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THE DUAL HOROSPHERICAL RADON TRANSFORM
FOR POLYNOMIALS

J. HILGERT, A. PASQUALE, AND E. B. VINBERG

Abstract. Let X = G/K be a semisimple symmetric space of non-
compact type. A horosphere in X is an orbit of a maximal unipotent
subgroup of G. The set HorX of all horospheres is a homogeneous space
of G. The horospherical Radom transform suggested by I. M. Gelfand
and M. I. Graev in 1959 takes any function ϕ onX to a function on HorX
obtained by integrating ϕ over horospheres. We explicitly describe the
dual transform in terms of its action on polynomial functions on HorX.
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1. Introduction

A Radon transform is generally associated to a double fibration

Z
p

����������
q

��???????

X Y ,

where one may assume without loss of generality that the maps p and q are surjective
and Z is embedded into X × Y via z 7→ (p(z), q(z)). Let some measures be chosen
on X, Y, Z and on the fibers of p and q so that∫

X

(∫
p−1(x)

f(u) du
)
dx =

∫
Z

f(z) dz =
∫
Y

(∫
q−1(y)

f(v) dv
)
dy. (1)

Then the Radon transform R is the linear map assigning to a function ϕ on X the
function on Y defined by

(Rϕ)(y) =
∫
q−1(y)

(p∗ϕ)(v) dv,
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where we have set p∗ϕ := ϕ ◦ p. In a dual fashion, one defines a linear transform
R∗ from functions on Y to functions on X via

(R∗ψ)(x) =
∫
p−1(x)

(q∗ψ)(u) du.

It is dual to R. Indeed, formally,

(Rϕ, ψ) :=
∫
Y

(∫
q−1(y)

(p∗ϕ)(v) dv
)
ψ(y) dy =

∫
Y

(∫
q−1(y)

(p∗ϕ)(q∗ψ)(v) dv
)
dy

=
∫
Z

(p∗ϕ)(z)(q∗ψ)(z) dz =
∫
X

ϕ(x)
(∫

p−1(x)

(q∗ψ)(u) du
)
dx

=: (ϕ, R∗ψ).

In particular, if X = G/K and Y = G/H are homogeneous spaces of a Lie
group G, one can take Z = G/(K ∩ H), where p and q are G-equivariant maps
sending e(K ∩H) to eK and eH, respectively. Assume that there exist G-invariant
measures on X, Y and Z. If such measures are fixed, one can uniquely define
measures on the fibers of p and q so that condition (1) holds. (Here, speaking
about a measure on a smooth manifold, we mean a measure defined by a differential
form of top degree.) In this setting we can consider the transforms R and R∗, and
if dimX = dimY , one can hope that they are invertible. The basic example is
provided by the classical Radon transform, which acts on functions on the Euclidean
space En = (Rn h SOn)/SOn and maps them to functions on the space HEn =
(Rn h SOn)/(Rn−1 hOn−1) of hyperplanes in En.

For a semisimple Riemannian symmetric space X = G/K of noncompact type,
one can consider the horospherical Radon transform as proposed by I. M. Gelfand
and M. I. Graev in [GG59]. Namely, generalizing the classical notion of a horosphere
in Lobachevsky space, one can define a horosphere in X as an orbit of a maximal
unipotent subgroup of G. The group G naturally acts on the set HorX of all
horospheres. This action is transitive, so we can identify HorX with some quotient
space G/S (see Section 5 for details). It turns out that dimX = dim HorX.
Moreover, the groups G, K, S and K ∩ S = M are unimodular, so there exist G-
invariant measures on X, HorX and Z = G/M . The Radon transformR associated
to the double fibration

G/M

p

yyssssssssss
q

&&MMMMMMMMMM

X = G/K G/S = HorX

is called the horospherical Radon transform.
The space Z = G/M can be interpreted as the set of pairs (x, H) ∈ X ×HorX

with x ∈ H, so that p and q are just the natural projections. The fiber q−1(H)
with H ∈ HorX is then identified with the horosphere H, and the fiber p−1(x) with
x ∈ X is identified with the submanifold HorxX ⊆ HorX of all horospheres passing
through x. Note that, in contrast to the horospheres, all submanifolds HorxX are
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compact, since HorxX is the orbit of the stabilizer of x in G, which is conjugate
to K.

