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G. P. Bingham, R. C. Schmidt, and L. D. Rosenblum (1989) found that, by hefting objects of different
sizes and weights, people could choose the optimal weight in each size for throwing to a maximum
distance. In Experiment 1, the authors replicated this result. G. P. Bingham et al. hypothesized that
hefting is a smart mechanism that allows objects to be perceived in the context of throwing dynamics.
This hypothesis entails 2 assumptions. First, hefting by hand is required for information about throwing
by hand. The authors tested and confirmed this in Experiments 2 and 3. Second, optimal objects are
determined by the dynamics of throwing. In Experiment 4, the authors tested this by measuring throwing
release angles and using them with mean thrown distances from Experiment 1 and object sizes and
weights to simulate projectile motion and recover release velocities. The results showed that only weight,
not size, affects throwing. This failed to provide evidence supporting the particular smart mechanism
hypothesis of G. P. Bingham et al. Because the affordance relation is determined in part by the dynamics
of projectile motion, the results imply that the affordance is learned from knowledge of results of
throwing.
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Homo sapiens are unique in their ability to throw objects to
significant distances (Young, 2003).1 This ability is known to have
been of central importance to the evolution and survival of the
species through the ice ages to the current time (P. M. Bingham,
1999; Darlington, 1975; Isaac, 1987; Young, 2003). Human throw-
ing ability is also unique in the relative complexity of the action
and in the exquisite relative timing that is required (Hore, Ritchie,
& Watts, 1999; Hore, Watts, Martin, & Miller, 1995; Joris, van
Muyen, van Ingen Schenau, & Kemper, 1985). The energy of a
throw is developed in the slower motions of the more massive
trunk of the body and then is passed sequentially to less massful
limb segments that move at proportionally faster speeds (e.g., Joris
et al., 1985) yielding finally high-peak speed of the hand at the
precisely timed moment of release (Hore et al., 1995, 1999).
Specific brain structure and, in particular, the cerebellar structure
and organization is known to be required for such precise relative
timing of movements (Ivry, 1997; McNaughton, Timmann, Watts,
& Hore, 2004). It has been hypothesized that the evolution of
much of this brain structure and organization was specifically to
support this adaptively advantageous behavior (Calvin, 1982,
1983a, 1983b; Stout & Chaminade, 2006; Stout, Toth, & Schick,
2007; Weaver, 2007). Recently, it has been found that increases in
brain size exhibited by Homo sapiens compared with earlier spe-

cies entailed increases in cerebellum size specifically and, further-
more, that the difference between Homo sapiens and Neanderthals
was that although Neanderthals actually had a larger brain than
Homo sapiens, the cerebellum was smaller (Stout & Chaminade,
2006; Stout et al., 2007; Weaver, 2007). One inference is that
Homo sapiens won out because they were better at throwing.

As the research reported in this article shows, human throwing
ability is accompanied by the ability to perceive the affordance of
objects for throwing and, in particular, for maximum distance
throwing. This affordance and its perception are particularly inter-
esting and important for reasons beyond the relevance to human
evolution. As we show, the affordance consists of a continuous
functional relation between object size and weight. This relation
determines objects that can be thrown to a maximum distance: For
any given graspable size, there is a weight that yields maximum
distance throws. This affordance is unique among affordance prop-
erties studied to date for two reasons. First, it is intrinsically
dynamic, both because it is mass related and because it entails the
dynamics of throwing and of projectile motion. Second, the affor-
dance is more complex than any studied to date. It entails a
continuous single valued function of two variables: Maximum
thrown distance is a function of both object size and weight.

This functional relation is notable because it happens to be the
same as that corresponding to the classic size–weight illusion
(G. P. Bingham et al., 1989). This illusion has attracted much
attention because it is among the most salient and robust in the
literature of perceptual illusions. The illusion is a misperception of

1 Monkeys and primates are able to throw accurately to hit targets at
short (�1 m) distances, but only humans are able to throw to long (�30 m)
distances (Westergaard, Liv, Haynie, & Suomi, 2000; Westergaard &
Suomi, 1994).

Qin Zhu and Geoffrey P. Bingham, Department of Psychological and
Brain Sciences, Indiana University.

Beginning in the summer of 2008, Qin Zhu will be joining the Depart-
ment of Kinesiology and Health at the University of Wyoming.

Correspondence concerning this article should be addressed to Geoffrey
P. Bingham, Department of Psychological and Brain Sciences, Indiana
University, 1101 East Tenth Street, Bloomington, IN 47405-7007. E-mail:
gbingham@indiana.edu

Journal of Experimental Psychology: Copyright 2008 by the American Psychological Association
Human Perception and Performance
2008, Vol. 34, No. 4, 929–943

0096-1523/08/$12.00 DOI: 10.1037/0096-1523.34.4.929

929



weight. Given two objects of different size, the larger object must
weigh more to be perceived of equal weight to the smaller object.
The function corresponding to equal perceived weights of different
sized objects also describes the optimal weights and sizes for
maximum distance throwing. But in the latter case, the affordance
property is correctly and accurately perceived. Both the robustness
of the illusion and the accuracy of the affordance perception
suggest that these related phenomena provide a window on a
fundamental human perceptual capability.

The complexity of the functional relation corresponding to the
affordance is challenging because the perception of the affordance
must be learned. Only humans can really throw, but not all humans
can throw well. Throwing is a skill that is learned and so presum-
ably is the accompanying affordance. Function learning is an
active area of research in psychology (DeLosh, Busemeyer &
McDaniel, 1997; McDaniel & Busemeyer, 2005), but research
efforts have only thus far addressed functions that map a single
variable to another. The learning of a functional relation that maps
two variables to a third is a special challenge in the understanding
of function learning. In these studies, we investigated how the
affordance might be perceived. However, the hypothesis we in-
vestigated was directly relevant to the means by which people
might learn to perceive the affordance for maximal-distance
throwing. We investigated the hypothesis that optimal objects for
throwing are perceived via a particular smart perceptual mecha-
nism, namely, the one hypothesized by G. P. Bingham et al.
(1989). If this hypothesis were correct, then the requisite percep-
tual learning would be simpler. We explain this below.

