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Abstract

Testing is a search process and a test suite is complete when
the search has examined all the corners of the program. Stan-
dard models of test suite sizes are gross over-estimates since
they are unaware of the nature of that search space. For ex-
ample, only a small part of the possible search space is ever
exercised in practice. Further, a repeated result is that a few
random searches often yields as much information as more
thorough search strategies. Hence, only a few tests are needed
to sample the range of behaviours of a program.

Introduction

Due to recent cutbacks, ISE Ltd. has to fire one of its test en-
gineers. Who would you pick? Lazy Susan never tests a pro-
gram rigorously. Instead, she just has a quick glance at some
of the possible consequences of known inputs. Lazy Susan
only ever proposes small test suites based just on small vari-
ants to the inputs. Lazy Susan never works overtime and her
tests are always finished on the due data. On the other hand,
Eager Earnest is more thorough and reflects on how all the
different KB pathways can interact and interfere with each
other. Earnest often proposes larger test suites based on the
inputs, and all the interaction points downstream of the in-
puts. Earnest always works overtime and never finishes his
testing by the due date.

Who gets sacked? Earnest thinks it should be Susan, say-
ing that even a cursory study of the mathematics shows that
testing is fundamentally a slow process. For example, a sim-
ple attribute model would declare that a system containin
N variables with S assignments (on average) requires S
tests. Further, a widely-used statistical model declares that
over 4,500 tests are required to find moderately infrequent
bugs; see Figure 1.

Not surprisingly, Susan disagrees with Earnest and thinks
he should be the one to go. She defends her test stratgies,
noting that most of the expert systems literature proposes
evaluations based on very few tests'; see Table 1. For ex-
ample, Menzies needed a mere 40 tests to check an expert
system that controlled a complex chemical plant (125 kilo-
meters of highly inter-connected piping) (Menzies 1998). In

'Exception: (Bahill, Bharathan, & Curlee 1995) propose at

least one test for every five rules and add that “having more test
cases than rules would be best”.
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Text # of tests
(Harmon & King 1983) 4.5
(Buchanan et al. 1983) ~6
(Bobrow, Mittal, & Stefik 1986) 5..10
(Davies 1994) 8..10
Nu et al. 1979) 10
(Caraca-Valente er al. 2000) <13
(Menzies 1998) 40
(Ramsey & Basili 1989) 50
(Betta, D’ Apuzzo, & Pietrosanto 1995) | 200

Table 1: Number of tests proposed by different authors. Ex-
tended from a survey by (Caraca-Valente et al. 2000).

that design, the expert system and the human operators took
turns to run the plant. At the end of a statistically signifi-
cant number of trials, the mean performance are comparable
using a t-test?. Further, she rejects Earnest’s S” model as
obviously ridiculous as follows:

In sample of fielded expert systems, knowledge bases
contained between 55 and 510 (Preece & Shinghal
1992). Literals offer two assignments for each proposi-
tion: true or false (i.e. S = 2 and N is half the number
of literals. Assuming (i) it takes one minute to con-
sider each test result (which is a gross under-estimate)
and (ii) that the effective working year is 225 six hour
days, then a test of those sampled systems would take
between 29 years and 107° years: a time longer than
the age of this universe.

2Let m and n be the number of trials of expert system and the
human experts respectively. Each trial generates a performance
score (time till unusual operations): X, ...X, with mean y,
for the humans; and performance scores Y7 ...Y, with mean p,
for the expert system. We need to find a Z value as follows:
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Let a be the degrees of freedom. If n = m = 20, thea =
n+ m — 2 = 38. We reject the hypothesis that expert system
is worse than the human (i.e. pz < py) with 95% confidence if Z
is less than (—t3s,0.95 = —1.645).
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Figure 1: Chance of finding an error = 1 — (1 — failure rate)*®***, Theoretically, 4603 tests are required to achieve a 99%
chance of detecting moderately infrequent bugs; i.e. those which occur at a frequency of 1 in a thousand cases. (Hamlet &

Taylor 1990).

The research division of ISE Inc. has been hired to re-
solve this dispute. Their core insight is that testing samples
a search space. Some parts of the space contain desired goals
and some parts contain undesirable behaviour. Regardless of
how users interpret different parts of the space, the testing-
as-search process is the same: a test suite is complete when
it has looked in all the corners of that search space.

