to optimal fully discrete energy estimates. As was mentioned above,
the methodology is completely general and suitable for all semi-discrete stable
problems, not only the ones discretized by the SBP-SAT technique in space.

This initial paper is organized as follows. In Section 2 we deal with the scalar
initial value problem. Optimal energy estimates are derived, the solvability
question is discussed and numerical experiments are performed. Section 3 deals
with the application of the technique to a representative scalar initial bound-
ary value problems. In Section 4 we generalize the one-dimensional theory for
a scalar partial differential equation developed in Section 3 to multiple di-
mensions and systems of partial differential equations. Finally in Section 5 we
draw conclusions.

2 The initial value problem

We start by discussing the SBP-SAT formulation for time discretisation of
initial value problems.

2.1 The continuous energy estimate

Consider the simplest possible first order initial value problem

ut = λu, (1)
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with initial condition u(0) = f and 0 ≤ t ≤ T . Let us consider the complex
constant λ to represent a stable spatial discretisation of an IBVP. The stability
implies that λ has a negative semi-definite real part. For hyperbolic problems,
λ is proportional to the inverse of the space step, and for parabolic problems,
the space step squared.

The energy method (multiplying with the complex conjugated solution and
integrating over the domain) applied to (1) yields

|u(T )|2 − 2Re(λ)||u||2 = |f |2, (2)

where ||u||2 =
∫ T
0
|u|2dt. Note that the solution at the final time is bounded

in terms of the initial data. If Re(λ) < 0, also the norm of the solution is
bounded in terms of the initial data.

2.2 The discrete energy estimate

The SBP-SAT approximation of (1) reads

P−1Q~U = λ~U + P−1(σ(U0 − f))~e0. (3)

The vector ~U contains the numerical approximation of u at all grid points in
time. The matrices P,Q form the differentiation matrix D = P−1Q. The SBP
properties are

P = P T > 0, Q+QT = EN − E0, (4)

where E0 = diag(1, 0, . . . , 0), EN = diag(0, . . . , 0, 1). The difference operators
can be based on block norms P [31] for full accuracy but sometimes diagonal
versions with lower accuracy must be used [25]. The extra (penalty) term on
the right-hand-side of (3) enforces the initial condition weakly (it forces the
discrete solution U0 towards f) using the SAT technique and position it at
grid point zero by the unit vector ~e0 = (1, 0, ..., 0, 0)T . The penalty parameter
σ will be decided by stability requirements.

Remark 1 The penalty term in (3) forces the discrete solution towards the
initial data, i.e. U0 6= f in general, but it is close. This technique is made
to preserve the SBP properties of the difference operator which is necessary
for the stability proof. For further details of this technique in space, see the
references on the SBP-SAT work in the Introduction.

The discrete energy method applied to (3) (multiplying from the left with
~U∗P and using the SBP properties) leads to

|~UN |2 − 2Re(λ)||~U ||2P = (1 + 2σ)|~U0|2 − σ(Ū0f + U0f̄), (5)
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In (5), the overbar denotes a complex conjugated quantity, ~U∗ is the complex

conjugate of ~UT and ||~U ||2P = ~U∗P ~U . The method is obviously stable for
σ ≤ −1/2. By adding and subtracting |f |2 to the right hand side of (5) and
making the choice σ = −1 we obtain

|~UN |2 − 2Re(λ)||~U ||2P = |f |2 − |U0 − f |2. (6)

By comparing the continuous estimate (2) with (6) we see that the discrete
bound is slightly more strict than the continuous counterpart due to the term
−|U0 − f |2 (which goes to zero with increasing accuracy).

Estimates like (6) are very hard to obtain using conventional local methods
where only a few time levels are involved. One can argue, although no proof
exist, that it can be done only with global methods, i.e. when the whole time
interval is considered.

2.3 The question of solvability

By rearranging (3), we get the final equation to solve for ~U

P−1(Q̃− λI)~U = ~R, (7)

where Q̃ = Q−σE0 and ~R = −σP−1f ~e0. The matrix Q̃ must be non-singular
with a low condition number for a well functioning procedure. We make the
following assumption.

Assumption 1 Let the SBP matrix Q be defined by (4). Then Q̃ = Q− σE0

has eigenvalues with strictly positive real parts for σ < −1/2.

Remark 2 The estimate (6) and numerical tests indicate the validity As-
sumption 1.