The original investigation of this affordance by G. P. Bingham
et al. (1989) was inspired by a common childhood competition at
the beach. The game is to throw stones to see who can achieve the
farthest distance out on the water. Part of the game is to select
among stones on the beach those that are optimal for being thrown
to a maximum distance. Assuming a roughly spherical shape,
stones are selected depending on their relative size and weight.
Stones usually exhibit nearly constant density, so size and weight
covary. This means the problem can be solved by merely picking
the best weight. If G. P. Bingham et al.’s smart mechanism
hypothesis was found to be correct, this experience would be
enough for throwers subsequently to be able to pick the optimal
weight for any size object. If the hypothesis was found to be
wrong, then experience of throwing with more extensive variations
of sizes and weights should be required to learn to perceive the
affordance.

The affordance involves object weight. Weight is a mass-
dimensioned dynamic property. The majority of affordance studies
have investigated the use of vision to perceive affordances (e.g.,
G. P. Bingham & Muchisky, 1993, 1993a, 1993b; Mark, 1987;
Mark, Balliett, Craver, Douglas, & Fox, 1990; Warren, 1984;
Warren & Whang, 1987), for instance, the visual perception of
maximum seat height (Mark et al., 1990), of the maximum pass-
able aperture (Warren & Whang, 1987), or of maximum climbable
stair height (Warren, 1984). Exceptions are studies of dynamic
touch (for a review, see Turvey, 1996) where, for instance, ob-
servers have been shown to be able to perceive, by wielding
(without vision), the distance reachable by a handheld rod. Nev-
ertheless, all these affordance properties are essentially geometric.
Stair height, seat height, aperture width, and rod length are all
length-dimensioned properties. The perception by hefting of opti-

mal throwing objects is different from these previously studied
affordance properties because optimal throwability is inherently
dynamic.2

The optimality of thrown objects is determined by the dynamics
of throwing and the dynamics of projectile motion. Thus, these
dynamics must be confronted to understand the affordance. The
variables that determine the distance of travel in the dynamics of
projectile motion are size (i.e., cross-sectional area) and weight of
the projectile as well as the initial speed and angle at release
(Parker, 1977). However, given a particular release angle and
velocity for an object of a given size, variation of the weight does
not yield an optimum distance from projectile motion dynamics.
The distance of travel only increases with an increase in weight. It
does not decrease. So, the determination of a weight for a given
size that yields a maximum thrown distance necessarily entails the
dynamics of throwing.

G. P. Bingham et al. (1989) reviewed studies of the dynamics of
throwing and found that throwing has two essential aspects. First,
as already mentioned, energy is developed starting with more
massful proximal body segments and then is passed in sequence
from one segment to the next proceeding distally from the trunk to
the hand. Second, during the final stage of a throw (i.e., the last �
100 ms), the object actually stops moving for an instant as the wrist
is cocked injecting energy into the long tendons of the wrist by
stretching them. This allows those tendons to amplify the energy
by returning it at higher shortening velocity as the elbow and wrist
extend and flex, respectively, to launch the object. G. P. Bingham
et al. hypothesized that larger objects affected throwing by chang-
ing the length and, thus, the stiffness of the wrist tendons. The
reason is that the same tendons contribute to the control of finger
flexion in grasping and wrist flexion in throwing. Grasping larger
objects shortens the tendons at the wrist yielding stiffer tendons
(because of their curvilinear length–tension relation). G. P. Bing-
ham et al. performed an experiment to measure the effect of
grasped object size on stiffness at the wrist and found increases in
stiffness with increasing object size as expected. Accordingly, they
hypothesized that greater mass is required for larger objects both to
preserve the frequency of the motion and to load the spring so as
to yield high shortening velocity. The frequency of motion at the
wrist would be preserved to preserve the relative time among the
joints (shoulder, elbow, and wrist).

If optimal throwability is determined by the dynamics of throw-
ing, how can hefting provide information about this affordance,
that is, how can hefting provide information about an object’s
effect on throwing? One obvious hypothesis would be that past
experience of throwing yields knowledge of the functional relation
between object size and weight that yields maximum distance
throws. Each time an object is thrown with a maximum effort, the
distance of travel is noted (i.e., knowledge of results) and stored in
memory together with the object size and weight. Eventually, after

2 Strictly speaking, dynamics is relevant to all of these affordances. The
dynamics of walking is relevant to the size of passable apertures as is the
dynamics of stair climbing to the size of the maximum climbable stair.
Nevertheless, geometric properties were featured in the respective studies
because they capture most of the variance. In the context of throwing, the
dynamics must be addressed to formulate any understanding of the prob-
lem.
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experience of sufficient variation in sizes and weights, this infor-
mation is used to induce the function specifying optimal objects
(DeLosh et al., 1997; McDaniel & Busemeyer, 2005). Because a
different weight is optimal for each size, this function learning
approach would require that the full range of throwable sizes and
weights is each sampled adequately and independently. That is,
optimal weights would have to be discovered for multiple sizes to
induce the full functional relation.

