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Abstract 
MRP Theory has been developed during the last 25 years for capturing processes concerning multi-level, multi-
stage production-inventory systems in a compact way. Input-.Output Analysis has been used to describe 
structures, and Laplace transforms to describe the timing relations. This theory has mainly dealt with assembly 
systems, in which each item has only one successor. The lead times for the assembly of an item have usually 
been constants and equal for all items entering a given successor. For such systems, the equations describing the 
flows of components may be written to include the generalised input matrix as the product of an input matrix 
containing needed amounts, and a diagonal lead time matrix with lead time operators along its main diagonal.  
 
On occasion, there has been a need to deviate from this representation enabling lead times to vary depending on 
which input item that is considered. This paper deals with how to represent lead times and similar output delays 
(in diverging, arborescent systems), when the assumption of equal times is relaxed, in order to retain the basic 
structure of the fundamental balance equations involved. The intention of this paper is to create a general 
taxonomy for the representation of timing in algebraic form for a variety of systems covering both assembly 
systems and arborescent systems (such as extraction, distribution and remanufacturing), as well as systems with 
mixed properties. For instance, this method may be used directly for the evaluation of investments in capacity or 
in the location of activities in a production network, or even in a global supply chain. 
 
Keywords: MRP theory, transportation, distribution, location, lead times, Laplace transform, input-output 
analysis, multi-stage production-inventory systems.  
 
 
1.  Importance of Timing Considerations in Production and Supply Systems  
The timing of activities in a production inventory system or a supply chain often depends on 
the location of production or distribution units (activity cells), which belong to the chain, and 
the accessibility and other properties of these units play an important role. Optimal decisions 
(i) where to produce, (ii) how much to produce, (iii) how often to produce, (iv) how to 
distribute the product and (v) when to order or deliver items in integrated production and 
supply system can be successfully analysed and evaluated in a transformed environment, 
where lead times and other time delays can be considered as linear operators.  
 
An example is the site and capacity selection problem, concerning where it is best to locate a 
facility and what capacity is needed to achieve a most rapid response. This issue is discussed 
more easily in the transformed environment. Lead times in the entire supply chain can be 
analysed in compact form using Material Requirements Planning (MRP) [Orlicky 1975] 
combined with Input-Output Analysis, cf. [Leontief 1928, 1951] in a Laplace transformed 
space. Orlicky used tabular forms for entering the requirements at the advanced lead time. In 
[Grubbström and Ovrin 1992] the authors presented the first application of transforms for the 
same purpose, using the z-transform for discrete time lead times, in later papers to be 
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exchanged for the Laplace transform for continuous time lead times, cf. [Grubbström and 
Tang 2000].  
 
We can consider the activities of the integrated supply chain as having four distinct sub-
systems: (i) manufacturing, (ii) physical distribution (iii) consumption and (iv) 
remanufacturing. All four sub-systems can be defined in the time domain, or in the frequency 
domain. 
 
These four parts and the flows of goods in between them are illustrated in Figure 1. 
 

 
 

Figure 1. The integrated production and supply system  
with vector valued flows of good, from [Grubbström, Bogataj and Bogataj 2007]. 

 
In the units of the manufacturing part, lead times are essential ingredients, and in the 
distribution part transportation times are important. The lead time of a process is the time in 
advance of completion that the requirements are requested. Such lead times in practice and 
theory are most often assumed to be the same for all input components entering an assembly 
process. But the time delay can also be substantial because of transportation between two 
different locations. Then there is a need to relax the assumption of identical lead times for all 
components, and allow for a generalisation of the theory to include a variety of possible 
advanced timing requirements. This was recognised by M. Bogataj [1999], but not further 
elaborated in a general form. Similarly, for a distribution system, the time to reach a 
destination will be different for the same product produced in different units. Also here, a 
relaxation of a constant time assumption is called upon. Analogous observations may be made 
concerning the remanufacturing sub-system. 
 
This type of generalisation is the topic of the current paper. 
 
