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ABSTRACT 

 A merged land air surface and sea-surface temperature reconstruction analysis is 

developed for monthly anomalies.  The reconstruction is global and spatially complete.  

Reconstructed anomalies damp towards zero in regions with insufficient sampling.  Error 

estimates account for the damping associated with sparse sampling, and also for bias 

uncertainty in both the land and sea observations.  Averages of the reconstruction are 

similar to simple averages of the unanalyzed data for most of the analysis period.  For the 

19th century, when sampling is most sparse and the error estimates are largest, the 

differences between the averaged reconstruction and the simple averages are largest.  

Sampling is always sparse poleward of 60º latitude, and historic reconstructions for the 

polar regions should be used with caution. 
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1. Introduction 

 Analysis of past climate variations is an important part of understanding climate 

change, and an important indicator of climate is the surface temperature.  Long analyses 

of the surface temperature are used for monitoring the present climate and for comparison 

between the present and past climatic variations.  Here an analysis of the merged surface 

temperature is produced.  The analysis uses a sea-surface temperature (SST) analysis 

over the ocean and a separate land-surface air temperature (LST) analysis over the land.  

Surface marine air temperatures are not used because of biases in the daytime 

temperatures (Rayner et al. 2003).  The two analyses are merged to form a monthly 

merged analysis, from 1880 to 1997. 

In recent years a number of groups have developed surface temperature analyses.  

For example, SSTs have been analyzed by Bottomley et al. (1990), Smith et al. (1996), 

Kaplan et al. (1998), and Rayner et al. (2003).  More recently, Smith and Reynolds 

(2003, 2004) applied improved reconstruction methods to the historical SST data, and 

produced an extended global reconstruction of SST anomalies.  These methods remove 

almost all noise by fitting the data to a set of covariance modes, based on a densely-

sampled period.  However, they damp the anomalies when and where data are too sparse 

for a reliable reconstruction.  Uncertainty estimates reflect that damping as well as 

uncertainty caused by possible biases in the observed data. 

Land-surface air temperatures (LSTs) have been analyzed by, for example, Jones 

et al. (1990), Peterson and Vose (1997), Hansen et al. (1999), Jones et al. (2001), and 

Jones and Moberg (2003).  Some details of updated LSTs and what they show about 

climate change are given by Parker et al. (2004).  Averages of these LST analyses are 



 4

often used to indicate climate change.  In addition, merged LST and SST anomaly data 

sets have been produced (e.g., Parker et al. 1994, Jones et al. 2001, Jones and Moberg 

2003).  All of these studies help to better explain historical temperature variations. 

 In this study we use the improved analysis and error-estimation methods of Smith 

and Reynolds (2004) to analyze both SST and LST anomalies, and to then merge them to 

form a global analysis.  The merged analysis is spatially complete, although anomalies 

are damped in regions with sparse sampling.  For example, at very high latitudes there is 

little sampling and anomalies are usually damped in the Arctic and Antarctic regions.  

However, when sufficient data are available they are analyzed in those regions, and the 

analysis is formally global (90ºS-90ºN).  In addition, the uncertainty estimates for the 

reconstruction are produced. 

 This merged reconstruction contains a number of improvements over many earlier 

studies, including the following.  1) The merged analysis is globally complete.  Spatial 

covariance modes are used to interpolate anomalies in under-sampled regions.  

Covariance modes are computed using the relatively dense modern sampling.  However, 

we limit our covariance functions to be either entirely over land or entirely over water, 

and we also limit their spatial size, to minimize over interpolation of anomalies.  2) The 

analysis incorporates the latest updates in the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS, Woodruff et al. 1998) and the Global Historical Climate 

Network (GHCN) data.  3) The analysis variance is found to have less dependence on 

sampling compared to some earlier analyses.  This is because the covariance modes 

incorporated in the analysis only need to be partially sampled at any time in order to 

contribute to the analysis.  4) Uncertainty estimates indicate when and where the analysis 
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is most reliable.  The uncertainty estimates can also be computed for spatial and/or 

temporal averages of the analysis, to indicate how the averaging affects uncertainty. 

 This merged analysis provides another tool to help define long-term temperature 

variations over the 20th century, and to indicate when and where the analyzed temperature 

variations are significant.  This analysis is also being operationally extended at the 

National Climatic Data Center, so that future variations may be compared to historical 

variations.  For some applications there may be advantages to having a spatially-complete 

analysis such as this.  For example, modeling studies using surface conditions as a 

boundary may be easier to conduct.  In addition, the uncertainty estimates help to better 

define the possible range of climate change over the 20th century, as discussed below. 

 

2. Data 

 The primary SST data used for this study are the ICOADS SST observations 

release 2, with updates through 1997 (Slutz et al. 1985, Woodruff et al. 1998).  The 

individual observations are screened using a quality control test, and those that pass are 

averaged to monthly and 2º spatial super observations.  Screening is done by comparing 

individual anomalies to a spatial-temporal local analysis of anomalies.  Values close to 

the local analysis value are retained (see Smith and Reynolds (2003, 2004) for details 

about the quality-control methods).  Super observations are defined as the average of all 

input data over a given grid box for a given month.  For SSTs prior to 1942, the bias 

corrections of Smith and Reynolds (2002) are applied to correct for changes in 

measurement techniques.   
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 Before 1942 most SST measurements were from ships that used buckets to bring 

samples of sea water onto the deck, where temperature measurements were made.  