There are two related problems with this idea. First, this entails
the assumption that distances of throws can be accurately per-
ceived and compared across occasions occurring in different en-
vironments and separated by significant amounts of time. Studies
of distance perception have shown that absolute distances in the
relevant range (up to 35 or 40 m) are not perceived accurately
(Todd, Tittle, & Norman, 1995). Distances are even less accurately
compared when perceived over ground surfaces composed of
different textures, that is, throws performed over water versus a
grass-covered field versus a sand- or gravel-covered beach (Hu,
Gooch, Creem-Regehr, & Thompson, 2002). This need to compare
across occasions in different environments at widely different
times is introduced by a second assumption, already mentioned,
which is that one would require experience of throwing a variety
of different weights in each of different sizes. The size and weight
would have to vary independently in throwing experience so that
the optimal weight could be discovered in given sizes. The prob-
lem is that size and weight would covary in most contexts, for
instance, heavier stones on the beach are simply the bigger ones.
The same is true of apples in an orchard or wooden sticks in a
forest or wads of paper in a classroom or rubber balls on a
playground. Rarely would objects of different materials but similar
size be encountered on a single occasion in a given context.
Rather, baseball-sized stones would be encountered on the beach,
whereas baseball-sized apples would be encountered in an orchard
and actual baseballs would be encountered on the playing field. So,
throws with objects of common size but different weight would
typically be compared across occasions occurring in different
environments at distant times. Given these two connected prob-
lems, what is the likelihood that optimal weights in arbitrary sizes
could be discovered through experience? Where would one get the
experience that would allow one to pick the optimal weights for
balls across the full range of graspable ball sizes?

A second hypothesis as to how hefting can provide information
about optimal objects for throwing was that hefting acts as a kind
of smart perceptual mechanism (G. P. Bingham et al., 1989;
Runeson, 1977). Runeson (1977) suggested that perception might
be smart by taking advantage of particular circumstances in a task
that simplify the perceptual problems. G. P. Bingham et al.’s
(1989) application of the smart mechanism idea was that the
dynamics of hefting should be similar to the dynamics of throwing.
This would be the “smartness” that would allow hefting to provide
a window on the effect of object size and weight on throwing. G. P.
Bingham et al. suggested that hefting would allow participants to
detect the effect of object size on wrist stiffness and to find the
optimal weight given that stiffness. The role of past experience in
this case would be to enable throwers (a) to develop good throwing
skills and (b) to develop good sensitivity to the information pro-
vided by hefting about throwing. Specific experience of a variety
of weights in each of a number of different sizes would not be
required as it would be to learn the affordance using function

learning through knowledge of results. Rather, acquiring the smart
mechanism would only require that one become sensitive to the
information provided by the smart mechanism. This, in turn,
should only require experience of different weights in a single size
or, more likely in natural settings, experience of a single constant
density series of objects of covarying sizes and weights. Once one
learns to pick the optimal stone on the beach, for instance, one
should be able to pick the optimal weight for objects of any given
size (and density) within the throwable range.

The smart mechanism hypothesis entails two assumptions that
we tested in the studies reported in this article. The first assump-
tion was that hefting by hand would be required to provide specific
information about throwing using the hand. The dynamics of
throwing by hand is specific to the structure of the arm and hand.
Seeing the object size and feeling the weight using the elbow or the
foot would not be sufficient for predicting the hand throwing
performance according to the smart mechanism hypothesis. The
specific dynamics of hefting by hand would be required because it
is similar to the dynamics of throwing by hand. We tested this
assumption in Experiments 2 and 3.

The second assumption entailed by the smart mechanism hy-
pothesis was that the optimal objects are uniquely determined by
the dynamics of throwing and not that of projectile motion. We
tested this in Experiment 4. First, however, we attempted in
Experiment 1 to replicate the results of the hefting and throwing
study done by G. P. Bingham et al. (1989).

Experiment 1: Hefting by Hand for Overhand Throwing

The first experiment was performed to replicate the original
study. G. P. Bingham et al. (1989) tested spherical objects of 4
different sizes (from 5 cm to 12.5 cm in diameter) and of 8
different weights in each size (ranging from a 4 g to 700 g). Eight
participants hefted the objects and selected preferred weights for
throwing in each of the 4 sizes. A week after they performed this
judgment task, 3 of the participants threw each of the 20 objects to
a maximum distance 3 times (the objects were marked with a code
that did not allow participants to identify the ones they had
previously chosen, except perhaps as they had before, by hefting
them). The result was that participants threw the preferred objects
in each size to the farthest distance. In each size, as weights
became progressively greater or less than the preferred weight, the
thrown distance became progressively less, that is, mean distances
exhibited an inverted U-shaped curve with preferred weights at the
peak. The preferred weights varied with the size of the objects.
Greater weight was preferred for larger sizes.

This original study only tested objects in four different sizes and
only five of eight weights hefted were actually thrown. We now
tested six different sizes spanning the range of graspable objects:
1 in., 2 in., 3 in., 4 in., 5 in., and 6 in. (i.e., from 2.5 cm to 15 cm
in diameter). Also, now all objects were thrown. G. P. Bingham et
al. (1989) only tested throwing for 3 of the 8 participants who did
the hefting. We now tested 10 participants in both hefting and
throwing.

The experiment involved two sessions, each separated by about
a week. In the first session, participants were asked to heft balls
and to select those they could throw to the farthest distance. They
hefted a series of balls of a given size that varied in weight and
chose the optimal weight in the size. In the second session,
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participants were asked to throw each of the balls to a maximum
distance. This was done in an open field outdoors.

The original study showed that an optimum weight for each size
was successfully perceived and selected for throwing to a maxi-
mum distance, and the preferred weight increased with the size of
object.