In this paper, we describe the dual horospherical Radon transform R∗ in terms
of its action on polynomial functions. Here a differentiable function ϕ on a homo-
geneous space Y = G/H of a Lie group G is called polynomial, if the linear span
of the functions gϕ with g ∈ G is finite dimensional. The polynomial functions
constitute an algebra denoted by R[Y ].

For X = G/K as above, the algebra R[X] is finitely generated and X is naturally
identified with a connected component of the corresponding affine real algebraic
variety (the real spectrum of R[X]). The natural linear representation of G in R[X]
decomposes into a sum of mutually non-isomorphic absolutely irreducible finite-
dimensional representations whose highest weights λ form a semigroup Λ. Let
R[X]λ be the irreducible component of R[X] with highest weight λ, so

R[X] =
⊕
λ∈Λ

R[X]λ. (2)

Denote by ϕλ the highest weight function in R[X]λ normalized by the condition

ϕλ(o) = 1,

where o = eK is the base point of X. Then the subgroup S is the intersection
of the stabilizers of all the ϕλ’s. Its unipotent radical U is a maximal unipotent
subgroup of G.

The algebra R[HorX] is also finitely generated. The manifold HorX is naturally
identified with a connected component of a quasi-affine algebraic variety, which
is a Zariski open subset in the real spectrum of R[HorX]. The natural linear
representation of G in R[HorX] is isomorphic to the representation of G in R[X].
Let R[HorX]λ be the irreducible component of R[HorX] with highest weight λ, so
that

R[HorX] =
⊕
λ∈Λ

R[HorX]λ. (3)

Denote by ψλ the highest weight function in R[HorX]λ normalized by the condition

ψλ(sUo) = 1,

where s is the symmetry with respect to o and sUo = (sUs−1)o is regarded as a
point of HorX.

The decomposition (2) defines a filtration of the algebra R[X] (see Section 4 for
the precise definition). Let grR[X] be the associated graded algebra. There is a
canonical G-equivariant algebra isomorphism

Γ: grR[X]→ R[HorX]

mapping each ϕλ to ψλ. As a G-module, grR[X] is canonically identified with
R[X], so we can view Γ as a G-module isomorphism from R[X] to R[HorX].

The horospherical Radon transform R is not defined for polynomial functions
on X but its dual transform R∗ is defined for polynomial functions on HorX, since
it reduces to integrating along compact submanifolds. Moreover, it follows from
the definition of polynomial functions, that the dual transform maps polynomial
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functions on HorX to polynomial functions on X. Obviously, it is G-equivariant.
Thus, we have G-equivariant linear maps

R[X] Γ−−→ R[HorX] R
∗

−−→ R[X].

Their composition R∗ ◦ Γ is a G-equivariant linear operator on R[X], so

(R∗ ◦ Γ)(ϕ) = cλϕ ∀ϕ ∈ R[X]λ,

where the cλ’s are constants. To give a complete description of R∗, it is therefore
sufficient to find these constants. Our main result is the following theorem.

Theorem 1. We have cλ = c(λ + ρ), where c is the Harish-Chandra c-function
and ρ is the half-sum of the positive roots of X (counted with multiplicities).

The Harish-Chandra c-function governs the asymptotic behavior of the zonal
spherical functions on X. A product formula for the c-function was found by
S. G. Gindikin and F. I. Karpelevich [GK62]: for a rank-one Riemannian symmetric
space of noncompact type, the c-function is a ratio of gamma functions involving
only the root multiplicities; in the general case, it is the product of the c-functions
for the rank-one symmetric spaces defined by the indivisible roots of the space.
Thus, if the root structure of the symmetric space is known, the product formula
makes the c-function, and hence our description of the dual horospherical Radon
transform, explicitly computable.

For the convenience of the reader, we collect some crucial facts about the c-
function in an appendix to this paper.

The following basic notation will be used in the paper without further comments.
• Lie groups are denoted by capital Latin letters, and their Lie algebras by

the corresponding small Gothic letters.
• The dual space of a vector space V is denoted by V ∗.
• The complexification of a real vector space V is denoted by V (C).
• The centralizer (resp. the normalizer) of a subgroup H in a group G is

denoted by ZG(H) (resp. NG(H)).
• The centralizer (resp. the normalizer) of a subalgebra h in a Lie algebra g

is denoted by zg(h) (resp. by ng(h)).
• If a group G acts on a set X, we denote by XG the subset of fixed points

of G in X.