Afterwards it became more common to measure the temperature of the engine-intake sea 

water.  Adjustments to the pre-1942 SSTs were developed by Folland and Parker (1995), 

and by Smith and Reynolds (2002).  However, further analysis of the ICOADS release 2 

SST by Folland (personal communication, 2003) indicates that for 1939-1941, the release 

2 data are biased warm relative to the data used by Folland and Parker (1995).  The 

release 2 data contain additional data, from different sources and with different bias 

characteristics compared to the Folland and Parker (1995) SST data.  Those differences 

are minimized if the bias correction is reduced linearly to zero beginning in January 1939 

(no adjustment to the bias correction) and ending in December 1941 (zero bias 

correction).  Because we use the release 2 data, we apply this linear reduction to the 

Smith and Reynolds (2002) bias adjustment from 1939 to 1941. 

Anomalies of the SST super observations are formed by subtracting off the 

monthly Smith and Reynolds (1998) 1961-1990 SST climatology.  Because of our desire 

to eliminate noise from the reconstruction, those anomalies were subjected to a second 

quality-control screening to remove extreme anomalies (Smith and Reynolds 2004).  In 

addition to ICOADS, we use the combined satellite and in situ SST analysis of Reynolds 

et al. (2002) to compute analysis statistics.  The SST and their analysis are more fully 

described by Smith and Reynolds (2003, 2004). 

 The land-surface air temperature (LST) data used for reconstruction are the 

GHCN temperatures (Peterson and Vose 1997).  To develop the gridded GHCN, the 

anomalies of individual GHCN stations are formed with respect to 1961-1990.  Those 
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anomalies are then averaged to monthly and 5º spatial super observations.  The GHCN 

data are homogeneity adjusted to minimize artificial variations, such as from moving the 

location of a station (Peterson et al. 1998).  These LST data are sufficient for defining 

large-scale temperature variations, although many details can be lost because of the 

relatively coarse grid.  The LST analysis was performed on this 5º grid, and the 2º SST 

analysis was averaged to this same 5º grid.  In addition, the unanalyzed 2º super 

observation anomalies were averaged to the 5º GHCN grid for comparisons, as discussed 

below.  The unanalyzed data are the monthly super observations that are used as input for 

the reconstructions. 

 Sampling of SST tends to increase over the analysis period, although there are 

dips in the sampling associated with the two world wars (Fig. 1).  The SST sampling is 

consistently best after 1950.  For LST, the sampling increase with time is monotonic up 

to about 1980, when it begins to decrease slightly.  That recent decrease in LST sampling 

results from a time lag for the inclusion of some data into the GHCN and station drop 

outs.  For the same reasons a similar but smaller decrease is evident in the ICOADS SST 

sampling.  The LST percent of in situ sampling is often lower than for SST and even in 

recent years is not much over 60% because of persistent under-sampled land regions, 

notably Antarctica, central Africa and central South America. 

 

3. Reconstruction 

 The historical SST-reconstruction method used in this study is described in detail 

by Smith and Reynolds (2004).  Reconstruction methods are also described in some detail 

in Appendix A, and they are briefly reviewed here. 
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 The reconstruction is separated into separate low- and high-frequency 

components, which are added for the total reconstruction.  First the low-frequency is 

reconstructed using spatial and temporal filtering of the available data.  The time filter of 

fifteen years defines the low frequency as approximately decadal scale or longer.  That 

low-frequency component is subtracted from the data before reconstruction of the high-

frequency component using spatial covariance modes, which includes interannual and 

shorter-period variations.  The covariance modes are spatially complete.  However, dense 

enough data for computing spatially-complete modes is limited to the recent period.  

Interannual or shorter-period variations, such as ENSO, can be represented using data 

from the recent densely sampled period.  Lower-frequency variations may not be well 

represented by data from the most recent period.  This led us to develop a method that 

separately reconstructs the low- and high-frequency anomaly. 

Our SST anomaly base period data are the 1982-2002 Reynolds et al. (2002) in 

situ and satellite SST analysis.  There are 130 spatial modes used for the SST high-

frequency analysis.  Sea-ice information from Rayner et al. (2003) is merged with the 

SST reconstruction to adjust the high-latitude temperatures.  The low- and high-

frequency variations are separately reconstructed.  Localized spatial covariance modes 

are computed from the recent base-period anomalies, and are used for the high-frequency 

reconstruction.  Simple methods, described below, are used to reconstruct the low-

frequency variations. 

Because SST observations are often sparse, we include SST anomalies for three 

consecutive months, centered on the analysis month, in our high-frequency analysis.  

When there is a super observation for a 2º square for the analysis month, we use that 
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anomaly.  When there is no super observation available, we use the average of the 

anomalies from the previous and following month.  This is justified because SST 

anomalies on the scales we are resolving typically persist for more than a month, as 

discussed below. 

 The historical LST reconstruction uses essentially the same methods, outlined in 

Appendix A.  The base-period data used to compute the high-frequency modes over land 

are the GHCN data for 1982-1991.  That period overlaps the SST base period and has 

good overall sampling (Fig. 1).  After 1991 there are slightly fewer GHCN data, as 

discussed above.  To make the modes continuous over all land regions, we use optimum 

interpolation (OI, e.g., Reynolds and Smith 1994) to fill in land regions without data.  

The LST spatial covariance modes are based on these OI-filled fields of GHCN data.  In 

the future, we hope to have an improved modern-period LST analysis that blends in situ 

and satellite data.  We considered using NCEP/NCAR reanalysis data to define the LST 

modes.  Those data are blended and assimilated into an atmospheric model, and 

anomalies based on those data are generally consistent with observed anomalies.  

However, because the filled recent-period LST anomalies adequately span the sub-

decadal variance, and also because we plan to update the LST analysis using blended in 

situ and satellite LST data, we decided against introducing an additional data set at this 

time. 