Method

Apparatus. A set of 47 spherical objects was made to vary in
size and weight. Objects varied in size with diameters as follows:
.025 m (1 in.), .050 m (2 in.), .076 m (3 in.), .102 m (4 in.), .127 m
(5 in.), .152 m (6 in.). These sizes correspond roughly to a large
marble, a golf ball, a racquetball, a baseball, a softball, and a small
playground ball, respectively. Weights in each size varied accord-
ing to a geometric progression, where n refers to an item in the
series: Wn � 1 � Wn � 1.55. Eight weights were generated in each
of the five smaller sizes and seven in the largest size, starting each
series with the lightest weight that could be constructed (see Table
1). Spherical shells in five of the sizes were available commer-
cially. They were designed to float in water to insulate swimming
pools. They consisted of a hard, durable hollow plastic shell. We
manufactured like balls in the otherwise unavailable .127-m size.
To do this, a .127-m diameter spherical steel mold was cut in half
with hinges on each hemisphere for future closure, and then a
fiberglass resin composite was put inside of the mold together with
a balloon that was inflated to push the resin against the mold,
which was then heated to form the desired sphere. For some of the
heaviest balls at both the .025-m size and the .152-m size, we used
commercially available solid steel balls instead of plastic shells.
Finally, some of the lightest balls were pure Styrofoam, such as the
ball at the .127-m size with a weight of .048 kg and the ball at the
.152-m size with a weight of .100 kg. All balls were tested to be
durable enough to withstand impacts from maximum distance
throws. The surface of each ball was covered with a wrapping of
thin, stretchable white tape to produce identical appearance and
surface texture, good graspability, and improved durability.

To manipulate the weights, most of the balls were filled with a
sprung brass wire that was injected into the ball through a small
hole and which then spontaneously distributed itself homoge-
neously throughout the available interior perimeter of the shell.
After this, foam insulation (a silica gel) was injected through the
hole to fill the remaining space and rigidly stabilize the material
inside the ball. For the extremely heavy weights, lead shot was
projected into the sphere together with the foam insulation to mix

with the brass wires so as to achieve the desired weights with a
homogeneous distribution of the interior mass.

The matrix of objects was designed to cover the range of
throwable sizes and weights. The possible weights in the different
sizes were constrained by the available materials for making the
objects and the physical requirements for durability in the context
of the throwing. The lightest objects in each size were pure
Styrofoam, and the heaviest objects were essentially solid steel. A
100-m measuring tape was used to measure throwing distances.

Participants. Ten Indiana University undergraduates from the
Department of Psychology were paid at a rate of $8 per hour for
participation in each of the two sessions of the experiment. Half of
the participants were men, and half of them were women. Partic-
ipants were required to be capable of throwing objects and to have
had some prior experience and skill at overarm throwing, to have
good (corrected) vision, and to be free of motor impairments.

Experimental procedure. Participants were informed during
recruitment that the experiment would consist of two sessions: one
was hefting and judgment of the objects, lasting for about 45 min,
and the other was throwing the objects across an outdoor field,
lasting about 1.5 hr. Participants were instructed that they should
take part in both sessions, which were to be separated by a week’s
time.

At the beginning of the session for hefting and judgment, the
experimenter introduced and demonstrated the hefting motion to
participants. The object was set on the participant’s palm by the
experimenter. The participant’s eyes were closed whenever the
experimenter was handling the objects but open otherwise. The
object and hand were then to be bounced up and down at the wrist
by an oscillation of the forearm about the elbow. The experimenter
took a set of anthropometric measures of each participant includ-
ing age, sex, height, weight, hand span, hand length, palm width,
and arm length. Experimenter and participant then stood on oppo-
site sides of a 1-m high table to perform the hefting and judgment
task. Each of the six different size series was presented on the
table, one size series at a time, with the sizes presented in a random
order. The balls in each size were arrayed from left to right before
the participant in order of increasing weight. Next, the participant
was asked to heft each of the objects in order of increasing weight
and to pick in order of preference the top three preferred objects
for throwing to a maximum distance, that is, a first, second, and
third choice. After all weights were hefted, the participants were
allowed to select, by pointing, objects that they would like to heft
again to help make their choice. Three preferences, as opposed to
one, were used so that we could use a weighted average as an
estimate of preferred size and to provide a better estimate given the
necessarily discrete way the objects sampled the weight contin-
uum. The same hefting and judgment procedure was repeated for
each of the six different object sizes. To record the judgments (and
later the throwing), a random code was used to label the objects so
participants could not use the labels to identify particular weights.
Small labels were kept out of view on the bottom of the objects on
the table and in the hand.

The throwing session took place on a large outdoor grass-
covered field. The weather conditions were calm. The experiment
was performed during the fall. Upon arrival, each participant was
allowed to warm up his or her throwing arm by doing some
stretches and throwing of a tennis ball. The balls were distributed
randomly on the ground behind where the participant was to stand

Table 1
Object Weights Within Size

Diameter
(m)

Object weight (kg)

1 2 3 4 5 6 7 8

.025 .004 .006 .009 .013 .021 .032 .050 .077

.050 .007 .011 .016 .025 .039 .061 .094 .146

.076 .017 .027 .042 .064 .100 .155 .240 .372

.102 .040 .062 .096 .149 .231 .358 .555 .860

.127 .048 .075 .116 .180 .278 .432 .668 1.036

.152 .100 .155 .240 .372 .576 .892 1.384
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while throwing the balls. The participant was handed the balls in
a random order and asked to throw each to a maximum distance.
The participant was allowed to use his or her preferred throwing
style as long as the throw was overarm and only a single step was
taken before the throw. Each participant threw the entire set of
objects three times yielding a total of 141 throws (47 balls � 3
trials). There were two experimenters: One was to hand the par-
ticipant the objects to be thrown and record the data; the other was
responsible for marking the landing position of the thrown objects,
measuring distances, and recovering the thrown objects. After each
throw, the distance was measured by one experimenter and read to
the other experimenter who was recording. Throwing distance was
measured from the origin where the thrower’s foremost foot
landed before the throw to the position at which the thrown object
first contacted the ground.