2.4 Numerical calculations for initial value problems

We compare the performance of the SBP-SAT technique described above with
a selection of widely acknowledged explicit and implicit methods of various
orders. We investigate both the non-stiff and the stiff case. Various definitions
of stiffness exist, the most common one simply states that stiffness occurs if
the largest time step guaranteeing stability for an explicit method is larger
than the step size needed for the local discretization error to be small enough
[30]. This pragmatic definition will be sufficient for our needs in this section.
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Consider the initial value problem (1). Note that the matrix in the correspond-
ing discretized system (7) only depends on the grid size and the length of the
integrated time interval. This means that the problem can be solved by using
successive intermediate time steps with forward and backward substitutions.
The same LU factorization can be used each time.

The number of arithmetic operations required to solve the already factorized
system using an SBP operator of order 2s can be estimated as (3s+1)N , where
N +1 is the number of grid points in time. This estimate is conservative as it
assumes a maximum number of pivotations during the LU factorization. Ac-
cording to the estimate above, the work associated with higher order operators
grow relatively slowly when compared to low order operators.

The most important factor is the total work needed for a certain error level.
We simply define work to be the measured cpu time required by the spe-
cific machine used. Long integration times are used to get reliable cpu time
measurements, using the Fortran 90 routine cpu time. Moreover, we use SBP
operators with diagonal norms (i.e. where P is diagonal) as well as full block
norms (P is diagonal in the interior, but not close to the boundaries). Oper-
ators with discretization error of order 2s in the interior have order s at the
boundaries in the case of diagonal norms and 2s − 1 in the case of full block
norms [31]. We denote the corresponding SBP-SAT methods by SBP(2s,s)
and SBP(2s,2s− 1) respectively.

We have compared with the following time integration methods:

• The second order implicit backward differentiation formula, denoted BDF2.
• The classical explicit fourth order Runge-Kutta method, denoted RK4.
• A fourth order explicit singly diagonally implicit Runge-Kutta method, de-
noted ESDIRK4 [19].

• An eighth order embedded explicit Runge-Kutta method, denoted DOPRI8
[28].

We use constant step sizes, for all methods, also for the embedded Runge-
Kutta schemes ESDIRK4 and DOPRI8.

2.4.1 Numerical calculations for non-stiff problems

As the non-stiff test problem we consider

u′(t) = −u(t) + cos(t)− sin(t), 0 < t < 104

u(0) = 1.
(8)
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Fig. 1. Global error using diagonal norms at t = 104 versus work (measured in
seconds of cpu time usage) for the non-stiff problem

The exact solution to this problem is a u(t) = sin(t). Figures 1 and 2 show
the global error (i.e. the difference between the numerical and the exact so-
lution) at time T = 104 as a function of work, for diagonal norms and block
norms respectively. The figures are in log-log scale and also show approximate
convergence rates at the lower error levels. Figures 3 and 4 shows similarly
the accumulated error up until t = 104 in the discrete L2 norm.

2.4.2 Numerical calculations for stiff problems

For the stiff case we use again a sine function, but this time with a rapidly
decaying exponential term added.

u′(t) = −100u(t) + 100sin(t) + cos(t), 0 < t < 104

u(0) = 1.
(9)

The exact solution to this problem is u(t) = e−100t + sin(t). Figure 5 shows
that the explicit schemes perform poorly on this problem, indeed confirming
that this is a stiff case.
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2.4.3 Preliminary conclusions based on the numerical calculations

A bit surprisingly, the numerical calculations indicate that convergence rates
for the global error are the same independent of whether diagonal or block
norms where used in the non-stiff case. For the L2 error, the higher convergence
rate was only achieved by using block norms.

The stiff case is more difficult to analyze. It seems that the fourth and sixth
order schemes with diagonal norms exhibit lower convergence rates than with
block norms even for the global error, at least for the magnitudes of error
studied here.

The combined result of the numerical calculations verify that the SBP-SAT
technique applied to constant coefficient problems is highly competitive when
compared with a particular selection of previously acknowledged methods.
This conclusion seem to be especially true for medium to high order methods
and for stiff problems.
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3 The scalar initial boundary value problem

The time integration technique discussed above in (1),(3) can be extended to
energy stable semi-discrete approximations of initial boundary value problems.