Because LST observations are fixed and not moving (in contrast to most SST 

observation platforms), there is little need for using three months of pooled data, as we 

did with the SST reconstruction.  In addition, the LST anomalies are less persistent than 
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the SST anomalies, discussed below (see Table 1).  Therefore, for the LST high-

frequency reconstruction we use only the LST anomalies for the analysis month. 

 The SST base-period is both longer and better sampled than the LST base period 

because of the availability of more than twenty years of satellite SST retrievals.  In the 

future we hope to improve the LST database by incorporating more observations, 

including satellite-based LST estimates.  However, we are able to compute 60 LST 

modes using the available data, and it is unlikely that additional base-period data will 

change our major results. 

 Anomaly persistence is stronger in SST anomalies than in LST anomalies, as 

shown by the autocorrelation of the covariance modes.  The one-month autocorrelation 

for each mode is computed from the time series of weights for each mode, reconstructed 

using the data since 1950 when all modes are defined most of the time.  Table 1 shows 

that the SST modes typically have an autocorrelation between 0.5 and 0.75 

(corresponding to e-folding times of 1.5 to 3.5 months), while for LST the autocorrelation 

is typically below 0.25 (corresponding to e-folding times less than a month).  Thus, the 

LST analysis can make little use of persistence when a station disappears.   

 The global ocean area is roughly twice as large as the global land area, and there 

are roughly twice as many possible SST modes compared to LST modes.  Land 

variations are often more complicated than sea-surface variations because of different 

elevations and land types.  However, this reconstruction has a coarse spatial resolution, 

and many variations associated with changes in land types have smaller scales.  Thus, a 

LST reconstruction with finer resolution may require more spatial modes to resolve 

variations associated with changes in elevation or land type.  For each month, modes that 
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have 25% or more of their variance sampled (as defined in Smith et al. 1998 and Smith 

and Reynolds 2003) are selected for the high-frequency reconstruction.  Using modes 

with less of their variance sampled could introduce noise into the analysis.  When a mode 

is adequately sampled, it will filter out random noise because random noise will not fit 

the spatial pattern of any physically-based mode.  However, if a mode is under-sampled 

then noise could influence the weight computed for that mode.  Using testing we found 

that 25% sampling is adequate for filtering out nearly all of the data noise. 

For the 1880-1997 period, the number of LST modes selected increases gradually 

until about 1950 (Fig. 2).  After 1950 near the maximum number of LST modes are 

selected for most of the remaining period, with a slight decrease in the 1990s.  For SST 

modes, nearly all modes are selected for most of the 20th century, except during the two 

world wars when sampling was interrupted. 

 The separate historical SST and LST anomaly reconstructions are merged to form 

the global-anomaly reconstruction.  Over most regions, the two are merged by weighting 

the SST and LST reconstruction by the percentage of ocean and land area in the 5º 

region.  However, since we are most interested in surface air temperature anomalies, it is 

not appropriate to use SST anomalies in regions covered by ice.  Therefore, the historical 

fractional ice cover developed by Rayner et al. (2003) is used to further adjust the SST 

anomalies before merging with LST anomalies.  If there is no ice then no further 

adjustment is done (Smith and Reynolds 2004).  As the fraction of ice cover increases 

from zero to one, the merged SST anomaly is linearly damped toward zero.  This treats 

ice-covered ocean regions the same as land regions with no sampling.  In practice, there 

is usually little or no sampling in regions with ice, so those regions have reconstructed 
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anomalies near zero to begin with.  Thus, this adjustment has little effect on the merged 

temperature anomaly. 

 The method for estimating errors in the merged analysis is described in Smith and 

Reynolds (2004), and summarized in Appendix B.  Errors account for historical gaps in 

sampling and for bias uncertainties in the data.  For the first half of the analysis period, 

the largest component of the reconstruction error is from the sampling error of the low-

frequency component.  This is because there is not enough sampling in that period to 

resolve a trend over much of the globe.  Comparisons between averages of our merged 

analysis and simple averages of the data, discussed below, show that our error estimates 

generally bracket the range of comparison estimates. 

 As an example of the input anomalies and the reconstruction, we show the merged 

input data and the merged reconstruction averaged for 1900-1909 (Fig. 3).  For the 

unanalyzed anomalies, we require that at least 24 months be sampled over the decade.  

With less sampling the region is left blank in the unanalyzed average.  The average 

reconstruction is broadly consistent with the average of the input data, but the pattern is 

smoother and the anomalies tend to be damped in the reconstruction.  Over regions with 

little or no input data the reconstruction anomaly is near zero.  Note that the analysis uses 

interpolation to smoothly fill those data-sparse regions.  Modest size data-void regions 

surrounded by relatively large anomalies, such as the North Pacific mid latitudes and over 

Greenland, are filled with relatively strong anomalies, by interpolation using the spatial-

covariance modes. 

 The unanalyzed anomalies are sometimes stronger than the analyzed anomalies.  

For example, in the 1900-1909 average of unanalyzed anomalies, there are strong local 
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anomalies off the east coast of Asia and North America.  Averaging the analyzed 

anomalies damps the magnitude of those anomalies.  One reason for stronger unanalyzed 

anomalies is that when data are sparse, the analyzed anomaly will damp towards zero.  

Thus, isolated anomalies inconsistent with neighboring anomalies are damped in the 

analysis.  Of course one purpose of the analysis is to reduce noise on monthly scales.  

Thus, there is a balance between reducing monthly noise and producing a smoothed 

analysis. 