Results and Discussion

As shown in Figure 1, the results from Experiment 1 replicated
the results of G. P. Bingham et al. (1989). For objects of a given
size, participants were able to pick the optimal weight for maxi-
mum distance throws. The selected objects were actually thrown to
the farthest distances.

In the hefting and judgment session, participants tended to show
strong preferences for the objects that they judged to be optimal.
As in the original study, the mean of the chosen weights for each
size was computed by weighting judgments according to prefer-
ence: first chosen weight was multiplied by .5, second chosen
weight was multiplied by .33, and third chosen weight was mul-
tiplied by .16.

As can be seen from Figure 1, the mean of the chosen weights
increased across increases in the size of the objects. A repeated-
measures analysis of variance (ANOVA) on chosen weights was
performed, with size as a repeated-measure factor. Size was sig-
nificant, F(5, 35) � 26.6, p � .001. Weight increased with size.
Also the difference between mean chosen weights was much
smaller for the two largest and two smallest sizes than for the
intermediate sizes. A test of within-subject contrasts indicated that

the means of the chosen weights were significantly different from
one another proceeding from the .050-m ball to the .127-m ball
( p � .01), whereas the differences between the two smallest
(.025-m and .050-m) and two largest (.127-m and .152-m) balls
were not significant. These findings were similar to those in the
previous study showing that increases in preferred weights are
bounded for the largest objects. As described in G. P. Bingham et
al. (1989), this bound indicates that a transition between throwing
action modes may occur when the size of objects changes from
intermediate to large. The current study also showed the existence
of a boundary for the smallest objects. This might be because the
mean weights chosen for the smallest objects correspond to the
maximum weight that can be thrown without a decrement in
release velocities (Cross, 2004). See the General Discussion for
more on this point.

Next, we turned to analysis of throwing performance. To com-
pute mean throw distances across participants for preferred and
nonpreferred weights in each size, it was necessary to align the
data for each object size in terms of the mean preferred weights for
each participant. Although participants exhibited the same pattern
of weight choices across different sizes (namely, larger weights for
larger sizes), the particular weights varied among participants
partly as a function of the size of the participant. Throwers also
varied in throwing abilities as indicated by the mean throwing
distances. However, again, the same pattern of distances was
exhibited by all participants, namely, the chosen object weights
(first choice, second choice, and third choice) were thrown to the
farthest distance. For each object size and participant, object
weights were divided by the participant’s mean preferred weight in
the size. This displaced normed weight levels relative to one
another across participants for purposes of computing mean dis-
tances for given weight levels. Because weight levels were dis-
tributed according to the geometric series, we log transformed the
normed weight levels to achieve approximately equal intervals
between levels. Next, we put the data into bins whose size was
selected to yield one data point for each participant in each bin. We
then computed mean distances for each bin. Because weights were
normalized by the preferred weights and then log transformed, 0
on the log (normed weight) axis corresponded to the weight
selected by hefting. The mean throw distances formed a surface in
a Z (distance) � X (size) � Y (log normed weight) space.

As shown in Figure 2, the surface varied in two respects. First,
distances exhibited an inverted-U pattern for each object size.
Second, distances decreased with increasing size because of the
increased air resistance in projectile motion. The peaks of the
inverted-U curves were aligned to form a ridge line representing
the mean maximum distance throws across object sizes. We pro-
jected this ridge line onto the size by log (normed weight) plane,
that is, the floor in the figure. If the ridge line projected directly
onto the 0 axis of the log (normed weight), then participants would
have been perfectly accurate, on average, at selecting maximum
throwable objects. The projected ridge line oscillated in close
proximity to this axis indicating that participants were accurate in
selecting optimal objects for throwing. This correspondence of the
chosen weights to the weights being thrown farthest suggested that
the task of hefting by hand provided throwers good access to the
throwability of the object for maximum distance throws. We
confirmed this in the following analysis.

Figure 1. Mean of weights selected by participants as a function of size
in Experiment 1 (filled diamonds) and the original G. P. Bingham et al.
(1989) study (stars).
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To analyze distances as a function of the participants’ choices,
we performed a series of analyses. First, for each participant and
each object size, we computed a mean throw distance for all the
nonchosen weights and then for the first-, second-, and third-
choice weights, respectively. We performed a repeated-measures
ANOVA on these mean distances, with size (1–6) and choice
(first, secnd, third, not chosen) as factors. Both size, F(5, 35) �
50.1, p � .001, and choice, F(3, 21) � 23.5, p � .001, were
significant, but the interaction was not ( p � .4). In all sizes, chosen
weights were thrown farther than nonchosen weights, and smaller
sizes were thrown farther than larger ones. In all sizes but one (the
smallest), first- and/or second-choice weights were thrown farther
than the third-choice weights.

Next, to reveal and test more of the surface shown in Figure 2,
we extrapolated choices beyond the top three choices: The top
three choices were always of contiguous weights in the weight
series for a given size. We assigned the mean throw distances of
the next lightest and next heaviest objects to those chosen as a
fourth choice, the mean of the distances for the next lightest and
next heaviest to the fifth choice, and so on (traveling down the
arms of the inverted-U curves) for a total of six choices in order.
Thus, we obtained distance data as a function of choices and sizes.
A polynomial regression analysis was performed on mean dis-
tances in each size to yield the best fit polynomial regression
curves shown in Figure 3. (The fit was also made to the combined
participant data reported in parentheses in the following para-
graph.)