2. Groups, spaces, and functions

For any connected semisimple Lie group G admitting a faithful (finite-dimen-
sional) linear representation, there is a connected complex algebraic group defined
over R such that G is the connected component of the group of its real points.
Among all such algebraic groups, there is a unique one such that all the others
are its quotients. It is called the complex hull of G and is denoted by G(C). The
group of real points of G(C) is denoted by G(R). If G(C) is simply connected, then
G = G(R).

The restrictions of polynomial functions on the algebraic group G(R) to G are
called polynomial functions on G. They are precisely those differentiable functions
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ϕ for which the linear span of the functions gϕ, g ∈ G, is finite-dimensional (see
e. g. [CSM95], § II.8). (Here G is supposed to act on itself by left multiplications.)
The polynomial functions on G constitute an algebra which we denote by R[G] and
which is naturally isomorphic to R[G(R)].

For any subgroup H ⊆ G, we denote by H(C) (resp. H(R)) its Zariski closure
in G(C) (resp. G(R)). If H is Zariski closed in G, i. e., H = H(R) ∩ G, then H
is a subgroup of finite index in H(R); if H is a semidirect product of a connected
unipotent group and a compact group, then H = H(R).

For a homogeneous space Y = G/H with H Zariski closed in G, set Y (C) =
G(C)/H(C). This is an algebraic variety defined over R, and Y is naturally iden-
tified with a connected component of the variety Y (R) of real points of Y (C). We
call Y (C) the complex hull of Y .

If H is reductive, then also H(C) is reductive and the variety Y (C) is affine,
the algebra C[Y (C)] being naturally isomorphic to the algebra C[G(C)]H(C) of
H(C)-right-invariant polynomial functions on G(C) (see e. g. [VP89], Section 4.7
and Theorem 4.10). Accordingly, the algebra R[Y (R)] is naturally isomorphic to
R[G(R)]H(R).

In general, the functions on Y (R) arising from H(R)-right-invariant polynomial
functions on G(R) are called polynomial functions on Y (R), and their restrictions to
Y are called polynomial functions on Y . They are precisely those differentiable func-
tions ϕ for which the linear span of the functions gϕ, g ∈ G, is finite-dimensional.
They form an algebra which we denote by R[Y ].

In the following we consider a semisimple Riemannian symmetric space X =
G/K of noncompact type. This means that G is a connected semisimple Lie group
without compact factors and K is a maximal compact subgroup of G. We do not
assume that the center of G is trivial, so the action of G on X may be non-effective.
We do, however, require that G have a faithful linear representation. According
to the above, the space X is then a connected component of the affine algebraic
variety X(R).

In order to describe the algebra R[X] explicitly, one can realize X as a closed
orbit in a representation space V of G. The polynomial functions on X will be
exactly the restrictions to X of ordinary polynomials on V .

Example 2. The Lobachevsky plane L2 = SL2(R)/SO2 can be realized as the
orbit of the matrix

I =
[
0 −1
1 0

]
∈ sl2(R).

under the adjoint representation of SL2(R). Comparing this model with the Poin-
caré model on the upper half-plane

H2 = {z = x+ yi ∈ C : y > 0},

we see that the point i ∈ H2 corresponds to the matrix I, so the point[
a b
0 a−1

]
◦ i = a(ai+ b) = x+ yi ∈ H2
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(where x = ab, y = a2) corresponds to the matrix[
a b
0 a−1

] [
0 −1
1 0

] [
a b
0 a−1

]−1

=
[
a−1b −a2 − b2
a−2 −a−1b

]
.

It follows that
R[H2] = R[xy−1, y−1, x2y−1 + y].

Note that the functions

ϕ = xy−1, ψ = y−1, χ = x2y−1 + y

are subject to the relation
ψχ− ϕ2 = 1.