Averaging the damped anomalies weakens the decadal average.  However, even 

with complete sampling the analysis filters the data.  Since part of the analysis is 

performed by fitting data to a set of large-scale modes (generally covering spatial regions 

of 20o or larger), variations on smaller scales tend to be filtered.  In addition, variations 

not represented by the modes will also be filtered. 

 

4. Results 

 To illustrate historical temperature variations in the reconstructions along with 

their uncertainty, time series of averages with 95% confidence intervals are shown.  

Annual and 60ºS-60ºN averages are computed for the SST anomalies, the LST anomalies, 

and the merged anomalies.  In addition, simple averages are computed of the unanalyzed 

data used for the reconstructions, and of comparable merged data produced by the U.K. 

Met Office Hadley Centre and at the Climate Research Unit (CRU) of the Univ. of East 

Anglia (Jones and Moberg 2003).  The Hadley Centre/CRU temperature (HadCRUT, 

version 2) simple averages (as updated by Jones and Moberg 2003) are displayed for 

comparison with the reconstruction averages. 
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The simple averages are area weighted averages of the 5º super observations.  

Since the super observations are only defined where there is sampling, which is most 

dense in the Northern Hemisphere, area-weighted averages for the Northern and Southern 

Hemispheres are first computed separately, and then they are then averaged.  Each 

hemispheric average is weighted by the total area in each hemisphere (of land or sea or 

merged).  Averaging the hemispheres separately first and then area weighting the results 

keeps the better-sampled Northern Hemisphere from artificially dominating the averages. 

 The average reconstruction of SST anomalies from 60ºS-60ºN (Fig. 4) indicates 

warming through most of the 20th century.  The SST warming occurs in two parts, the 

first before 1940 and the second after 1970, with a roughly stationary period between 

1940 and 1970.  The uncertainty estimates indicate that the 19th century anomalies should 

be used with caution.  Part of the 19th century uncertainty is due to bias uncertainty, 

which could be reduced using future bias corrections that incorporate a better 

understanding of the historical bias.  However, much of the 19th century uncertainty is 

due to the effect of sparse sampling on the low-frequency error estimate.  In any case, the 

20th century warming is significant.  Simple averages of the ICOADS SST anomalies are 

consistent with the reconstruction, although the reconstruction anomaly is sometimes 

slightly weaker due to damping.  The Hadley Centre SST anomaly simple average is also 

generally consistent with the reconstruction.  Hadley Centre SSTs are slightly warmer 

than ICOADS in the 1990s.  Most 1990s differences are in western-boundary currents off 

the east coasts of North and South America, between about 30º-60º latitude, with largest 

differences off of South America.  Differences in data quality control and screening of 

suspect observations in those regions could account for much of the difference.  For most 
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of the period the simple averages are within the reconstruction 95% confidence interval.  

The 60ºS-60ºN average SST anomaly and error estimates are similar to those computed 

by Smith and Reynolds (2003).  For the recent period, the uncertainty is similar to the 

ship-buoy SST bias computed by Reynolds et al. (2002). 

 The average reconstruction of LST anomalies (Fig. 5) also indicates warming 

through the 20th century.  There is gradual LST warming until about 1940, when the trend 

flattens out, and a second strong warming trend begins about 1970.  These LST trends are 

consistent with the SST trends, and this similarity was also noted by Folland et al. 

(2001b).  However, there is more uncertainty in the LST average, especially before 1940 

when much of the land areas are under sampled.  Since we analyzed LST and SST 

anomalies separately, the similarity between the two is derived from the data, and is not 

an artifact of the analysis method.  Variations in the LST simple averages in the 19th and 

early 20th century indicate that these large uncertainty estimates are justified.  The 

Jones/CRU LST anomalies are cooler than the reconstruction early in the record, when 

sampling is sparse and our reconstruction is more damped.  After 1930 those simple 

averages are more consistent with the reconstruction. 

 The merged reconstructed anomalies (Fig. 6) indicate a blend of the SST and LST 

anomalies, weighted heavily towards the SST.  Note that here the 60ºS-60ºN average is 

displayed.  This is similar to the full global mean, both because this includes most of the 

earth and because there are few data outside this region.  Including the polar regions 

would, however, increase the uncertainty estimates.  As with the SST, the simple 

averages are generally consistent with the reconstruction average.  The 20th century 

warming is about 0.6ºC.  Because of the uncertainty estimates, the warming can only be 
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confidently established between 0.3ºC and 0.9ºC.  Compared to the global average of 

Folland et al. (2001, 2001b), our average is similar over most of the analysis period.  

However, our 19th century negative anomalies are slightly weaker than theirs, because 

their analysis is not damped when sampling is sparse.  Both this study and Folland et al. 

(2001, 2001b) indicate warming of about 0.6ºC over the 20th century.  However, our 

uncertainty estimate for the warming is ±0.3ºC, slightly large than their estimate of 

±0.2ºC. 

 Our uncertainty estimates are larger than the Folland et al. (2001) estimates 

because of our large low-frequency error estimate.  In their estimate, large-scale spatial 

modes are used to estimate both the high- and low-frequency spatial covariance, making 

their low-frequency sampling error much smaller than for our more conservative method 

of estimating the low-frequency analysis.  The global error estimates of Jones et al. 

(1997) are also larger than the Folland et al. (2001) estimates, but smaller than the 

estimates of this study. 