This study allows applications with all parts of the integrated supply chain: Manufacturing, 
physical distribution, consumption and remanufacturing. For instance, this method may be 
used directly for the evaluation of investments in capacity or in the location of activities in a 
production network, or even in a global supply chain . 
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According to the authors’ knowledge this is the first time that the general representation of 
different lead-times and output delays in MRP theory is introduced in detail and their impact 
on the Net Present Value (NPV) consequences of activities in a distribution chain is 
evaluated. The NPV principle has been a natural way of expressing the economic 
consequences in MRP Theory, since cash flows written as transforms are immediately 
evaluated as to their NPV by exchanging the Laplace frequency for the continuous interest 
rate following the NPV Theorem of the Laplace Transform [Grubbström 1967]. 
 
For those who are not acquainted with MRP theory, the basics are given in Section 2. A 
further generalisation of this theory to Assembly and Arborescent Systems is developed in 
Section 3. A numerical example also illustrating an application of NPV methodology is 
introduced in Section 4, followed by a conclusions section added at the end of this 
generalisation.  
 
Readers who are not acquainted with basic MRP theory are kindly invited to read the earlier 
article ”An Overview of Input-Output Analysis Applied to Production-Inventory Systems” 
[Grubbström and Tang, 2000].  
 
We wish to stress that the treatment in this paper is focused on developing a theoretical 
extension of MRP Theory, rather than on investigating and furthering additional solution 
methodology, the latter being dealt with in other research, such as in [Grubbström, Bogataj 
and Bogataj, 2009, Grubbström and Tang, 2011]. Various heuristic approaches to model and 
solve related problems, mainly for assembly systems, have been developed by different 
authors, such as simulated annealing and genetic algorithms [Kuik and Salomon 1990, Kim 
and Kim 1996, Kimms 1999, Dellaert and Jeunet 2000, Delleart et al. 2000, Tang 2004, Kaku 
et al. 2009].  
 
2. Basic analysis 
In the linear production-economic models belonging to Input-Output Analysis (or Activity 
Analysis) there are two main classes of objects, (i) products (items), and (ii) processes. Items 
flow into and out of processes [Koopmans 1951, Lancaster 1968, Grubbström 1997, Ch. 3]. 
Often, in graphical form, processes are represented by vertices (nodes) and flows by directed 
arcs (edges). The processes transform the input flows into output flows of new products.  
 
In the following a function of time f(t), 0t  , is assumed to have a unique Laplace transform 

written as  £ ( )f t  or ( )f s  and defined by  

 
0

( ) £ ( ) ( ) st

t

f s f t f t e dt






   , 
 
(1)

where s is the Laplace frequency (complex frequency), and the integral is assumed to exist 
[Aseltine 1958]. The inverse transform translating the function from the frequency domain to 

the time domain is written  1£ ( ) ( ) f s f t . Normally we need never bother about the 

complex nature of this variable. For reasons of limited space, we understand in the following 
that the reader is familiar with MRP Theory in which Input-Output Analysis and Laplace 
transforms are combined in their use for analysing Material Requirements Planning (MRP) 
systems, cf. for instance [Grubbström 1996, Grubbström and Tang 2000, Grubbström 2007, 
2009, Grubbström, Bogataj and Bogataj 2009].  
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The basic relationship between flows and processes belonging to the linear theory is, on the 
one hand the proportionality between the input flows and an input vector describing the 
process, where the activity level is a coefficient of proportionality, and, on the other, a 
proportionality between the output flows and an output vector, where the coefficient of 
proportionality is the same activity level. Activity levels are often interpreted as decision 
variables.  
 
The input and output vectors contain non-negative constants as components. If the number of 
all existing types of products n defines the dimension of the input and output vectors, and jy  

is the activity level the process numbered j, then the input flow will be j jy h  and the output 

flow j jy g , where jh  is the input- and jg  the output vector of the process.  

 
A linear production system is made up of a set of processes. Let the number of processes be 
m. Listing the m input vectors side by side defines the input matrix H of the system, and, 
similarly, listing the output vectors side by side forms the output matrix G of the system. 
These matrices will then have the dimension of n m . Arranging the activity levels into a 
vector y, the system as a whole will have total input flows of Hy and total output flows of Gy. 
The difference between Gy and Hy may be interpreted as net production z:  

 

   
1

m

j j j
j

y


   z G H y g h . 
 
 

(2)

A positive component of z indicates an opportunity to export this surplus from the system, 
and a negative component a need to import this quantity. The matrix H may be interpreted as 
an adjacency matrix belonging to the graph representing the flows, cf. [Rosen 1988, 
pp. 369 ff.] 
 