3. Subgroups and subalgebras

We recall some facts about the structure of Riemannian symmetric spaces of
noncompact type (see [Hel01] for details). Let X = G/K be as above and θ be
the Cartan involution of G with respect to K, so K = Gθ. Let a be a Cartan
subalgebra for X, i. e., a maximal abelian subalgebra in the (−1)-eigenspace of dθ.
Its dimension r is called the rank of X. Under any representation of G, the elements
of a are simultaneously diagonalizable. The group A = exp a is a maximal connected
abelian subgroup of G such that θ(a) = a−1 for all a ∈ A. It is isomorphic to (R∗+)r.
Its Zariski closure A(R) in G(R) is a split algebraic torus which is isomorphic to
(R∗)r. Let X(A) denote the (additively written) group of real characters of the
torus A(R). It is a free abelian group of rank r. We identify each character χ with
its differential dχ ∈ a∗.

The root decomposition of g with respect to A (or with respect to A(R), which
is the same) is of the form

g = g0 +
∑
α∈∆

gα,

where g0 = zg(a). If m := zk(a), then g0 = m + a.
The set ∆ ⊂ X(A) is the root system of X (or the restricted root system of G)

with respect to A and gα is the root subspace corresponding to α. The dimension of
gα is called the multiplicity of the root α and is denoted by mα. By the identification
of a character with its differential, we will consider ∆ as a subset of a∗. Choose
a system ∆+ of positive roots in ∆. Suppose Π = {α1, . . . , αr} ⊂ ∆+ is the
corresponding system of simple roots. Then

C = {x ∈ a : αi(x) ≥ 0 for i = 1, . . . , r}
is called the Weyl chamber with respect to ∆+. The subspace

u =
∑
α∈∆+

gα

is a maximal unipotent subalgebra of g.
Set

G0 = ZG(A), M = ZK(A).
Then G0 = M × A and the Lie algebras of G0 and M are g0 and m, respectively.
Clearly, G0 is Zariski closed in G.
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The group U = exp u is a maximal unipotent subgroup of G. It is normalized by
A and the map

U ×A×K → G, (u, a, k) 7→ uak,

is a diffeomorphism. The decomposition G = UAK (or G = KAU) is called
the Iwasawa decomposition of G. Since every root subspace is G0-invariant, G0

normalizes U , so
P := UG0 = U hG0

is a subgroup of G. Moreover, P = NG(U) (see e. g. [War72], Proposition 1.2.3.4),
so P is Zariski closed in G.

We say that a Zariski closed subgroup of G is parabolic, if its Zariski closure in
G(C) is a parabolic subgroup of G(C). Then P is a minimal parabolic subgroup
of G. The subgroup

S := UM = U hM

of P is normal in P and P/S is isomorphic to A. It follows from the Iwasawa
decomposition that K ∩ S = M .

4. Representations

For later use we collect some well-known facts about finite-dimensional repre-
sentations of G.

The natural linear representation of G in R[X] decomposes into a sum of mutu-
ally non-isomorphic absolutely irreducible finite-dimensional representations called
(finite-dimensional) spherical representations (see e. g. [GW98], Chap. 12).

Theorem 3 (see [Hel84], §V.4). An irreducible finite-dimensional representation
of G on a real vector space V is spherical if and only if the following equivalent
conditions hold :

(1) V K 6= {0},
(2) V S 6= {0}.

If these conditions hold, then dimV K = dimV S = 1 and the subspace V S is in-
variant under P .

For a spherical representation, the group P acts on V S via multiplication by
some character of P vanishing on S. The restriction of this character to A is called
the highest weight of the representation. A spherical representation is uniquely
determined by its highest weight. The highest weights of all irreducible spherical
representations constitute a subsemigroup Λ ⊂X(A).

An explicit description of Λ as a subset of a∗ can be given as follows. Let ∆?

denote the set of roots α ∈ ∆ such that 2α /∈ ∆. Then ∆? is a root system in a∗,
and a system of simple roots corresponding to ∆+

? := ∆+∩∆∗ can be obtained from
the system Π = {α1, . . . , αr} of simple roots in ∆+ by setting, for j = 1, . . . , r,

βj :=

{
αj if 2αj /∈ ∆+,

2αj if 2αj ∈ ∆+.
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Let ω1, . . . , ωr ∈ a∗ be defined by
(ωj , βi)
(βi, βi)

= δij , (4)

where ( · , ·) denotes the scalar product in a∗ induced by an invariant scalar product
in g.