 Some idea of where the reconstruction is most and least reliable for different 

periods can be obtained by correlations with comparable analyses.  Here we correlate 

reconstruction anomalies with those from the HadISST analysis over the oceans (Rayner 

et al. 2003) and Jones and Moberg (2003) over land.  The HadISST analysis is spatially 

complete, as is the reconstruction, but the Jones land data have gaps where there are no 

stations.  Thus, there are some gaps in the land correlations.  Correlations are computed 

using anomalies from all months for approximately 30-year periods: 1880-1909, 1910-

1939, 1940-1969, and 1970-1997.  Although not a direct estimate of error in either 

analysis, these correlations indicate where and when sampling is sufficient for the 
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different analyses to converge.  Such convergence may increase user confidence in the 

reliability of the reconstruction. 

 As expected, correlations generally increase with sampling from the earliest to the 

most recent period (Fig. 7).  In all periods the correlations are high over the eastern 

tropical Pacific and tropical Atlantic, and over North America and Europe.  In the earliest 

period there is low correlation over the western tropical Pacific, where variance is always 

much lower than in the eastern tropical Pacific.  For most of the reconstruction period the 

correlation is also low south of 40ºS, where dense SST sampling has only become 

available in recent decades from drifting buoys and satellites (Reynolds et al. 2002).  

Correlations also tend to be low in all periods for most of Africa, northern South 

America, and Greenland, which have persistently sparse sampling.  For the 1910-1939 

period, most of the Northern Hemisphere land area has a high correlation, and oceanic 

correlations are slightly larger compared to 1880-1909.  Larger increases over oceans are 

evident when going from 1910-1939 to 1940-1969, due to increased SST sampling after 

about 1950.  The change in correlations from one period to another is broadly consistent 

with changes in error for the averages (see Figs. 4 to 6).  Both are heavily influenced by 

the available sampling. 

 To better identify a few climate signals, the correlation between the reconstruction 

and a one-predictor linear model is computed based on the reconstruction.  We construct 

a one predictor linear regression model for surface temperature anomalies.  The given 

climate-signal index is used as the predictor in this statistical model.  Correlations 

between the predicted temperature anomalies and the reconstruction are similar to linear 

correlations between the climate index and the reconstruction. 
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For these comparisons only boreal-winter (Dec-Mar) averaged anomalies are 

used.  Comparisons are over the 1900-1997 period (the nominal year is the year of 

January).  Climate indices used are: the Southern Oscillation Index (SOI) provided by the 

National Centers for Environmental Prediction/CPC (Chelliah 1990); the North Atlantic 

Oscillation (NAO) as defined by Hurrell (1995); and the Pacific Decadal Oscillation as 

defined by Mantua et al. (1997).  For these indices, climate signals are strongest in boreal 

winter, so these seasonal averages should emphasize the correlations.  

 Among the three (Fig. 8), correlations with the SOI are strongest.  The NAO is 

related to Eurasian winter temperatures.  Over the North Pacific the PDO correlations are 

somewhat similar to the SOI correlations.  However, the PDO has a strong low-frequency 

component. 

 

5. Summary and Conclusions 

 A merged land and sea surface temperature reconstruction is developed.  The 

reconstruction produces globally complete monthly surface temperature anomalies.  

These fields can be averaged spatially or temporally as desired.  In addition, methods of 

estimating errors in the surface temperature reconstruction are produced, and examples 

are given. 

 For the near-global average, the average of the reconstruction is similar to that 

produced by other studies for most of the analysis period.  In the 19th century averages of 

the analyzed anomalies are weaker than in some other studies because of damping in the 

reconstruction when data are sparse. 
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 Several possible improvements may be made to the merged reconstruction.  

Improvements in the SST bias corrections applied to data before 1942 could decrease 

uncertainty in that period.  More data for anytime before 1950 could decrease sampling 

errors for both the land and sea analysis.  In addition, an improved satellite and in situ 

analysis of land-surface air temperatures for the recent period could improve the statistics 

used for the land analysis. 

 Error estimates for the merged analysis are larger than those estimated by others.  

For example, Folland et al. (2001) estimate that the sampling error for the global average 

is less than in this study.  The larger errors in this study are due to the simple methods 

used for the low-frequency analysis.  Here the low-frequency analysis is only resolved if 

there are sufficient local data for a large scale (10º or 15º spatial) average and enough 

data for low-frequency (15-year) filtering.  Otherwise the low-frequency analysis damps 

to zero anomaly.  In Folland et al. (2001), both the low and high frequencies are analyzed 

together using a set of spatial modes with much larger scales (spatial scales generally > 

15º), and less sampling is needed to resolve their low-frequency variation.  It is not clear 

which approach is better.  It may be possible to span most low-frequency variations using 

a set of modes based on 50 years.  However, there is no guarantee that the more recent 

low-frequency variations are not characteristic of the entire reconstruction period.  In 

addition, differences between simple averages of the data and averages of the analysis are 

sometimes about as large as our 95% uncertainty estimates, indicating that the magnitude 

of the estimated errors may be justified. 
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Appendix A. Reconstruction Methods 

 The reconstruction is done in two separate parts: a low-frequency reconstruction 

and a high-frequency reconstruction.  A low-frequency anomaly reconstruction is first 

produced using simple methods.  Those simple methods do not depend on stationary 

statistics.  This is done because the base period that statistics are computed from is 

relatively short compared to the analysis period, and thus may not be long enough to span 

all low-frequency variations.  Simple methods may better preserve the historical low-

frequency variations.  Subtracting the low-frequency analysis from the data yields the 

high-frequency residuals.  Those residuals are analyzed separately by fitting them to a set 

of spatial modes.   