When each process delivers its own type of product and introducing purchasing processes for 
products not produced by the system, we have an elementary system, and each process may be 
given the same index as the product that it delivers. The matrices G and H must then be 
square, and m = n. Furthermore, if a unit activity level is then interpreted as a state when the 
output flow is unity, the output matrix becomes the identity matrix I. Net production is then 

  z I H y , where y is both the vector of activities and the vector of total output flows from 

production, so total production will be given by  
 

  1 y I H z , 
 

 (3) 

provided that the inverse   1I H , the Leontief inverse, exists. 

 
Assembly systems, studied by Andrew Vazsonyi, belong to the category of elementary 
systems. Each assembly is a process with an inflow of one or several other products (items). 
The products on the lowest level in the product structure have no inputs and must be imported 
to the system, whereas top-level items can be exported. By suitable enumeration, so that a 
higher-level product in the structure has a lower index, the input matrix H becomes triangular 
as recognised by Vazsonyi [1955, 1958]. The technology matrix  I H  then has a unit-

valued determinant guaranteeing the Leontief inverse to exist. In graphical form the input 
matrix (the “next assembly quantity matrix” and the Leontief inverse named as the “total 
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requirement factor matrix” in the terminology of Vazsonyi), may be represented by a Gozinto 
Graph. The product structure tree is an alternative graphical representation (cf. Figure 2). 
 

 
 

 
0 0 0 0 0

2 0 0 0 0

5 0 0 0 0

0 3 0 0 0

0 4 6 0 0

 
 
 
 
 
 
  

H

 

 

  1

1 0 0 0 0

2 1 0 0 0

5 0 1 0 0

6 3 0 1 0

38 4 6 0 1



 
 
 
  
 
 
  

I H
 

(i) (ii) (iii) (iv) 
 

 
Figure 2. Example of the Assembly System: (i) Product structure tree with lead times shown, 

(ii) Gozinto Graph, (iii) Input matrix, (iv) Leontief inverse.  
 
When studying MRP (Material Requirements Planning) systems, the items for assembly are 
needed a certain time in advance of the completion time of the process. This is the lead time. 
For a certain process, say process j, the lead time of all input components is assumed to be the 
same, so the lead time of this process j  becomes a constant property of the process. In MRP 

Theory, we interpret the activity vector y as a production vector P. Using Laplace transform 
methodology, if a component of P, say jP , represents the output of the process j at a certain 

time, then all inputs for this assembly will be required at a time given by js
j jP e  h , where jse   

is an operator defining the advanced timing of the inputs as compared to the completion 
(output) for this particular process. Further, by letting ( )sP  denote the transform of P (as a 
function of time), and collecting the operators into a diagonal matrix ( )sτ , the amounts and 

times of required inputs will be ( ) ( )s sHτ P  and net production to be exported (the Master 
Production Schedule) will be  
 

 ( ) ( ) ( )s s s D I Hτ P  ,  

 

 (4) 

 
all in terms of transforms, which is to be compared with (2). The net production is thus 
readily interpreted as the external demand vector ( )sD . This leads to the general Lot-For-Lot 
formula (L4L) in MRP Theory, cf. [Grubbström, Bogataj and Bogataj 2009],  
 

  1
( ) ( ) ( )s s s

 P I Hτ D  , 

 

 (5) 

 
which is valid for any assembly type system and any set of lead times. This formula explains 
how production should be sized and timed for any situation with given production structures 
H and lead times (included in ( )sτ ), and a Master Production Schedule ( )sD . when applying 
the L4L lotsizing principle. 
 
We now turn to an opposite system to the assembly system, namely an arborescent system 
(cf. Figure 3). In such a system each input has one or several outputs, so the output matrix G 
becomes triangular, whereas the input matrix takes the form of the identity matrix I. 
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0 0 0 0 0

1 0 0 0 0

3 2 0 0 0

0 5 0 0 0

0 4 0 0 0

 
 
 
 
 
 
  

G

 

 

  1

1 0 0 0 0

1 1 0 0 0

5 2 1 0 0

5 5 0 1 0

4 4 0 0 1



 
 
 
   
 
 
  

G I

 

(i) (ii) (iii) (iv) 
 
 

Figure 3. Example of the Pure Arborescent System: (i) Product structure tree, 
(ii) “Comezoutof“ Graph, (iii) Output matrix,  

(iv) Technology matrix inverse (with all elements non-positive). 
 