This notion of testing=search covers numerous testing
schemes:

e Oracle testing uses some external source of information
to specify distributions for the inputs and outputs

¢ Model-checking for temporal properties (Clarke, Emer-
son, & Sistla 1986) can be reduced to search as follows.
First, the model is expressed as the dependency graph be-
tween literals. Secondly, the constraints are grounded and
negated. The generation of counter-examples by model
checkers then becomes a search for pathways from inputs
to undesirable outputs.

o A test suite that satisfies the “all-uses” data-flow cover-
age criteria can generate proof trees for all portions of the
search space that connect some literal from where it is as-
signed to wherever it is used (Frank! & Weiss 1993).

o Partition testing (Hamlet & Taylor 1990) is the generation
of inputs via a reflection over the search space looking for
key literals that fork the program’s conclusions into N
different partitions.

e The multiple-worlds reasoners (described below) divide
the accessible areas of a search space into their consistent
subsets.

Based on this insight of testing=search, ISE Research
made the following conclusion. Table 1 proposes far fewer
tests than Figure 1 since Figure 1 has limited insight into the
devices being testing. Figure 1's estimates are grossly over-
inflated since it is unaware of certain regularities within the
software it is testing. ISE research bases this conclusion on
a literature review which shows:

e While a static analysis of a program suggests S* states,
in practice only a small percentage of those are exercised
by the systems inputs.

e Further, a review of inference engines shows that a few
random stabs into the search space often yields as much
information as more thorough search strategies.

The literature review is presented below. Note that this ar-
ticle is framed in terms of knowledge engineering. However,
there is nothing stopping these results from being applied to
software engineering (Menzies & Cukic 1999).

Studies with Data Sets

The sections discusses two studies with data sets showing
that the attribute space size of the data presented to an ex-
pert system is far less than the potential upper bound of the
attribute space size of the KB (S™). This is consistent with
the used portions of search spaces being non-complex. Test
suites grown beyond some small size would yield no new
information since the smaller test suite would have already
explored the interesting parts of the KB’s search space.

Avritzer et.al. studied the inputs given to an expert sys-
tem. Each row of a state matrix stored one unique case pre-
sented to the expert system (and each literal in the inputs
were generate one column in the matrix). After examining
355 days of input data, they could only find 857 different
inputs. There was massive overlap between those input sets.
On average, the overlap between two randomly selected in-
puts was 52.9%. Further, a simple algorithm found that
26 carefully selected inputs covered 99% of the other in-
puts while 53 carefully selected inputs covered 99.9% of the
other inputs (Avritzer, Ros, & Weyuker 1996). If most nat-
urally occuring test suites have such an overlap, then only a
small number of tests will be required.

Avritzer et.al. looked at the inputs to a system. Colomb
compared the inputs presented to an expert system with its
internal structure. Recalling the introduction, the internals
of a KB can very large: S states per NV variables implies
SN combinations. Each such combination could be repre-
sented as one row in a state matrix. Colomb argues that
the estimate of SV is a gross over-inflation of effective KB
size. He argues that KBs record the very small regions of
experience of human experts. For exan}\Ple, one medical
expert system studied by Colomb had SV = 10'*. How-
ever, after one year’s operation, the inputs to that expert sys-
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Isamp (theory) {

for i := 1 to MAX-TRIES {
set all variables to unassigned;
loop {

if all variables are valued
return(current assignment);

v := random unvalued variable;

assign v a randomly chosen value;

unit_propagate();

if contradiction exit loop:

} return failure

}

Figure 2: The ISAMP randmoised-search theorem prover.
(Crawford & Baker 1994).

tem could be represented in a state matrix with only 4000
rows. That is, the region of experience exercised after one
year within the expert system was only a tiny fraction of SV
(4000 < 10) (Colomb 1999). If most systems have this
feature, then only a few tests will be required to exercise a
KB’s region of expertise.

Studies with Inference Engines

This section reviews two studies suggesting the extra effort
of the thorough engineer would be wasted since the larger
thorough test suite would yield little more information that
the smaller lazy test suite.

Recall the behaviour of our two test engineers:

e Lazy Susan explored a couple of randomly chosen paths
while Earnest considered all inputs and their downstream
interactions.

o Earnest is acting like an ATMS device (DeKleer 1986).
The ATMS takes the justification for every conclusions
and weaves it into an assumption network. At anytime,
the ATMS can report the key assumptions that drive the
KB into very different conclusions. Such a search, it was
thought, was a useful way to explore all the competing
options within a search space.

o Lazy Susan is acting like a locally-guided best-first search
across the KB. When a contradiction is detected, Susan
(or the search engine) could look at the contradiction for
hints on how to resolve that problem. Susan (or the search
engine) could then instantiated those hints and search on.
Note that, as a results, the earnest ATMS would find many
options and the lazy searcher would only ever find one.