The high-frequency modes represent seasonal to interannual variations.  The 

statistical structures of the interannual variations are assumed to be fully represented by 

the base-period data that the modes are computed from.  Here our base periods are ten to 
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twenty years long.  The total reconstruction is the sum of the low- and high-frequency 

analyses.  Details of the reconstruction methods are given in Smith and Reynolds (2003, 

2004).  Here a description is given of how the methods are applied in this study.  

 The low-frequency analysis is performed by averaging and filtering the 

temperature anomalies.  First the anomaly monthly super observations are spatially 

averaged.  For SST anomalies the 2º monthly super observations are averaged to a 10º 

grid, provided that there are at least three 2º super observations defined for the month.  

For LST anomalies the 5º monthly super observations are averaged to a 15º grid.  For 

each year, monthly values are used to produce an annual average, provided that there are 

at least 4 monthly averages defined.  These minimum-data requirements are to ensure that 

there are enough data to damp random noise and resolve the average.  The annual 

averages are then smoothed and expanded slightly using spatial binomial filters.  The 

resulting smoothed annual values are filtered using a 15-year median filter.  Where there 

are not enough annual averages to compute a median, an anomaly of zero is assigned.  

Spatial and temporal binomial filters are then applied to this to further smooth the filled 

low-frequency estimate. 

 These procedures produce a low-frequency anomaly analysis that retains large-

scale variations supported by the network of observations, without imposing any 

stationary structures on the variations.  However, the low-frequency analysis is limited by 

the available sampling, which is sparse throughout the early part of the historical record.  

Because an anomaly of zero is assigned where there are too few data, these procedures 

tend to damp the low-frequency anomaly early in the record. 
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 We do not interpolate the low-frequency analysis to fill all unsampled regions 

because we can not be certain that the correlation scales are always large enough to allow 

this.  We chose to not impose a large-scale correlation structure on the low-frequency 

variations.  However, the low-frequency correlation structure may have very large scales, 

as indicated by studies using more recent data to estimate them (e.g., Folland et al. 2001). 

 The high-frequency anomaly is defined as the difference between the full 

anomaly and the low-frequency anomaly: R(x,t) = Anom(x,t) – LF(x,t).  Those residuals 

are fit to a set of spatial-covariance modes to find a weight for each mode.  For the SST 

analysis the base period data used to compute the modes are the in situ and satellite OI 

analysis of Reynolds et al. (2002), from 1982-2002.  For LST the base period data are the 

GHCN data for 1982-1991.  Because the in situ GHCN sampling becomes less dense in 

the 1990s, due to station drop outs and delays in obtaining data, we use this shorter period 

to keep the modes more spatially complete.  The weighted sum of those modes defines 

the high-frequency analysis, 
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where Em(x) is the spatial mode, defined for m = 1, …, N modes, and wm(t) is the weight 

for the mode, computed independently from the available data at each time.  To compute 

the set of weights for the modes, the data are fit to the set of modes, to minimize the 

mean-squared difference between the fit and the data at locations where there are 

observations.  This is done by solving the system of equations 
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Here δ(x) = 1 if there is an observation at spatial position x, and 0 otherwise, and a(x) is 

the area weight for position x.  There are K spatial positions over the reconstruction area. 

Before computing the weights, sampling for each mode is tested.  If less than a 

critical percentage of the variance associated with the mode is sampled, then that mode is 

not used for the month’s reconstruction (see Smith et al. 1998).  Using a mode not 

adequately sampled can cause instabilities because of data noise.  We find that rejecting 

modes with less than 25% of their variance sampled produces a consistently stable 

analysis for both SST and LST.  For the set of adequately-sampled modes, a weight for 

each mode is found by solving (A2), and the high-frequency analysis is then computed 

using (A1). 

Within periods when the low-frequency analysis is greatly damped because of 

sparse data, the available residuals may contain some low-frequency variance.  To the 

extent that the low-frequency variance can be projected onto the available modes, that 

low-frequency variance in the residuals will be analyzed using the modes. 

 Sampling may change over time, so a mode may be adequately sampled one 

month and not the next.  However, there is a certain amount of persistence associated 

with each of these modes.  Some modes have greater persistence and some less, as 

indicated by their one-month lag autocorrelation (C1).  We compute the autocorrelation 

for each mode using the weights in the well-sampled modern period.  Those 

autocorrelations are used to define the weights for modes in the months when they are not 

adequately sampled. 

 For each mode, the weights for under-sampled months are computed by damping 

the weights from the nearest adequately-sampled months.  The damping factor is C1
k, 
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where k is the number of months from the under-sampled month to the nearest 

adequately-sampled month.  Table 1 indicates the magnitude of the correlations for both 

SST and LST.  Typical SST correlations are about 0.7, while LST correlations are 

typically smaller, about 0.2.  By looking for the nearest adequately-sampled month in 

both the forward and backward directions, temporal covariance in both directions is 

included.  If the autocorrelation is large then that mode’s weight can persist from months 

with good sampling into months with poor sampling.  Modes that are not adequately 

sampled for a long time will have weights that damp to zero.  The directly computed 

weights from adequately-sampled months are combined with the weights estimated from 

autocorrelations.  Since the LST modes have low autocorrelation, only the SST weights 

were extended using their autocorrelation.  This set of weights is used to compute the 

high frequency analysis using (A1). 