Considering a certain process j, the timing of outputs would be expected to differ depending 
on their type, an example being a disassembly. So we can attach an output delay time ij  to 

each product i leaving process j. The output of type i from process j having the activity level 

jP , will then be sized and timed according to ijs
j ijP e g  . If all products of a certain kind i, 

have the same delay, we can drop the second index j, and write the delay as i . Then the 

outputs from the process will be is
j ijP e g   and the output as a whole from the system may be 

written ( ) ( )s sΔ GP  , where ( )sΔ  is a diagonal matrix collecting the operators ise  . Hence, the 
net output in total from a system of arborescent processes will be: 
 

 ( ) ( ) ( )s s s D Δ G I P  . 
 

 (6) 

 
This type of system, extending the production part of the supply chain to distribution has first 
been mentioned in [Bogataj and Bogataj 2003] and then later investigated in detail in 
[Grubbström, Bogataj and Bogataj 2007, Grubbström 2009].  
 
The above developments lead to conjecture possible extensions, by which net production 
would be written in a general form as 
 

 ( ) ( ) ( ) ( ) ( ) ( )s s s s s s  D Δ GΔ τ Hτ P    , 

 

 (7) 

 
where ( )sΔ  and ( )sτ  are two new diagonal matrices, the former with timing as a property of 
each process and the latter in which timing is a property of each product. The elements in 

( )sΔ  would cover delays for outputs which have the same incremental magnitude for each 
process, and elements in ( )sτ  would cover advanced timing for inputs, which have the same 
incremental magnitude for each product. This slight generalisation retains the multiplicative 
structure of the generalised technology matrix.  
 
Obviously when ( )sΔ , ( )sΔ  and ( )sτ  are identity matrices (all i , i  and i   are zero), we 

have timing according to a standard MRP system, and when ( )sΔ , ( )sτ  and ( )sτ  are 

identity matrices (all i , i   and i  are zero), we cover the system purely with arborescent 

processes and timing attached to each product.  
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For a disassembly system, which is an instant of an arborescent system, the mirror image of 
Vazonyi’s Gozinto Graph may be called a “Comezoutof Graph” [Grubbström 2008, 2009], cf 
Figure 2. In [Ferrer and Whybark 2000] was recognised the opportunity to model disassembly 
processes using output matrices.  
 
In order to understand details of what the generalisations in (7) incorporate, we investigate the 
contribution from one activity component of ( ) sP , say ( )

jP s , to the net production ( )sD , its 

ith component ( )
iD s  taking the value: 

    
1

( ) ( )j i j i
m

s s

i ij ij j
j

D s e g e h P s
    



   . 
 

 

 (8) 

Apparently, the formula (7) covers cases when an output entry in G may be moved in time 

relative to a reference time by a difference  j i    between a property of the process and a 

property of the product, and, similarly, an input entry in H moved a difference in time 

 j i    between a second property of the process and of the product. 

 
It has been recognised by [Bogataj 1999, Bogataj, and Bogataj 2003, Bogataj and Bogataj 
2001, Bogataj, Grubbström, and Bogataj 2009] that this generalisation is not enough to 
incorporate processes when the output delay time differs between processes, and other 
processes by which the lead time is not the same for all input products, and especially where 
delay is exposed to risk [Bogataj and Bogataj 2007]. For such cases, in particular for 
transportation, the latter often belonging to the class of arborescent (diverging flow) systems, 
we attempt to provide a further generalisation which is developed in the succeeding section. 
 
3. A Further Generalisation to Assembly and Arborescent Systems 
Reverting to the assembly system, we consider the case in which the time in advance at which 
components are needed is ij , which is not necessarily equal for all pairs of ( ,i j ). For such a 

system the components i  have to be available at time ( )ijt  , with t being the reference time. 