Williams and Nayak compared the results of their locally-
guides search to the ATMS and found that this locally-guide
contradiction resolution mechanism was comparable to the
very best ATMS implementations. That is, the information
gained from an exploration of all options was nearly equiva-
lent to the information gained from the exploration of a sin-
gle option (Williams & Nayak 1996).

In other work, Crawford and Baker compared TABLEAU,
a depth-first search backtracking algorithm, to ISAMP, a
randomised-search theorem prover (see Figure 2). ISAMP

TABLEAU: ISAMP:
full search partial, random search

[ % Success | Time (sec) | % Success | Time (sec) | Tries
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Table 2: Average performance of TABLEAU vs ISAMP on
6 scheduling problems (A..F) with different levels of con-
straints and bottlenecks. From (Crawford & Baker 1994).

randomly assigns a value to one variable, then infers some
consequences using unit propagation. Unit propagation is
not a very thorough inference procedure: it only infers those
conclusions which can be found using a special linear-time
case of resolution; i.e.

(@A (~zoryy ... yn) F (y1 0r. yn)

(mx) A (zoryy or...yn) (y1 0r... yn)

After unit propagation, if a contradiction was detected,
ISAMP re-assigns all the variables and tries again (giving
up after MAX~TRIES number of times). Otherwise, ISAMP
continues looping till all variables are assigned. Lazy Susan
approves of ISAMP while Earnest likes TABLEAU since it
explores more options more systematically.

Table 2 shows the relative performance of the two al-
gorithms on a suite of scheduling problems based on real-
world parameters. Surprisingly, ISAMP took less time than
TABLEAU to reach more scheduling solutions using, usu-
ally, just 2 small number of TRIES. That is, a couple of ran-
dom explorations of the easy parts of a search space yielded
the best results. Crawford and Baker offer a speculation why
ISAMP was so successful: their systems contained mostly
“dependent” variables which are set by a small number of
“control” variables (Crawford & Baker 1994). If most sys-
tems have this feature, then large test suites are not required
since a few key tests are sufficient to set the control vari-
ables.

Experiments with HTx

The results in the previous section support the argument
that search spaces are less complex than Earnest thinks.
Hence, the test suites required to sample that search space
may be very small. However, the sample size of the above
studies is very small. This section addresses the sample
size issue. Based on the HTx abductive model of test-
ing (Menzies 1995; Menzies & Compton 1997), a suite of
mutators can generate any number of sample testing prob-
lems3. Three HTx algorithms are HT4 (Menzies 1995),

3Informally, abduction is inference to the best explanation.
More precisely, abduction make whatever assumptions A which are
required to reach output goals Qut across a theory T U A F Out
without causing contradiction U A /L. Each consistent set of as-
sumptions represents an explanation. If more than one explanation
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HTA4-dumb (Menzies & Waugh 1998), and HTO (Menzies
& Michael 1999). HTx algorithms were designed as auto-
matic hypothesis testers for under-specified theories and are
a generalization and optimization of QMOD, a validation
tool for neuroendocrinological theories (Feldman, Comp-
ton, & Smythe 1989). HTx and QMOD assumes that the
definitive test for a theory is that it can reproduce (or cover)
known behaviour of the entity being modeled. Theory T3 is
a better theory than theory T iff

cover(T1) > cover(T»)

Below, we will show experiments where HTx is run millions
of times over tens of thousands of models. The results en-
dorse the widespread existence of simple search spaces. A
small number of random searches (by HT0) covered nearly
as much output as extensive searches by HT4. Further, the
sample size is much larger than that offered by Williams,
Nayak, Crawford, and Baker.

An Informal Model of Testing

This section gives a quick overview of the intuitions of HTx.
The next section details these intuitions.