 For both SST and LST high-frequency analyses, the modes used are defined using 

Empirical Orthogonal Teleconnections (EOTs, van den Dool et al. 2000).  To compute 

EOTs first a base point is found.  The base point is the point with the greatest spatial 

covariance with all other points on the field.  The covariance pattern for that mode is 

computed and subtracted from the data.  The process is then repeated to find the next 

mode. The EOTs are similar to rotated empirical orthogonal functions (EOFs).  However, 

EOTs are easier to modify and control.  In particular, we are concerned that there may be 

very large-scale teleconnections in the base period which may not be common in all 

details to all historical periods.  Using larger-scale EOFs would give a better 

reconstruction for the base period, but in more remote decades there is a danger of over 

specification from sparse data.  Therefore, we localize the EOTs by damping the 
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covariance pattern at distances of more than 5000 km from the base point.  At distances 

of between 5000 km and 8000 km, the pattern is damped linearly from full strength to 

zero.  Teleconnections are not allowed at distances greater than 8000 km. 

 

Appendix B. Reconstruction Error Estimates 

 Analysis errors can be separated into three independent types of error (e.g., Kagan 

1979): random error, sampling error, and bias error.  The total analysis error variance 

may be written as their sum 

    
2222
BSR εεεε ++= .     (B1) 

The subscripts R, S, and B indicate random, sampling, and bias error variances, 

respectively.  Random error variance in an analysis, gR
2, is from random errors in the 

input data.  In this analysis, those errors are almost entirely filtered out.  Tests have 

shown that for this analysis method, the signal/noise variance ratio for SST is about 30 

(see Smith and Reynolds 2003, 2004, ratios were computed over approximately 30-year 

periods and averaged 60ºS-60ºN).  For monthly LST analysis the ratio should be even 

larger.  This is because the continental LST signal tends to be larger than the marine SST 

signal, and the monthly-average LST anomalies are constructed from averaging more 

individual observation than is typical for SST.  The relatively small random error 

variance allows simplification of the error estimate, as discussed below.  Sampling error 

variance, gS
2, reflects the density and distribution of observations.  Bias error variance, 

gB
2, is due to systematic biases in the data or from the analysis method. 

 If we let T be the true anomaly and we let Ta be the reconstruction anomaly, then 

we may express the error variance as 
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where the brackets denote averaging.  Here the reconstruction variance is σTa
2 and the 

true anomaly variance is σT
2.  The correlation between the true anomaly and the 

reconstruction anomaly is rT,Ta.  Furthermore, we may express the reconstruction 

anomaly, Ta, in terms of the true anomaly, T,  

     ,RTTa ++= βα     (B3) 

where α and β are constants, and R is the random noise.  Thus, the reconstruction 

variance can be expressed as  

     
2222
RTTa εσασ += , 

which is the sum of the signal and noise variance.  This allows the correlation to be 

expressed as 
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As discussed above, the noise error variance is much smaller than the signal variance for 

this analysis.  Thus, the correlation is approximately 1 for this reconstruction technique.  

This allows us to simplify (B2) and approximate the error as 

   ( ) ( ) ( )222
aTaTa TTTT −+−≈− σσ .  (B4) 

On the right-hand side of (B4), the first term is sampling error variance, gS
2 = (σT - σTa)2, 

and the last term is bias error variance, gB
2  = (<T> - <Ta>)2. 

 If we could estimate the true anomaly variance for any time, then we could use 

(B4) to estimate the sampling error variance.  However, because of changing low-
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frequency variations, the true variance may be difficult to estimate in all periods.  The 

high-frequency component of the true variance may be approximately stationary.  

Therefore, we use the expression 

    
( )22 )( hfTaThfS σσε −=

    (B5) 

to compute the high-frequency (hf) sampling error.  The true hf variance is estimated 

from the detrended base-period data.  The reconstruction hf variance is computed directly 

from the hf analysis.  For each year the low-frequency sampling error is estimated by 

sampling the trend using the observed sampling, with sampling held constant over 100 

simulated years.  The way that the hf variations evolve is not important, so long as its 

variance is approximately stationary.  However, there are not dense enough data through 

the historical period to know for certain that the hf variance is unchanged. 

 The low-frequency sampling error is computed by estimating how well the 

available sampling resolves a linear trend.  A trend of 0.5EC/100 years is assigned 

everywhere on the globe.  That is approximately the magnitude of the global-average 

temperature trend over the 20th century.  The actual temperature trend is not constant 

either spatially or temporally, and although the measured trend is usually positive, it is 

negative in some regions at some times (e.g., Folland et al. 2001b).  However, for 

estimation of the error the actual value of the trend is not important.  The magnitude of 

the trend needs to about right, so that the sampling error for a trend of that magnitude can 

be estimated.  In times when the typical trend is weaker than the assumed value, as it may 

be before 1900 based on the available data, this may overestimate the sampling error.  In 

periods when the trend is particularly strong the error could be underestimated.  In 

addition, since some parts of the low-frequency variance may fit the large-scale modes 
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developed for the high-frequency analysis, some low-frequency variations missed by the 

simple analysis could be picked up by the high-frequency analysis.  Thus, the error 

estimate for the low-frequency may be too large. 

For the SST only, the low-frequency sampling error computed using the method 

of this study was compared to the comparable estimate of Smith and Reynolds (2003).  

That estimate was based on how well the low-frequency SST in a climate model would 

be sampled using the historical network of SST observations.  The climate model has 

increasing greenhouse gases, and the overall temperature change is similar to the 

observed changes (see Smith and Reynolds 2003 for more details).  For global SST, the 

simpler low-frequency error estimate used here is nearly the same as the model-based 

error estimate of Smith and Reynolds (2003).  This gives us confidence that our low-

frequency error estimates are reasonable. 