Instead of requirements being sized and timed as 

 

1

21

1 2

0 0 0
0

0 0
( ) ( ) ( ) ( ) ( )

0 m

s

s

n n nm

e
h

s s s s s

e
h h h





                 

Hτ P P H P




      
   




, 

 
 

(9)

 

where ( )sH  is the generalised input matrix ( ) ( )s sH Hτ  , we may write the requirements as 

 

21

1 2

21

1 2

0 0 0

0 0
( ) ( ) ( )

0n n

s

s s
n n

h e
s s s

h e h e



 

 
 
  
 
 
  

P H P


  

   


, 

 
 

(10)
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where ( )sH


 is a further generalisation of the input matrix, and where ( )sH


 provides the 
opportunity for prolonged or shorter lead times for certain products compared to the mandate 
of ( )sH , a diversification that ( )sH  does not allow.  
 
As an antisymmetric case, we consider introducing the opportunity for each process in an 
arborescent system to have output delays ij  which might be given as different for the same 

product as an output from different processes. From above, when the system does not own 
this opportunity, the outputs are given as 

2
21

1 2

0 0 0

0 0
( ) ( ) ( ) ( ) ( )

0n n

s

s s
n n

g e
s s s s s

g e g e

 

   

 
 
  
 
 
 

G P Δ GP P


   

   


, 

 
 

(11)

 

where ( )sG  is the generalised output matrix. By now introducing this further flexibility, we 
may write the outputs as 

 

21

1 2

21

1 2

0 0 0

0 0
( ) ( ) ( )

0n n

s

s s
n n

g e
s s s

g e g e

 

   

 
 
  
 
 
 

P G P


  

   


, 

 
 

(12)

 

where, in general, the output matrix ( )sG


 no longer is possible to write as the product of a 
diagonal output delay matrix and the original output matrix G only containing quantities but 
no timing. But we are still able to keep a multiplicative separation between the decision 

variables contained in ( )sP  and the given system properties contained in ( )sH


 and/or ( )sG


, 
respectively.  
 
It should be clear that our previous equations (4) and (6) are special cases of our new 
generalisations, i.e. when all ij j   are equal for different values of their first index, and 

when all ij i    are equal for different values of their second index.  

 
Nothing prevents us now from stating the equations pertaining to a general mixed system 
containing assembly as well as arborescent processes, and even processes that themselves 
simultaneously have more than one input and more than one output. The net production of 
such a system can then conveniently be written: 

 ( ) ( ) ( ) ( )s s s s D G H P
   . 

 
 

(13)

 
In standard literature, G H  is called the technology matrix, and in MRP Theory 

( ) ( )s sG H   has been named the generalised technology matrix, so ( ) ( )s sG H
 

 represents a 
further generalisation of the technology matrix.  
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Let ( )sF  be the vector of deliveries from the system. These are normally exports satisfying 

external demand ( )sD , but they may also be surplus items requiring disposal. Then, given a 

plan ( )sP , available inventory of all products as a vector ( )sR  will develop according to 
 

 (0) ( ) ( ) ( ) ( )
( )

s s s s
s

s

  


R G H P F
R

   
 , 

 
(14)

 
where R(0) collects initial available inventory levels. The division by s represents a time 

integration of the flows represented by the other terms. The term ( ) ( )s sG P
   is the inflow into 

available inventory of purchasing, production, extraction, distribution etc., the term ( ) ( )s sH P
   

is the required outflow representing needs generated by all processes (internal demand, 
dependent demand) and the term ( )sF  represents deliveries (exports) from the system.  
 
Equation (14) is an instance of a generalisation of the fundamental equations of MRP theory. 
In order for the plan ( )sP  to be feasible, we must always have Laplace inverse of  available 

inventories nonnegative:  1£ ( )s R 0 . This is the available inventory constraint. If also 

capacity limitations are considered, a corresponding set of constraints for available capacities 
should be possible to be formulated also in this generalised case, cf. [Segerstedt 1996, Huynh 
2006, Grubbström and Wang 2000, 2003].  
 
4.  A Numerical Example 
In this section we provide a numerical example of the case of an assembly system, to which 
assumptions about transportation times differing between different inputs are added. We 
depart from a product structure as depicted in Figure 4. 
 

 
 

Figure 4. Example of a traditional supply chain structure of an assembly type. 
 