Proposition 4 (see [Hel94], Proposition 4.23). The semigroup Λ is freely generated
by ω1, . . . , ωr. �

For λ ∈ Λ, let R[X]λ denote the irreducible component of R[X] with highest
weight λ. Then we have

R[X] =
⊕
λ∈Λ

R[X]λ.

We denote by ϕSλ the highest weight function of R[X]λ normalized by the condition

ϕSλ(o) = 1.

(Since Po = PKo = Go = X, we have ϕSλ(o) 6= 0.) Obviously,

ϕSλ ϕ
S
µ = ϕSλ+µ.

In general, the multiplication in R[X] has the property

R[X]λR[X]µ ⊂
⊕

ν≤λ+µ

R[X]ν ,

where “≤” is the ordering in the groupX(A) defined by the subsemigroup generated
by the simple roots. In other words, the subspaces

R[X]≤λ =
⊕
µ≤λ

R[X]µ

constitute a X(A)-filtration of the algebra R[X] with respect to the ordering “≤”.
The functions ϕ ∈ R[X]λ vanishing at o constitute a K-invariant subspace of

codimension 1. The K-invariant complement of it is a 1-dimensional subspace, on
which K acts trivially. Let ϕKλ denote the function of this subspace normalized by
the condition ϕKλ (o) = 1. It is called the zonal spherical function of weight λ.

Lemma 5 (see e. g. [Hel84], p. 537). For any finite-dimensional irreducible repre-
sentation of G on a real vector space V there is a positive definite scalar product
( · | ·) on V such that

(gx | θ(g)y) = (x | y) for all g ∈ G and x, y ∈ V .

This scalar product is unique up to a scalar multiple.

The scalar product given by Lemma 5 is called G-skew-invariant. Note that it
is K-invariant.

With respect to the G-skew-invariant scalar product on R[X]λ the zonal spherical
function ϕKλ is orthogonal to the subspace of functions vanishing at o ∈ X. Let αλ
denote the angle between ϕKλ and ϕSλ . Then the projection of ϕKλ to R[X]Sλ = RϕSλ
is equal to (cos2 αλ)ϕSλ (see Figure 1). In particular, we see that ϕKλ and ϕSλ are
not orthogonal.
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0
ϕ(o) = 0

ϕ(o) = 1
ϕKλ ϕSλ

αλ

Figure 1.

The weight decomposition of ϕKλ is of the form

ϕKλ = (cos2 αλ)ϕSλ +
∑
µ<λ

ϕλ,µ,

where ϕλ,µ is some weight vector of weight µ in R[X]λ. This gives the asymptotic
behavior of ϕKλ on (exp(−Co))o, where Co is the interior of the Weyl chamber C
in a. More precisely, for ξ ∈ Co we have

ϕKλ ((exp(−tξ))o) = ((exp tξ)ϕKλ )(o) ∼
t→+∞

(cos2 αλ)etλ(ξ).

But it is known (see [Hel84], § IV.6) that the same asymptotics is described in terms
of the Harish-Chandra c-function:

ϕKλ ((exp(−tξ))o) ∼
t→+∞

c(λ+ ρ)etλ(ξ),

where ρ = 1
2

∑
α∈∆+mαα is the half-sum of positive roots. This shows that

cos2 αλ = c(λ+ ρ).

5. Horospheres

Definition 6. A horosphere in X is an orbit of a maximal unipotent subgroup
of G.

Since all maximal unipotent subgroups are conjugate to U , any horosphere is of
the form gUx (g ∈ G, x ∈ X). Moreover, since X = Po and P normalizes U , any
horosphere can be represented in the form gUo (g ∈ G). In other words, the set
HorX of all horospheres is a homogeneous space of G. The following lemma shows
that the G-set HorX is identified with G/S if we take the horosphere Uo as the
base point for HorX.