At runtime, an inference engine explores the search space
of a program. A given test applies some inputs (In) to the
program to reach some outputs (Out). The inference engine
may be indeterminate or chosen randomly (e.g. by ISAMP)
and so the pathway taken from inputs to outputs may vary.
Hence, we call the intermediaries assumptions (A). That is:

< Out, A >= f(In,KB)

where f is the inference engine and KB are the literals
{a..z} which we can divide as follows:

In Out

That is, from the inputs a, b, ¢, ..., we can reach the outputs
...Z, Y, 2 via the assumptions ..., m, n, .... Some of a..2 are
positive goals that we are trying to achieve while some are
negative goals reflecting situations we are trying to avoid.
In the general case, only a subset of Out will be reachable
using some subset of the In, A since:

o The search space may not approve of connections be-
tween all of In and Out.

e Some of the assumptions may be contradictory. Multiple
worlds of beliefs may be generated when contradictory
assumptions are sorted into their maximal consistent sub-
sets.

o In the case of randomized search, only parts of the search
space may be explored. For example, we could run
ISAMP for a finite number of TRIES and return the TRY
which the maximum number of assignments to Out.

is found, some assessment criteria is applied to select the preferred
explanation(s). .

Qur testing intuition is that a test case beams a search-
light from In across A to Qut. Sometimes, the light reveals
something interesting. We can stop testing when our search-
light stops finding anything new. What will be shown below
is that a few quick flashes show as much as lots of poking
around in corners with the flashlight.

HTx: An More Formal Model of Testing

This section describes the details of HTx. The next section
describes an example.

We represent a theory as a directed-cyclic graph T = G
containing vertices {V;,V},...} with roots roots(G) and
leaves leaves(G). A vertex is one of two types:

o Ands can be believed if all their parents are believed.

e Ors can be believed if any their parents are believed
or it has been labeled an In vertex (see below)., Each
or-node contradicts 0 or more other or-nodes, denoted
no(V;) = {V;,V,..}. The average size of the no
sets is called contraints(G). For propositional systems,
contraints(G) = 1; e.g. no(a) = {-a}.

In and Out are sets of vertices from ors(G). A proof
P C @ is a tree containing the vertices uses(P;) =
{Vs, Vj, ...}.The proof tree has:

o Exactly one leaf which is an output; i.e.

|leaves(uses(Py))| = 1A
V; € leaves(uses(P;)) A V; € Out

¢ 1 or more roots roots(uses(FP;)) C In.

No two proof vertices can contradict each other; i.e.
< Vi, V; >€ uses(P;) AV € no(Vi)

A proof’s assumptions are the vertices that are not inputs or
outputs; i.e.

assumes(P;) = uses(Py)—roots(uses(Py))—leaves(uses(P,

A test suite is N pairs
{< Iny,Outy >,... < Ing,,Out, >. We assumed
that each In;, Out; contains only or-vertices. Each out-
put Out; can generated 0 or more proofs {Py,Py,...}.
A world is a maximal consistent subsets of the proofs
(maximal w.r.t. size and consistent w.r.t. the no sets)
denoted proofs(W;) = {Py, Py,...}. Worlds to proofs is
many-to-many. The cover of a world is how many outputs it
contains; i.e.

va {P; € proofs(W;) AV, € leaves(P;)}
|Out| '

cover(W;) = -

We make no other comment on the nature of Out;. It may
be some undesirable state or some desired goal. In either
case, the aim of our testing is to find the worlds that cover
the largest percentage of Out.
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A hypothetical economics theory world W.1 world W.2
foreign domestic foreign domestic foreign
sales sales sales=up sales=down sales=up
++ ++ ‘ ++ ++ ++ ¢++ ++
public company company public company public
confidence profits profits=up confidence=up profits=down confidence=up
J - ++ ++ ++ -
inflation corporate trade corporate corporate
spending deficit spending=up spending=down
Q__ ﬁ ( ++ &g-- J -- ++ - - -- -
wages ::;?:Tt investor investor wages wages
restraint balance confidence confidence=up restraint=up restraint=up

Figure 3: Two worlds for outputs (ellipses) from inputs (squares). Assumptions are world vertices that are not inputs or outputs.
Note that contradictory assumptions are managed in separate worlds.

P, foreignSales=up, companyProfits=upt, corporateSpending=upt, investorConfidence=up

P,  domesticSales=down, companyProfits=downt, corporateSpending=downt, wageRestraint=up

Ps  domesticSales=down, companyProfits=downt, inflation=down
Py domesticSales=down, companyProfits=downt, inflation=down, wagesRestraint=up

Ps  foreignSales=up, publicConfidence=up, inflation=down

Ps  foreignSales=up, publicConfidence=up, inflation=down, wageRestraint=up

Table 3: Proofs connecting inputs to outputs. Xt, and Xtdenote the assumptions and the controversial assumptions respectively.