According to Figure 4, there are six activities and products (items). Activity D represents the 
assembly of 2 units of item E and 1 unit of item F, activity B requires 3 units of D for the 
production of one unit of B, and at the top level activity A demands 1 unit of B and 2 units of 
C for producing one unit of the end product A. 
 
Transportation times in this example are shown in the left part of Table 1, and the production 
lead times being the same for all inputs are shown in the bottom row. As an example, item D 
entering B is required to be available 4 time units in advance of the completion of B, but 
transportation to B adds another 2 time units when D is to be ordered. This results in a value 
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of 42 DB 6   , and the operator multiplying the element 42 DBh h  will be 6se . The resulting 

individual lead times for each element in ( )sH


 are shown in the right part of Table 1.  
 

 Transportation lead time Time entries for operators in ( )sH


 

From/to A B C D E F A B C D E F 
A       3 4 3 2 2 1 
B 4      7 4 3 2 2 1 
C 3      6 4 3 2 2 1 
D  2     3 6 3 2 2 1 
E    3   3 4 3 5 2 1 
F    1   3 4 3 3 2 1 

Production 
lead time 

3 4 3 2 2 1  

 
 

Table 1. The transportation time distance between the nodes  
and the production lead times of example. 

 
The input matrix and the generalised input matrix are thus given by: 

 
0 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

0 3 0 0 0 0

0 0 0 2 0 0

0 0 0 1 0 0

 
 
 
 

  
 
 
 
  

H ., 

7

6

6

5

3

0 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0
( )

0 3 0 0 0 0

0 0 0 2 0 0

0 0 0 1 0 0

s

s

s

s

s

e

e
s

e

e

e

 
 
 
 

  
 
 
 
  

H


. 

 
We assume that production is to take place in regular intervals of lengths iT  15, 13, 10, 13, 

10, 13, and the first batch is to start at times it  22, 18, 14, 10, 6, 2, respectively. The 

transform of production activities ( )sP  and the setup vector ( )sP  then become, cf 
[Grubbström 2007, Grubbström, Bogataj and Bogataj 2009]:  
 

ˆ
( )

1

i

i

st
i

sT

Pe
s

e





 
 
   
 
  

P







, ( )
1

i

i

st

sT

e
s

e





 
 
  
 
 
  

P







, 

 

where the îP  are constant batch sizes, assumed to have the values 100, 100, 200, 300, 600, 

300, respectively. The setup vector represents a sequence of unit impulses taking place at the 
same time as the production batches.  
 
We are now in a position to evaluate the system according to the Net Present Value principle 
(NPV), provided that values of economic parameters in vector form concerning unit 
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production prices/costs p and setup costs K and an interest rate   are introduced (and 
interpreted as elements of the relevant cash flow). Let us assume the following values 

 560,38,25,34,14,15p ,  5000,4500,5250,4875,4375,5375K  and 0.065  . From the 

Net Present Value Theorem [Grubbström 1967] we then obtain the NPV of the cash flow 
involved as 

 NPV ( ) ( ) ( )    p I H P KP
   , 

 

(15)

where we have substituted the Laplace frequency s for the continuous interest rate  . 
 
The costs of transportation are conveniently included in the relevant components of p. For 
instance, we may examine the contribution from the production of B, which is  
 

 
2 2

2 2

2
component 2column 2

ˆ
NPV ( )

1 1

t t

T T

P e e

e e

 

 
 

 

   
            

p I H K


 

 
18 0.065 18 0.065

6 0.065
13 0.065 13 0.065

100
38 1 34 3 4500

1 1

e e
e

e e

   


   

                   
.  

 
In this case, transportation of component D entering B begins 6 time units before completion 
before completion of B, which is taken care of by the capitalisation factor 6 0.065e  . If included 
in the unit cost component of p, .i. e. 4 34p  , the transportation costs will be capitalised 
from the start of transportation until completion of B, and then discounted with the chain 

factor  18 0.065 13 0.065/ 1e e    . If revenues and costs are to be distributed over time in a more 

detailed fashion, the formula (15) needs to be modified. Such modifications have been dealt 
with concerning, for instance, capacity costs [Grubbström and Wang 2000, 2003, Huynh 
2006].  
 