 The SST bias error variance is computed from differences between the Folland 

and Parker (1995) and the Smith and Reynolds (2002) bias-correction estimates for the 

pre-1942 period.  From 1942 on, the SST bias is given a minimum standard error of 

0.015EC, based on typical differences between all observations and ship-intake 

temperatures in ICOADS data (Smith and Reynolds 2003).  In addition, to account for the 

1939-1941 adjustment, we increase the difference in that period by a factor proportional 

to the magnitude of the adjustment.  With maximum adjustment the factor is 2 in 

December 1941. 

For LST, bias errors may be caused by urbanization over the 20th century, and 

uncertainty due to the use of non-standard thermometer shelters before 1950 (Jones et al. 

1990, Parker 1994, and Folland et al. 2001).  Here we use the LST bias uncertainty 
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estimates of Folland et al. (2001).  Peterson et al. (1999) and Peterson (2003) suggests 

that the urbanization uncertainty may be less than that estimate.  Thus, we may be 

overestimating that component of the error. 

 The SST error variance (ES
2) and LST error variance (EL

2) components are 

computed separately.  They are merged using the relationship 

LSSLSLSSLLm rEEAAEAEAE 222222 ++= ,   (B6) 

where AL and AS are the fractional areas of land and sea, respectively, and rLS is the 

correlation between the land and sea errors.  For both SST and LST, the Sampling errors 

are largest early in the period and smallest late in the period, since sampling increases 

over the period for both.  Thus, we may assume that sampling errors are correlated.  Here 

we simplify the merged error variance estimate by assuming that the correlation between 

sampling errors is 1.  However, bias errors on land and sea are caused by completely 

different processes, so we assume that for bias errors the correlation is 0.  We use (B6) to 

merge the sampling and bias error variance separately, and add them for the total merged 

error variance. 
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TABLES 

 
══════════════════════════════════════════════════════════ 

Table 1.  The numbers of one-month lag autocorrelations in 

the given range, for SST and for LST modes. 

   (0.00,0.25] (0.25,0.50] (0.50,0.75] (0.75,1.00]  Total 

SST   0     2     122   6    130 

LST  52     7       1   0     60 

 

══════════════════════════════════════════════════════════ 
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FIGURE CAPTIONS 
 

Figure 1.  Percent of the global reconstruction region sampled for SST (dashed) and LST 

(solid).  Annual averages are given. 

Figure 2.  Number of reconstruction modes selected for SST(dashed, maximum=130) and 

LST (solid, maximum=60).  The annual-average number is given. 

Figure 3.  Average surface temperature anomaly for 1900-1909, for the input data (upper 

panel, with shading to indicate sampling) and for the merged reconstruction (lower 

panel). 

Figure 4.  Reconstructed SST anomaly averaged annually and between 60ºS and 60ºN 

(solid), with its 95% confidence intervals (dashed).  Also shown is the simple average of 

the comparable SST anomalies produced by the Hadley Centre. 

Figure 5.  Reconstructed LST anomaly averaged annually and between 60ºS and 60ºN 

(solid), with its 95% confidence intervals (dashed).  Also shown is the simple average of 

the comparable data produced by the CRU (Jones and Moberg 2003). 

Figure 6.  Merged SST and LST reconstructed anomaly averaged annually and between 

60ºS and 60ºN (solid), with its 95% confidence intervals (dashed).  Also shown is the 

simple average of the comparable merged Hadley Centre/CRU (HadCRUT, Jones and 

Moberg 2003) data. 

Figure 7.  Correlation between the reconstruction anomaly and the merged 

HadISST/CRU anomaly, for the periods 1880-1909, 1910-1939, 1940-1969, and 1970-

1997, as indicated.  Values of 0.3, 0.7, and 0.9 are contoured.  Light shading indicates 

correlations less than 0.3, and dark shading indicates correlations greater than 0.7. 
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Figure 8.  Correlation of the full merged anomalies with the linear regression model using 

the given climate index as the predictor, and using data averaged for the Dec-Mar season, 

from 1900-1997. 
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FIGURES 

 
 
 
 

 
Figure 1.  Percent of the global reconstruction region sampled for SST (dashed) and LST (solid).  
Annual averages are given. 
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Figure 2.  Number of reconstruction modes selected for SST(dashed, maximum=130) and LST (solid, 
maximum=60).  The annual-average number is given. 
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Figure 3.  Average surface temperature anomaly for 1900-1909, for the input data (upper panel, with 
shading to indicate sampling) and for the merged reconstruction (lower panel). 
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Figure 4.  Reconstructed SST anomaly averaged annually and between 60ºS and 60ºN (solid), with its 
95% confidence intervals (dashed).  Also shown is the simple average of the comparable SST 
anomalies produced by the Hadley Centre. 
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Figure 5.  Reconstructed LST anomaly averaged annually and between 60ºS and 60ºN (solid), with its 
95% confidence intervals (dashed).  Also shown is the simple average of the comparable data 
produced by the CRU (Jones and Moberg 2003). 
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Figure 6.  Merged SST and LST reconstructed anomaly averaged annually and between 60ºS and 
60ºN (solid), with its 95% confidence intervals (dashed).  Also shown is the simple average of the 
comparable merged Hadley Centre/CRU (HadCRUT, Jones and Moberg 2003) data. 
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Figure 7.  Correlation between the reconstruction anomaly and the merged HadISST/CRU anomaly, 

for the periods 1880-1909, 1910-1939, 1940-1969, and 1970-1997, as indicated.  Values of 0.3, 0.7, and 

0.9 are contoured.  Light shading indicates correlations less than 0.3, and dark shading indicates 

correlations greater than 0.7. 
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Figure 8.  Correlation of the full merged anomalies with the linear regression model using the given 
climate index as the predictor, and using data averaged for the Dec-Mar season, from 1900-1997. 

 

 