3.1 Preliminaries

We consider numerical approximations of well-posed partial differential equa-
tions (PDE’s) on the general form

Ut + P−1RU = P−1G

U(0) = F,
(10)

where P−1R is an approximation of the spatial part of the PDE, P is the
norm or mass matrix, R is a general operator and G denotes the generalized
boundary data. G includes a possible forcing function in the original PDE and
F is the initial data. P is symmetric and positiv definite.

Definition 1 The approximation (10) is energy stable if

R+RT ≥ 0 (11)

We can now prove the following Proposition.

Proposition 1 The system (10) under condition (11) has a bounded energy.

Proof: The energy method (multiply from the left with UTP) applied to the
semi-discrete approximation (10) with G = 0 leads by the use of (11) to the
estimate

UTPU ≤ F TPF. (12)

2

Remark 3 Note that many numerical methods methods using weak bound-
ary conditions such as the SBP-SAT technique for finite differences, the fi-
nite/spectral element method, the discontinuous Galerkin method etc. have
the general form (10) and satisfy (11).
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3.2 The continuous energy estimate

As example an initial boundary value problem we consider the one-dimensional
advection-diffusion equation

ut + aux − ǫuxx = 0, 0 ≤ x ≤ 1, t ≥ 0

au− ǫux = g0(t), x = 0, t ≥ 0

ǫux = g1(t), x = 1, t ≥ 0

u = f(x), 0 ≤ x ≤ 1, t = 0,

(13)

where the boundary data g0, g1 and the initial function f are the data of the
problem and a, ǫ > 0.

By multiplying (30) with u and integrating over the spatial domain we obtain,

||u||2t+2ǫ||ux||2 = a−1
[

(au− ǫux)
2 − (ǫux)

2
]

x=0
−a−1

[

(au− ǫux)
2 − (ǫux)

2
]

x=1

where ||u||2 = ∫

1

0
u2dx. Next we insert the boundary conditions and arrive at

the continuous energy rate

||u||2t + 2ǫ||ux||2 = a−1
[

g2
0
+ g2

1
− (au− g0)

2 − (au− g1)
2
]

. (14)

Finally, by time integration, we have the final result for the continuous problem

||u(·, T )||2 + 2ǫ
∫ T
0
||ux(·, t)||2dt = ||f ||2 + a−1

∫ T
0
[g2

0
+ g2

1
] dt

− a−1
∫ T
0
[(au− g0)

2 + (au− g1)
2] dt.

(15)

Note that the norm of the solution at the final time and the time integral of
the first derivative is bounded by initial data and boundary data.

3.3 The semi-discrete energy estimate

The semi-discrete approximation of (30) using the SBP-SAT technique in
space is

Ut + aDU − ǫD2U = P−1(σ0(L0U − g0)~e0 + σN(LNU − g1) ~eN)

U(0) = F0,
(16)

whereD = P−1Q, L0U = aU0−ǫ(DU)0, LNU = ǫ(DU)N and ~eN = (0, 0, ..., 0, 1)T .
The vector U(t) = (U0(t), U1(t), ..., UN−1, UN (t))

T contains the numerical ap-
proximation of u at all grid points in space and F0 = (f0, f1, ..., fN−1, fN )

T .
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The right hand side of (16) implements the boundary conditions weakly using
the SAT technique.

By multiplying (16) with UTP from the left, using the SBP properties (4) and
σ0 = σN = −1 we obtain the semi-discrete energy rate

||U ||2t + 2ǫ||DU ||2 = a−1
[

g2
0
+ g2

1
− (aU0 − g0)

2 − (aUN − g1)
2
]

, (17)

where ||U ||2P = UTPU and ||DU ||2P = (DU)TP (DU). Note that the semi-
discrete energy rate (17) is almost identical to the corresponding continuous
(14) one.

Finally, by time integration, we have the final result for the semi-discrete
problem

||U(·, T )||2 + 2ǫ
∫ T
0
||DU(·, t)||2dt = ||F0||2 + a−1

∫ T
0
[g2

0
+ g2

1
] dt

− a−1
∫ T
0
[(aU0 − g0)

2 + (aUN − g1)
2] dt.

(18)

The similarity of the semi-discrete estimate (18) with the continuous (15) one
is striking.