The polynomial regression was significant in all cases: for the
.025-m ball, r2 � .98, p � .01 (r2 � .50, p � .001); for the .050-m

ball, r2 � .89, p � .05 (r2 � .19, p � .01); for the .076-m ball, r2 �
.98, p � .01 (r2 � .48, p � .001); for .102-m ball, r2 � .98, p �
.01 (r2 � .69, p � .001); for .127-m ball, r2 � .98, p � .01 (r2 �
.47, p � .001); and for .152-m ball, r2 � .95, p � .05 (r2 � .47,
p � .001). The representation of the distance curves by quadratics

Figure 2. A surface representing mean thrown distances in Experiment 1 as a function of two variables, size
and weight. The line following the peak ridge of the surface projects onto the size–weight plane describing the
size–weight scaling relation for preferred objects. When the projected line aligns with the 0 value on weight axis,
the preferred weight was thrown to the farthest distance.

Figure 3. Mean thrown distance as a function of size and choice. Choice
from 1 to 6: 1 represents the most preferred object, 6 represents the least
preferred object. See text for explanation. Sizes: 1-in. ball (filled circles),
2-in. ball (open circles), 3-in. ball (filled squares), 4-in. ball (open squares),
5-in. ball (filled triangles), and 6-in. ball (open triangles; i.e., from 2.5 cm
to 15 cm in diameter). The curves represent best fit quadratic regression.
Error bars represent standard errors.
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reflects the fact that each curve contained a peak corresponding to
the maximum distance. We used the resulting quadratic function to
compute the peak point in the curve by taking the derivative of the
quadratic function to get a value on the x-axis where the increase
of Y (that is distance) achieved zero, thus yielding the peak point
on the curve. The resulting values (rounded to integers) are 2 for
the .025-m ball, 1 for the .050-m ball, 1 for the .076-m ball, 1 for
the .102-m ball, 1 for the .127-m ball, and 2 for the .152-m ball.
Both the first choice (for the .025-m, .076-m, .102-m, and .127-m
balls) and the second choice (for the .050-m and .152-m balls)
yielded the maximum throwing distance, which again confirmed
our hypothesis that participants are able to pick the optimal objects
for maximum distance of throws.

Experiment 2: Using the Elbow or Foot to Heft Objects
for Overhand Throwing

In the first experiment, the results of G. P. Bingham et al. (1989)
were replicated. Participants were able to perceive by hefting
which combinations of object size and weight were optimal for
throwing to a maximum distance using an overarm throw. The
judgments were performed using the arm and hand to heft the
objects. G. P. Bingham et al. argued that this perception was
accomplished via a type of smart perceptual mechanism. This
particular smart mechanism hypothesis assumes that the dynamics
of the arm and hand as used in hefting are related to the dynamics
of the arm and hand as used in overarm throwing, and this relation
allows hefting to yield information about objects with respect to
throwing. In this case, the smartness lies specifically in this rela-
tion. This hypothesis entails the need to heft the objects using the
same limb that is able to execute the skilled overarm throwing and
exhibit the dynamics of the act.

A notable aspect of the results from the hefting task is that the
preferred weights follow the size–weight illusion function. Ac-
cording to that function, to be perceived of equal weight, different
sized objects must weigh different amounts, namely, bigger ob-
jects must weight more. The illusion phenomena are quite robust,
and studies have shown that the phenomena persist when object
size is perceived visually, whereas object weights are perceived by
testing objects suspended on wires and pulleys and other means
that completely alter the dynamics of hefting using the hand (e.g.,
Ellis & Lederman, 1993; Masin & Crestoni, 1988). We then tested
the smart mechanism hypothesis about hefting for throwing by
asking participants to perform the hefting by using another limb
configuration, that is, by hefting the objects on the bent elbow
(using the upper arm) or on the foot (using the leg). In each case,
this would enable participants to see the size of the object and feel
its weight. So, the relevant dimensions could be perceptually
accessed but not by hefting in the hand. Two different groups of
participants were tested. One group was asked to heft the objects
using their upper arms and shoulders with the objects resting on
their (folded) elbow. A second group was asked to heft the objects
using their legs with the objects resting on the instep of their foot.
In each case, participants were asked to pick preferred objects for
overarm throwing to a maximum distance. The expectation from
the smart mechanism hypothesis was that participants should not
be able to judge optimal objects for overarm throwing when
hefting with these other limbs. Participants in Experiment 2 were
only tested in a single session in which they performed the hefting

judgments. The judgment results were compared with the results of
the previous experiments in which participants did the hefting
using their hand.

Method

Apparatus. Objects made for Experiment 1 were used again in
Experiment 2 for hefting and judgment. An adjustable armband
with Velcro closure was worn by participants either on their elbow
or their foot, respectively. A small piece of Velcro was attached to
each object so that the object could be Velcroed to the limb to
enhance its stability in resting on the limb while being hefted.

Participants. Sixteen Indiana University undergraduates from
the Department of Psychology were paid at a rate of $8 per hour
for participation. Two groups of 8 participants were tested. Half of
the participants in each group were men, and half were women.
Participants were required to be capable of throwing objects and to
have had some prior experience and skill at overarm throwing, to
have good (corrected) vision, and to be free of motor impairments.

Experimental procedure. The procedure was the same as in
Experiment 1, but this time, either the elbow or the foot was used
to perform the hefting and judgment task. Participants were ran-
domly assigned to one of two groups. In one group, participants
used their elbow to heft and make the judgments. They were asked
to wear the armband by wrapping it comfortably around the elbow
of their dominant arm and then bend the arm to form an angle at
the elbow so that the object could sit on the supporting area formed
by the arm in this posture, stabilized by the contact between the
Velcro on the object and on the armband. The other group used
their foot to heft and make the judgments. They were asked to wear
the armband by wrapping it comfortably around the foot of their
dominant leg and then lift the foot to form an angle at the ankle so
that the object could sit on the supporting area formed by this
posture, again stabilized by the contact between the Velcro on the
surface of the object and the armband. Once the object was sitting
steadily on the elbow or foot, hefting was performed by oscillating
the limb and object up and down. (Participants using the foot were
seated during the task with one leg crossed over the other.) All
judgments were based on the use of the arm and hand to perform
an overarm throw.