Lemma 7 (see also [Hel94], Theorem 1.1, p. 77). The stabilizer of the horosphere
Uo is the algebraic subgroup

S = UM = U hM.
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Proof. Obviously, S stabilizes Uo. Hence the stabilizer of Uo can be written as
S̃ = UM̃ , where

M ⊂M̃ ⊂ K.
Since U is a maximal unipotent subgroup in G (and hence in S̃), it contains the
unipotent radical Ũ of S̃. The reductive group S̃/Ũ can be decomposed as

S̃/Ũ = (U/Ũ)M̃,

so the manifold (S̃/Ũ)/(U/Ũ) is compact. But then the Iwasawa decomposition
for S̃/Ũ shows that the real rank of S̃/Ũ equals 0, that is S̃/Ũ is compact. This is
possible only if U = Ũ . Hence,

S̃ ⊂ N(U) = P = S hA.

It follows from the Iwasawa decomposition G = AUK that S̃ ∩ A = {e}. Thus
S̃ = S. �

It follows from [VP72] that the G-module structure of R[HorX] is exactly the
same as that of R[X], but in contrast to the case of R[X], the decomposition of
R[HorX] into the sum of irreducible components is a X(A)-grading.

Let R[HorX]λ be the irreducible component of R[HorX] with highest weight λ,
so

R[HorX] =
⊕
λ∈Λ

R[HorX]λ.

Denote by ψSλ and ψKλ the highest weight function and the K-invariant function
in R[HorX]λ normalized by

ψSλ (sUo) = ψKλ (sUo) = 1.

To see that this is possible, note that the horosphere sUo is stabilized by sSs−1 =
θ(S). Hence the subspace V0 of functions in R[HorX]λ vanishing at sUo is θ(S)-
invariant. Its orthogonal complement is therefore S-invariant and must coincide
with R[HorX]Sλ . This implies ψSλ (sUo) 6= 0, so we can normalize ψSλ as asserted.
Since R[HorX]Kλ and R[HorX]Sλ are not orthogonal in R[HorX]λ ∼= R[X]λ, we
have R[HorX]Kλ ∩V0 = {0} and we can normalize also ψKλ as asserted. Notice that
the horospheres passing through o form a single K-orbit and therefore ψKλ takes
the value 1 at each of them.

Consider the X(A)-graded algebra grR[X] associated with the X(A)-filtration
of R[X] defined in Section 4. As a G-module, grR[X] can be identified with R[X],
but when we multiply elements ϕλ ∈ R[X]λ and ϕµ ∈ R[X]µ in grR[X], only
the highest term in their product in R[X] survives. Moreover, there is a unique
G-equivariant linear isomorphism

Γ: R[X] = grR[X]→ R[HorX]

such that Γ(ϕSλ) = ψSλ .

Proposition 8. The map Γ is an isomorphism of the algebra grR[X] onto the
algebra R[HorX].
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Proof. For any semisimple complex algebraic group, the tensor product of the irre-
ducible representations with highest weights λ and µ contains a unique irreducible
component with highest weight λ+µ. It follows that, if we identify the irreducible
components of R[X] with the corresponding irreducible components of R[HorX]
via Γ, then the product of functions ϕλ ∈ R[X]λ and ϕµ ∈ R[X]µ in grR[X] will
differ from their product in R[HorX] by some factor aλµ depending only on λ and µ.
Taking ϕλ = ϕSλ and ϕµ = ϕSµ , we conclude that aλµ = 1. �

Remark 9. The definition of Γ makes use of the choice of the base point o in X and
of the maximal unipotent subgroup U of G, but it is easy to see that all such pairs
(o, U) are G-equivalent. It follows that Γ is in fact canonically defined.

6. Proof of the Main Theorem

Consider the double fibration

G/M

p

yyssssssssss
q

&&MMMMMMMMMM

X = G/K G/S = HorX

Since all the groups involved are unimodular, there are invariant measures on the
homogeneous spaces X, HorX, G/M and on the fibers of p and q, which are the
images under the action of G of K/M and S/M , respectively. Let us normalize
these measures so that:

(1) the volume of K/M is 1;
(2) the measure on G/M is the product of the measures on K/M and X;
(3) the measure on G/M is the product of the measures on S/M and HorX.

(This leaves two free parameters.)
Consider the dual horospherical Radon transform

R∗ : R[HorX]→ R[X].