For future use, we will rearrange the formulation (16) with σ0 = σN = −1 to

Ut + P−1RxU = P−1G

U(0) = F0,
(19)

where

Rx = a(Q+ E0)− ǫ(Q+ E0 − E1)D, G = (g0, 0, ..., 0, g1)
T . (20)

We have showed in (17) that (let g0 = g1 = 0)

Rx +RT
x = a(E0 + EN) + 2ǫDTPD. (21)

Note that (21) mean that the symmetric part of Rx is positive semi-definit,
i.e.

Rx +RT
x ≥ 0. (22)

Clearly now the approximation (19) is energy stable according to Definition 1.
It will be shown below that (21),(22) show that the eigenvalues of Rx cannot
have negative real parts, i.e
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3.4 The fully discrete energy estimate

Here it is convenient to introduce the Kronecker product for arbitrary matrices
A ∈ Rm×n and B ∈ Rp×q. It is defined as

A⊗B =















a1,1B . . . a1,mB
...

. . .
...

an,1B . . . am,nB















. (23)

The Kronecker product is bilinear, associative and obeys the mixed product
property

(A⊗B)(C ⊗D) = (AC ⊗BD) (24)

if the usual matrix products are defined. For inversion and transposing we
have

(A⊗ B)−1,T = A−1,T ⊗ B−1,T (25)

if the usual matrix inverse is defined.

The fully discrete version of (30) is obtained by discretising (19) in time using
the SBP-SAT technique. The use of the Kronecker product rules (23-25) and
(20) yield

(P−1

t Qt⊗Ix)U+(It⊗P−1

x Rx)U = (It⊗P−1

x )G+σt(P
−1

t E0⊗Ix)(U−F ), (26)

where the first index correspond to time and the second to space. We have
indicated the operators and vectors that belong to t, x with subscripts where
appropriate. The second penalty term on the right hand side include the un-
known coefficient σt which will be determined for stability. The organisation
of the vectors are

U = (U0, U1, ..., UM−1, UM )T , Ui = (Ui0, Ui1, ..., UiN−1, UiN )
T

G = (G0, G1, ..., GM−1, GM)T , Gi = (g0(i∆t), 0, ..., 0, g1(i∆t))T

F = (F0, U1, ..., UM−1, UM)T , F0 = (f0, f1, ..., fN−1, fN)
T

U0 = (U00, U10, ..., UM0)
T , G0 = (g0(0), g0(∆t), ..., g0(M∆t))T

UN = (U0N , U1N , ..., UMN )
T , G1 = (g1(0), g1(∆t), ..., g1(M∆t))T .

(27)

By multiplying (26) with UT (Pt⊗Px) from the left, using the SBP properties
(4), the relation (19), the Kronecker product rules (23-25), the relations (27)
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and the choice σt = −1 we obtain

UT
MPxUM + 2ǫ(DU)T (Pt ⊗ Px)DU = F T

0
PxF0

+ a−1

[

(G0)TPtG
0 + (G1)TPtG

1

]

− a−1

[

(aU0 −G0)TPt(aU
0 −G0) + (aUN −G1)TPt(aU

N −G1)
]

− (U0 − F0)
TPx(U0 − F0).

(28)
Note the close similarity between the continuous estimate (15), the semi-
discrete estimate (18) and the fully discrete one in (28). The fully discrete
estimate has the additional damping term −(U0−F0)

TPx(U0−F0) also present
in (6).

3.5 The question of solvability

By rearranging (26), we get the final equation to solve for U

BU = (Bt + Bx)U =
[

(P−1

t Q̃t ⊗ Ix) + (It ⊗ P−1

x Rx)
]

U = H, (29)

where Q̃t = Qt−σtE0, Rx is defined in (20) and H = (It⊗P−1

x )G−σt(P
−1

t E0⊗
Ix)F is the data vector.

The following theorem is well-known.

Theorem 1 Let A,B be diagonalizable. Then A and B commute if and only
if they are simultaneously diagonalizable.

Proof: See proof after theorem 1.3.12 in [14]. 2

We need the following Assumption.

Assumption 2 The eigenvectors of the matrix Bt in (29) are linearly inde-
pendent. Also the matrix Bx in (29) have linearly independent eigenvectors.

Remark 4 We have presently no theoretical support for Assumption 2.

We will need the following Lemma.

Lemma 1 The matrices Bt, Bx and B = Bt+Bx have the same eigenvectors.