Results and Discussion

Our hypothesis was that participants would not be able to judge
the optimal weight for maximum distance throws by hefting with
nonarm–nonhand limbs. This was verified by Experiment 2. Re-
sults showed that participants picked heavier weights when they
hefted objects by elbow or foot than they did by hand (see Figure 4).

A mixed design ANOVA was performed on chosen weights,
with size as a within-subject factor and hefting limb (elbow or
foot) as a between-subjects factor. The only main effect was size,
F(5, 70) � 40.8, p � .001. The difference between hefting limbs
was not significant, and there was no interaction between the size
and limbs. When comparing foot with hand hefting in Experiment
1, the size effect remained, F(5, 70) � 43.5, p � .001, and the
difference between limbs became significant, F(1, 14) � 4.9, p �
.05, as well as the interaction between the limbs and size, F(5,
70) � 2.5, p � .04.

Furthermore, as shown in Figure 5, judgment by foot or elbow
was more variable than judgment by hand (although the judgment
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by elbow hefting was only marginally so). These findings suggest
that hefting by a nonhand limb (foot or elbow) for maximum
distance overhand throw resulted in an elevated judgment of
weight. Nevertheless, the effect of size remained, namely, the
mean of the chosen weights increased as size increased.

Experiment 3: Hefting Using the Foot to Judge Objects
for Throwing Using the Foot

We found in Experiment 1 that the hefting in the hand provided
good access to the throwability of objects for maximum distance
overhand throws. However, in Experiment 2, we found that hefting
using a foot or elbow did not yield comparable judgments. The
objects selected for throwing were systematically heavier than
those selected when objects were held and hefted in the hand. The
participants did not select objects optimal for overhand throwing.
The smart mechanism hypothesis predicts that the dynamics of
hefting with the hand provides perceptual access to the dynamics
of throwing with the hand. Hefting with another limb would not
provide such access because differences in the structure of the limb
would entail differences in the dynamics. So, this result was
consistent with the particular smart mechanism hypothesis. How-
ever, it is possible that the results of Experiment 2 are consistent
with this smart mechanism hypothesis in two ways. Namely, it is
possible that hefting with the foot provides information about
optimality for throwing with the foot. The leg is a more massful
and stronger limb and may require heavier objects for optimal
throwing. We tested this possibility in Experiment 3.

As in Experiment 1, participants were tested in two sessions:
one for hefting and judgment and another for throwing. However,
this time, both the hefting and the throwing were performed using
the foot and leg. We expected the hefting data to replicate the foot
hefting data from Experiment 2. We also expected that participants
might be successful in judging which objects they could throw the
farthest distance using their foot to throw them. Participants could
not be expected to have had much experience in using their foot to
throw, so we expected both the judgment and throwing results to

be variable or noisy compared with the previous results obtained
when participants used their hands.

Method

Apparatus. The same objects from Experiment 1 were used
both for hefting and throwing. For hefting, the armband with
Velcro closure was used again. To provide improved stability of
the object on the foot, especially for throwing, a special cup was
developed to hold the objects for both hefting and throwing. We
used an extra resin sphere of the largest size and cut it in half with
a section also cut to form a scoop, threaded the armband (or
footband) through slits cut in the bottom, then fastened it on the
ankle with the open side of the scoop oriented to the front so that
it would not impede the forward motion of the object leaving the
scoop. The scoop not only provided a steady support for an object
sitting on the foot, but it also facilitated the throwing. To further
facilitate the throwing, a length of fishing line was tied to an eye
that was attached to each object so that the participant could
support the object by holding the end of the line in the hand to
suspend the object in the scoop, and then as the leg was swung, the
line was released as the object was launched from the foot.

Participants. Eight Indiana University undergraduates from
the Department of Psychology were paid at a rate of $8 per hour
for participation of the two sessions of the experiment. Half of the
participants were men, and half were women. They were not
required to have had prior experience throwing a ball with their
foot. Participants were required to be capable of throwing objects
with their hand and to have had some prior experience and skill at
overarm throwing, to have good (corrected) vision, and to be free
of motor impairments.

Experimental procedure. The same procedures as in Experi-
ment 1 were used with the exception that hefting and throwing
were performed using the scoop on the dominant foot and partic-
ipants judged optimal throwability using the foot to throw. Note
that participants did not kick these balls but threw them by resting
them on their feet and then pulling their feet and object back and
then swinging them rapidly forward to launch the ball.

Figure 4. Mean of weights selected by participants as a function of size
in Experiments 1 and 2. Hefting using the hand is represented by filled
diamonds. Hefting using a foot is represented by filled triangles. Hefting
using an elbow is represented by filled squares.

Figure 5. Standard deviation of the chosen weight as a function of size in
Experiments 1 and 2. Hefting using the hand is represented by filled
diamonds. Hefting using a foot is represented by filled triangles. Hefting
using an elbow is represented by filled squares.
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Results and Discussion

In the hefting session, the size–weight effect was preserved. The
mean chosen weights increased with size. An ANOVA was per-
formed on chosen weight, with size as a within-subject factor. Size
was significant, F(5, 35) � 13.2, p � .001. However, in contrast
to pervious results, no boundary was found for weights. The
chosen weights increased at every size increment. The test of
within-subject contrasts yielded a significant difference in weight
for every increase of size ( p � .05). In addition, the results
replicated the foot hefting data from Experiment 2 by exhibiting an
elevated judgment of the optimal weight compared with Experi-
ment 1 (see Figure 6).