Combining it with the map Γ defined in Section 5, we obtain a G-equivariant linear
isomorphism

R∗ ◦ Γ: R[X]→ R[X].
In view of absolute irreducibility, Schur’s lemma shows that R∗ ◦ Γ acts on each
R[X]λ by scalar multiplication. The scalars are given by the following theorem:

Theorem 10. For ϕ ∈ R[X]λ,

(R∗ ◦ Γ)(ϕ) = c(λ+ ρ)ϕ,

where c is the Harish-Chandra c-function.

Proof. We test the map at the zonal spherical function ϕKλ ∈ R[X]λ. The map
Γ takes it to cλψ

K
λ for some cλ ∈ R. Since the function ψKλ has value 1 at the

horospheres passing through o, the map R∗ takes it to ϕKλ . Thus we have

(R∗ ◦ Γ)(ϕKλ ) = cλϕ
K
λ .
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0
ϕ(o) = 0

ϕ(o) = 1
ϕKλ

ϕSλ = ψSλ

αλ

ψ(sUo) = 1

ψ(sUo) = 0

ψKλ

Figure 2.

Identifying R[X]λ and R[HorX]λ via Γ, we now find cλ = cos2 αλ (see Figure 2),
and this proves the claim. �

Appendix A. The c-function

Because of the Iwasawa decomposition G = KAU , every g ∈ G can be written
as g = k expH(g)u for a uniquely determined H(g) ∈ a. Let Ū := θ(U), and let dū
denote the invariant measure on Ū normalized by the condition∫

Ū

e−2ρ(H(ū)) dū = 1.

The c-function was defined by Harish-Chandra [HC58] as the integral

c(λ) :=
∫
Ū

e−(λ+ρ)(H(ū)) dū,

which absolutely converges for all λ ∈ a(C)∗ satisfying Re(λ, α) > 0 for all α ∈ ∆+.
The computation of the integral gives the so-called Gindikin–Karpelevich product
formula [GK62] (see also [Hel84], Section IV.6.4, or [GV88], p. 179):

c(λ) = κ
∏

α∈∆++

2−λα Γ (λα)

Γ
(
λα
2

+
mα

4
+

1
2

)
Γ
(
λα
2

+
mα

4
+
m2α

2

) , (5)

where ∆++ denotes the set of indivisible roots in ∆+, λα := (λ, α)/(α, α), and
the constant κ is chosen so that c(ρ) = 1. This formula provides the explicit
meromorphic continuation of c to the entire space a(C)∗.

Formula (5) simplifies in the case of a reduced root system (i. e., when ∆++ =
∆+), since the duplication formula

Γ(2z) = 22z−1
√
π Γ(z)Γ(z + 1/2) (6)
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for the gamma function yields

c(λ) = κ
∏
α∈∆+

Γ(λα)
Γ(λα +mα/2)

, with κ =
∏
α∈∆+

Γ(ρα +mα/2)
Γ(ρα)

. (7)

If, moreover, all the multiplicities mα are even (which is equivalent to the prop-
erty that all Cartan subalgebras of g are conjugate), then the functional equation
zΓ(z) = Γ(z + 1) implies

c(λ) =
∏
α∈∆+

ρα(ρα + 1) . . . (ρα +mα/2− 1)
λα(λα + 1) . . . (λα +mα/2− 1)

.

Finally, suppose that the group G admits a complex structure. In this case the
root system is reduced and mα = 2 for every root α, and (7) reduces to

c(λ) =
∏
α∈∆+

ρα
λα
.

Example 11. For n-dimensional Lobachevsky space, there is only one positive
root α with mα = n− 1, so ρ = (n− 1)α/2. Let λ = lα. Then formula (7) gives

c(λ) =
Γ(n− 1)Γ(l)

Γ(n−1
2 )Γ(l + n−1

2 )
.

The semigroup Λ is generated by α. For λ = lα (l ∈ N), we obtain

cλ = c(λ+ρ) =
Γ(n−1)Γ(l+ n−1

2 )
Γ(n−1

2 )Γ(l+n−1)
=


(n+ l−1)(n+ l) · · · (n+2l−3)

22l−1 n
2 (n2 +1) · · · (n2 + l−2)

, n even,

(n−1
2 +1)(n−1

2 +2) · · · (n−1
2 + l−1)

2n(n+1) · · · (n+ l−2)
, n odd.
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