Proof: Let Bt = (P−1

t Q̃t⊗Ix) = (Ct⊗Ix) and Bx = (It⊗P−1

x Rx) = (It⊗Cx).
We have BtBx = (Ct ⊗ Ix)(It ⊗Cx) = (Ct ⊗Cx) = (It ⊗Cx)(Ct ⊗ Ix) = BxBt

i.e. the matrices commute and by Theorem 1 have the same eigenvectors. 2
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The following Lemma position the eigenvalues in the complex plane.

Lemma 2 Let the matrix P be positive definite and the matrix A have a
positive semi-definite symmetric part. Then, the matrix P−1A has eigenvalues
with positive semi-definite real parts.

Proof: Let λ and x be an eigenvalue and eigenvector to P−1A, i.e. P−1Ax =
λx. Elementary manipulations lead to Re(λ) = x∗(A+ AT )x/(2x∗Px) ≥ 0.2

We are now ready to show

Proposition 2 The matrix B =
[

(P−1

t Q̃t ⊗ Ix) + (It ⊗ P−1

x Rx)
]

in (29) have
non-zero eigenvalues with positive real parts.

Proof: Lemma 1 leads to B = Bt + Bx = X(Λt + Λx)X
−1 where X is the

common eigenvector matrix. Assumption 2 together with (21),(22) and Lemma
2 show that the eigenvalues of B have positive real parts. 2

The final result of the paper is summarized in the following Proposition.

Proposition 3 The solution to (26) and (29) is unique and bounded.

Proof: Proposition 2 and Assumption 2 leads to an invertible matrix B. 2

3.6 Numerical calculations for the initial boundary value problems

We show preliminary results for the special case of periodic advection as well
as the full advection-diffusion problem (30). The SBP-SAT technique is com-
pared with the classical Runge-Kutta method. We stress that, in the end, the
competitiveness will depend strongly on the exact technique used to solve the
large linear equation system arising from the SBP-SAT approach. In this pa-
per we exclude the full analysis of these problems and focus on convergence
rates and on accuracy as a function of the spatial and temporal resolution.

3.6.1 Numerical calculations for the advection problem

First we consider the following periodic advection problem

ut + ux = 0, 0 ≤ x ≤ 1, t ≥ 0

u(0, t) = u(1, t), t ≥ 0

u = f(x), 0 ≤ x ≤ 1, t = 0,

(30)
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Fig. 9. L2 error at t=1 for the periodic advection problem

where f(x) = sin(2πx). In the discretisation we use a fully periodic operator
in space, i.e. the SBP property changes to Qx+QT

x = 0, and exclude boundary
data. The system to solve is (29) with H = (P−1

t E0 ⊗ Ix)F , and ǫ = 0.

In the calculations we use the same order of accuracy in the spatial operator
as the interior order of accuracy in the temporal operator. Moreover we use
operators of the same size in both space and time, N = Nx = Nt. Figure 9
illustrate the convergence in terms of L2 error at t = 1 as a function of N . The
result are what could be expected, expect maybe that the SBP(2s,s) schemes
perform exceptionally well and converge at a higher than expected rate.

Even though the accuracy is high at times of order one, the errors might grow
as times passes. Figures 10 and 11 shows the evolution of the L2 error for long
times. Here we can see that all the non SBP schemes (RK4, DOPRI8 and
ESDIRK4) suffer from error growth in time while the SBP schemes does
not. To illustrate the importance of that fact further, Figure 12 shows the
numerical solution of RK4, SBP (4, 2) and SBP (4, 3) after a very long time
(t = 10000) integration. The error growth in the RK4 method cause a phase
shift and dispersion error, while no such problems exist for SBP (4, 2) and
SBP (4, 3).
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3.6.2 Numerical calculations for the advection-diffusion problem

Next we consider the advection-diffusion equation (30) with the parameter
choice a = 1 and ǫ = 1. To check the accuracy we use the method of manu-
factured solutions, see [29],[22], and employ the following exact solution

u = sin(

√
3

2
(x− 2t))e−

1

2
x, (31)

that was used in [12]. For this non-periodic spatial problem we must impose
boundary conditions, which is done with the standard SBP-SAT technique. We
use diagonal norms for the spatial SBP operators and choose spatial operators
such that we match the accuracy in time of the time operators. As before, we
let Nt = Nx = N .

Figure 13 shows the convergence at t = 1, while figures 14 and 15 show
errors for a long time integration. The error growth that could be seen for
the hyperbolic advection problem above cannot be seen in this case and the
methods seem rather comparable.