With the numerical values assumed in this example, we obtain 
 

 

7

6

6

5

3

1 0 0 0 0 0    38.42

1 0 0 0 0    54.41

2 0 1 0 0 0  168.44
NPV 560,38,25,34,14,15

0 3 0 1 0 0  274.55

0 0 0 2 1 0  849.94

0 0 0 0 1  461.80

e

e

e

e

e











   
      
   

       
   
   

   

 

 

 

0.384

0.544

0.842
5000,4500,5250,4875,4375,5375

0.915

1.417

1.539

 
 
 
 

  
 
 
 
 

 = 26,976.65 27,723.8 747.14   . 
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This negative figure indicates that the production system is making a loss. 
 
Of interest is to examine effects of saving times of transportation and production. Applying a 
sensitivity analysis to the time entries in ( )sH


 concerning transportation times with  , 

0 1  , being a fraction of time saved, we then have:  
 

 

 

 

 

 

3 4(1 )

3 3(1 )

3 3(1 )

2 3(1 )

2 1(1 ) 3

1 0 0 0 0 0

1 0 0 0 0

2 0 1 0 0 0
( )

0 3 0 1 0 0

0 0 0 2 1 0

0 0 0 0 1

e

e

e

e

e

 

 

 

 

 



 

 

 

 

 

 
 
 

    
 
 
 

  

H


. 

 
Table 2 and Figure 5 show the influence that different values of   will have on the total 
NPV.  
 

Relative savings of 
all transportation 
times ( ) 

NPV  

0 -747.14

0.10 -289.53

0.16421 0

0.30 601.51

0.50 1,461.29

1.00 3481.62

 
Table 2: Economic consequences from reducing all transportation times. 

 
 
 

 
 
Figure 5. Effect on NPV from reducing all transportation times by a fraction  . 

 

At a reduction level of   around 16.5 per cent, the system starts making a profit. 



NPV
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The effect would of course be drastically lowered if only an individual transportation time 
were considered. But that is also easy to model in a specific case. Figure 6 displays the 
individual effects from reducing a specific transportation time on the NPV as a whole for the 
five transportation times included. 

 

 
 

Figure 6. Effect on NPV from reducing individual transportation times by  .  
For instance, (6,4) indicates reducing transportation time from F to D. 

 

Let us denote the slope of each line in Figure 6 by (origin,destination)b . If the company 
wishes to change the location of D, then (6,4)  and (4,2) will change. The company would 
then invest a certain maximum amount C  to accept this change, if this amount would be 
lower than the resulting change in the NPV of all activities in the supply chain, 

(6, 4) (6,4) (4,2) (4,2)C b b    .  

 

5.  Conclusions 
 
In this paper we have made an attempt to extend the timing representation in MRP theory to a 
generalisation, by which inflow dependent times of activities (exemplified as transportation) 
may be covered. This has been made possible by extending the definition of the generalised 

technology matrix from ( ) ( )s sG H   to ( ) ( )s sG H
 

, the latter which no longer may be 

written as the difference between the products ( ) ( )s sG Δ G   and ( ) ( )s sH Hτ  . This 
provides us with an opportunity to study in a detailed way, for instance, the influence of 
transportation times varying in values for different product inputs to the same process. Details 
of systems in the closed loop value chain to which this might be applied can be found in 
[Grubbström, Bogataj and Bogataj 2007]. In general, we can conclude that the combination of 
Input-Output Analysis and Laplace transforms would provide a base for facilitating the 
analysis of a complete supply chain including the four sub-systems of manufacturing, 
distribution, consumption and reverse logistics.  
 
The Net Present Value as a measure of economic performance can be used successfully to 
evaluate not only the production lead time, but also additional delays in the form of, for 
example, transportation times. These effects appear because of a nonzero interest rate and 
therefore a nonzero cost of capital, used in financing the flow of goods through the supply 
chain. It is also easy to distinguish the contributions to the NPV from different sources 



(3, 2)

(4,2)

(2,1)and (3,1)
(6, 4)



 

 14

influencing the economic consequences. The numerical example in Section 4 provides such a 
case, in which is demonstrated the complete consequences due to transportation times. 
Adjusting the parameters representing the cause of delays enables us to derive explicit 
expressions for the consequences due to any type of delay.  
 
Extensions to include capacity limitations would be a natural further development of theory.  
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