An Example

Figure 3 (left) shows a hypothetical economics theory writ-
ten in the QCM language (Menzies & Compton 1997). All
theory variables have three mutually exclusive states: up,
down or steady; 1.e. no(Vo=up) = {Va=down, Va=steady }
and constraints(G) = 2. These values model the sign of
the first derivative of these variables (i.e. the rate of change

in each value). In QCM, x g y denotes that y being up
or down could be explained by x being up or down respec-

tively. Also, x = y denotes that y being up or down could
be explained by x being down or up respectively. Some links
are conditional on other factors; for example if transport

then education =3 literacy. To process such a link, QCM
adds a conjunction between education and literacy. The pre-
conditions of that connection are now education and trans-
port. QCM also adds conjunctions to offer explanations of
steadies: the conjunction to competing upstream influences
can explain a steady.

Consider the case where the inputs In is (foreign-
Sales=up, domesticSales=down) and the goals Out are (in-
vestorConfidence=up, inflation=down, wageRestraint=up).
There are six proofs that connect In to Out (see Table 3).
These proofs comprise only or-nodes. These proofs contain
assumptions (variable assignments not found in In U Out).
Some of these proofs make contradictory assumptions A;
e.g. corporateSpending=up in P, and corporateSpend-
ing=down in P;. That is, we cannot believe in P, and P, at

the same time. If we sort these proofs into the subsets which
we can believe at one time, we get worlds Wy (Figure 3,
middle) and W, (Figure 3, right). W, is a maximal con-
sistent subset of pathways that can be believed at the same
time; i.e. {Py,P5, Ps}. Wa is another maximal consistent
subset: {Ps, Ps, Py, Ps}. The cover of W; is 100% while
the cover of W is 67%.

Recall that HTx scores a theory by the maximum cover of
the worlds it generates. Hence, our economics theory gets
full marks: 100%. HT4 (and QMQOD before it) found er-
rors in a published theory of neuroendocrinological (Smythe
1989) when its maximum cover was found to be 42%. That
is, after making every assumption possible to explain as
many of the goals as possible, only 42% of certain pub-
lished observations of human glucose regulation could be
explained. Interestingly, these faults were found using the
data published to support those theories. This suggests that
HT4-style abductive validation is practical for assessing ex-
isting scientific publications. HTx is practical for many
other real-world theories. For example, one implementation
of HT4, was fast enough to process at least one published
sample of real-world expert systems (Menzies 1996).

HT4, HT4-dumb, HTx

The difference between the HTx algorithms is how they
searched for their worlds:

e HT4 found all proofs for all outputs, then generated all
the worlds from those proofs. Next, the worlds(s) with
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Figure 4: An expansion of the left-hand-side QCM theory
into IEDGE and XNODE. Note that for the XNODE expan-
sion, the ‘fi—f variable was A.

largest cover was then returned.

o HT4-dumb was an a crippled version of HT4 that returned
any world at all, chosen at random. It was meant to be a
straw-man system but its results were so promising (see
below) that it lead to the development of HTO.

e HTO is a randomised each engine that MAX-TRIES
times, finds 1 proof for each member of Out;. Out is
explored in a random order and when the proof is being
generated, if more than one option is found, one is picked
at random. If the proof for Out; is consistent with the
proof found previously for Out;, (i < §), it is kept. Oth-
erwise, HTO moves on to Out(j < k) and declares Out;
unsolvable. After each TRY, HTO compares the “best”
world found in previous TRIES to the world found in the
try and discards the one with the lowest cover.

Susan approves of HTO since, like her, it uses a lazy
method to study a program. Earnest likes HT4 since it ex-
plores more of the program. For example, says Earnest, if
Lazy Susan had stumbled randomly on W of Figure 3, and
did not look any further to find W1, then she would have in-
appropriately declared that the economics model could only
explain 67% of the outputs. Susan replies that, on average,
the cost of such extra searching is not justified by its bene-
fits. The following studies comparing HTx algorithms sup-
port Susan’s case.

HT4 vs HT4-dumb

Menzies and Waugh compared HT4 and HT4-dumb using
tens of thousands of theories (Menzies & Waugh 1998).
Starting with a seed theory (fish growing in a fishery, see
Figure 5), automatic mutators were built to generate a wide
range of problems (see Table 4). When these problems were
run with HT4 and HT4-dumb, the maximum difference in
the cover was 5.6%; i.e. very similar, see Figure 6. That is,
in a large number (1,512,000) of world generation experi-
ments, (1) many different searches contain the same goals,
(2) there was little observed utility in using more than one
world.