Remark 5 The error growth for the hyperbolic advection problem in Section
3.6.1 cannot be seen for the parabolic advection diffusion equation. It it well
known that the error grows linearly in time for hyperbolic problems, unless
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specific boundary procedures are used, see [25], while parabolic problems have
a natural error bound due to the second derivative.

3.6.3 Preliminary conclusions based on the numerical calculations

The most interesting results were obtained for hyperbolic periodic advection
problem. The results indicate that the SBP-SAT technique gives as good accu-
racy as the established comparable methods for a given spatial and temporal
resolution. An advantage with the SBP schemes are that they do not produce
error growth in time. This advantage probably stems directly from the fact
that there is a clear energy bound.

The results for the parabolic advection-diffusion equation were less interesting.
Most methods of the same order or accuracy seem to perform equally well. As
was mentioned above, error growth in time is normally not a big problem for
parabolic equations. It remains to be seen how efficiently these methods can
be implemented. This will be an obvious topic for future work.
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4 Extension of the stability theory of the general case

The stability theory in section 3.4 and 3.5 above can be extended to all energy
stable semi-discrete systems of equations in multiple dimensions. Such energy
stable semi-discrete approximations can for example be found in [8,32,33,20,2,26]
where the SBP-SAT technique in space was used. However, the methodology
is completely general and suitable for all semi-discrete energy stable problems.

We consider formulations on the form (19) under condition (11) such that we
have an energy stable approximation, see Proposition 1. The ambition in this
section is to give an overview of the general stability theory, and hence some
details will not be scrutinized.

The multi-dimensional fully discrete approximation analogous to (26) becomes

(P−1

t Qt⊗Is)U +(It⊗P−1R)U = (It⊗P−1)G+σt(P
−1

t E0⊗Is)(U−F ). (32)

The first index correspond to time and the second one is a multi-index corre-
sponding to the number of dimensions in space and the number of equations in
the system. The vectors G and F are the boundary and initial data organized
in an appropriate way (F now contains the initialdata F0). The matrix Is is
the identity matrix for the multi-index.

The energy method applied to (32) and the choice σt = −1 yield

UT
MPsUM ≤ F T

0
PsF0 − (U0 − F0)

TPs(U0 − F0), (33)

which correspond to (28) in the fully discrete one-dimensional case, or (12) in
the general semi-discrete case. We have of course no details about the spatial
part of the estimate.

Finally we generalize Proposition 3 for the one-dimensional scalar case to the
multiple dimensional system case.

Proposition 4 The solution to (32) is unique and bounded.

Proof: The proof is analogous to the one-dimensional case in Section 3.5. 2

Remark 6 Proposition 4 above means that systems like the Maxwells’ equa-
tions, the elastic wave equations and the linearised Euler and Navier-Stokes
equations can be shown to be stable for fully discrete high order approxima-
tions. Stability can be obtained in an almost automatic way if the systems are
energy stable in a semi-discrete sense.
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5 Conclusions

We develop a new high order accurate time-discretisation technique for initial
value problems by extending the well known SBP-SAT technique for space
discretisation in the time domain. We use summation-by-parts operators in
time and a weak initial condition.

The new time-discretisation method is global and together with energy sta-
ble semi-discrete approximations, it generates optimal fully discrete energy
estimates, and very efficient methods for both stiff and non-stiff problems.
Even though we focus on finite difference approximations, we stress that the
methodology is completely general and suitable for all semi-discrete energy-
stable approximations.

We have derived optimal energy estimates for the scalar initial value problem,
the scalar advection-diffusion problem and done numerical experiments. The
experiments verify that the SBP-SAT schemes in time are comparable and
even superior in many cases. In particular, the SBP-SAT schemes har no error
growth for long time integration of the hyperbolic advection problem.

The theoretical work on the initial value problem and the scalar advection-
diffusion problem was generalized to energy stable multi-dimensional system
problems such as the Maxwells’ equations, the elastic wave equations and the
linearised Euler and Navier-Stokes equations. It was shown how fully discrete
energy estimates for high order approximations can be obtained in an almost
automatic way.

The investigations in this paper are of initial character, have shown great
promise, but much research remains. Future work will include work on the
theoretical foundation and on how to arrange and structure an efficient solu-
tion procedure. Also, we have focused on constant coefficient problems, time-
dependent coefficients and nonlinear problems will be a future topic as well.
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