1. Added influences between variables.

2. Corrupted the influence between two variables; e.g. pro-
portionality ++ was flipped to inverse proportionality -~ or
visa versa.

3, Experimented with different meanings time within the sys-
tem. In the explicit node (XNODE) interpretation of

time, all 4% variables implied a link (z at Time') pard

(z at Time'™). In the implicit edge IEDGE interpre-
tation of time, all edges  — y also implied a link
(z at Time') 5 (y at Time'™); (@ € {++,~-}).
XNODE and IEDGE are contrasted in Figure 4. Why these
two interpretations of time? These were randomly selected
from a much larger set of time interpretations studied by
(Waugh, Menzies, & Goss 1997).

4. Forced the algorithm to generate different numbers of
worlds. Experiments showed that the maximum number
of worlds were generated when between a fifth to three-
fifths of the variables in the theory were unmeasured; i.e.

U=20..60 where U = 100 — (/2110302100 4ng |V is the

number of variables in the theory. The mutators built I'n
and Qut sets with different U settings. Values for In and
Out were collected using a mathematical simulation of the
fisheries.

Table 4; Problem mutators used in the HT4 vs HT4-dumb
study

fish
growth
rate
++ A+
change in fish
population
++
fish
density
++
fish
catch
=
catch
proceeds
++
net
income
+4
boat
investment ++
fraction
4
boat
purchases
++
change in

boat numbers

P 4~ )++\¢-+
boat boat catch
maintenance decomissions potential

Figure 5: The QCM fisheries model contains two %‘Z_T{ vari-

ables: change in fish population and change in boat num-
bers.
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HT4 vs HTO

HT4-dumb was implemented as a back-end to HT4. HT4
would propose lots of worlds and HT4-dumb would pick
one at random. That is, HT4-dumb was at least as slow as
HT4. However, it worked so astonishingly well, that HTO
was developed. Real world and artificially generated theo-
ries were used to test HTO. A real-world theory of neuroen-
docrinology with 558 clauses containing 91 variables with
3 values each (273 literals) was copied X times. Next, Y%
of the variables in in one copy were connected at random to
variables in other copies. In this way, theories between 30
and 20000 Prolog clauses were built using Y=40, average
sub—goals o, 7 clauses — 1 55 When executed with

clause * literals

MAX-TRIES=50 the O(N?) curve of Figure 7 was gener-
ated. HT4 did not terminate for theories with more than
1000 clauses. Hence, we can only compare the cover of
HTO to HT4 for part of this experiment. In the comparable
region, HTO0 found 98% of the outputs found by HT4.

In other experiments, the maximum cover found for dif-
ferent values of MAX-TRIES was explored. Surprisingly,
the maximum cover found for MAX-TRIES=50 was found
with MAX-TRIES as low as 6.

In summary, a small number of quick random searches
(HTO) found nearly as much of the interesting portions of the
KB as a careful, slower, larger number of searchers (HT4).

Conclusion

On average, exploring a theory is not as complex as one
might think. Testing is a search process and a test suite is
complete when the search has examined all the corners of
the program. Often a few lazy explorations of a search space
yields as much information as more thorough searches.

Philosophically, this must be true. Our impressions are
that human resources are limited and most explorations of
theories are cost-bounded. Hence, many theories are not
explored rigourously. Yet, to a useful degree, this limited
reasoning about our ideas works. This can only be true
if our theories yield their key insights early to our limited
tests. Otherwise, we doubt that the human intellectual pro-
cess could have achieved so much.

Earnest strongly disagrees with the last paragraph, saying
that such an argument represents the height of human arro-
gance; i.e. once again humanity is claiming to have some
special authority over the random universe around us. Lazy
Susan does not have the heart to disagree. She’d just been
promoted while Earnest had been sacked. Her view is that
this arrogance seems justified, at least based on the above
evidence.

She had lunch with Earnest on his last day. As he cried
into his soup, he warned that the above analysis is overly op-
timistic. The results of this article refer to the average case
behaviour of a test rig. In safety-critical situations, such an
average case analysis is inappropriate due to the disastrous
implications of the non-average case. Secondly, these re-
sults only refer to the number of tests that can detect anoma-
lous behaviour. Once an error is found, it must be local-
ized and removed. Strategies for fault localization and re-
pair are explored elsewhere in the literature (Shapiro 1983;
Hamscher, Console, & DeKleer 1992).

Susan paid for that last lunch using her pay rise: it seemed
the decent thing to do.
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