An ANOVA was performed on chosen weights, with size as a
within-subject factor and experiment as a between-subjects factor.
Comparing foot data from Experiments 2 and 3, the main effect for
size was significant, F(5, 70) � 32.3, p � .001, whereas there was
no significant difference between the foot judgments in two ex-
periments. When we compared the foot hefting data in Experiment
3 with the hand hefting data in Experiment 1, we found no
significant difference for hefting limbs but a significant size effect,
F(5, 70) � 27.3, p � .001, as well as a nonsignificant interaction
between hefting limbs and size, F(5, 70) � 2.3, p � .06. The
reason the latter comparison failed to reach significance is that the
variability for judgment by foot was very high in Experiment 3.
The standard deviations of the chosen weight for foot hefting in
both Experiment 2 and 3 were both higher than for hand hefting,
hence, the judgment by the nonhand limb hefting was much noisier
and variable than hefting by hand (see Figure 7).

In Experiment 1, the first, second, and third choices of preferred
objects were always of contiguous weight levels in the weight
series for each size. We noted that this was not true of judgments
in Experiments 2 and 3. In fact, the judgments looked rather
random. This would be consistent with the very high level of
variability. To verify this possibility, we simulated a judgment by
randomly picking a weight from the available weight list (eight

weights) within each size. We picked three tickets of paper (on
which weights were listed) from a hat without replacement and
then replaced the three tickets and repeated the pick eight times to
reproduce the data for 8 participants. The means and standard
deviations of the random selection are shown in Figures 6 and 7.
An ANOVA was performed on these chosen weights, with size as
a within-subject variable and the selection method as a between-
subjects variable. Although size was significant as before (F[5, 70]
� 31.5, p � .001, for foot hefting; F[5, 70] � 33.7, p � .001, for
random selection), no significant difference was found between
foot hefting and random selection. However, the hand hefting was
found to be significantly different from the random selection, F(1,
14) � 5.4, p � .04, and in that case, the interaction between size
and selection method was also significant, F(5, 70) � 4.7, p �
.001. These results suggested that both foot hefting judgments
were random selections; neither of them were accurate in deter-
mining the optimal weights for maximum distance throws. Once
again, when we looked at the variance for different selection
methods (see Figure 7), we found both foot hefting judgments
possessed comparable standard deviations with the random selec-
tion data, both higher than the hand hefting judgment, which
remained the most consistent.

Next, we related participants’ judgments to their throwing per-
formance. Given the discovery that the judgments were fairly
random, we expected two results with respect to the throwing.
First, throwing performance should be quite poor, reflecting a lack
of skill in throwing using the leg and foot. We expected this
because skill in perceiving the affordance and skill in using the
affordance should be comparable. Second, we expected mean
judgments to be inaccurate in respect to actual throwing perfor-
mance. It would be worrisome if they were not.

For each participant and size, we averaged the throwing dis-
tances for all not-chosen weights to compare with those of the first,
second, and third chosen weights (see Figure 8).

An ANOVA was performed on throwing distance, with size and
choice as two within-subject factors. Only size was found to be
significant, F(5, 35) � 9.2, p � .001. Neither choice nor its

Figure 6. Mean of weights selected by participants as a function of size
in Experiments 1, 2, and 3. Hefting using a hand is represented by filled
diamonds. Hefting using a foot in Experiment 2 is represented by filled
triangles. Hefting using a foot in Experiment 3 is represented by filled
squares. The mean of weights chosen randomly is represented by stars.

Figure 7. Standard deviation of chosen weights as a function of size in
Experiments 1, 2, and 3. Hefting using a hand is represented by filled
diamonds. Hefting using a foot in Experiment 2 is represented by filled
triangles. Hefting using a foot in Experiment 3 is represented by filled
squares. The mean of weights chosen randomly is represented by stars.
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interaction with size was significant. The distance curves were flat
across the choices. This finding demonstrates that hefting using a
foot did not provide enough information about the objects to
enable participants to select optimal objects for throwing with the
foot. However, size still played an important role in determining
the throwing distance, namely, larger objects were thrown to a
shorter distance than smaller objects.

Finally, the surface plot was developed again to provide an
overview of the interrelationship among the size, weight, and
throwing distance (see Figure 9). The current surface plot had the
following properties: First, the surface again tilted down toward
the floor as the size of object increased, which means size still
played an important role in determining the throwing distance.
This was presumably because size plays a strong role in projectile
dynamics as we show in Experiment 4. Second, the maximum
throwing distances of foot throwing were in general substantially
shorter than hand throwing (15 m vs. 35 m), which indicated foot
throwing was a much more difficult and/or less skilled task com-
pared with the overarm throwing. This confirmed one of our
expectations. Third, the ridge line of the surface, when projected
on the floor of the graph, deviated from the reference line where
the actual weights were equal to the preferred weights. The pro-

Figure 8. The mean thrown distance in Experiment 3 as a function of size
and choice. Sizes: 1-in. ball (filled diamonds), 2-in. ball (filled squares),
3-in. ball (filled triangles), 4-in. ball (crosses), 5-in. ball (stars), and 6-in.
ball (filled circles; i.e., from 2.5 cm to 15 cm in diameter).

Figure 9. A surface representing mean thrown distances in Experiment 3 as a function of two variables, size
and weight. The line following the peak ridge of surface projects onto the size–weight plane describing the
size–weight scaling relation for preferred objects. When the projected line aligns with the 0 value on weight axis,
the preferred weights was thrown to the farthest distance.
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jected line mostly lay on the left of the reference line (four points
lay between 0 and –0.5 on the axis), which means the actual
weights being thrown the farthest were in general lighter than
expected. The foot hefting judgment tended to overestimate the
optimal weight for maximum distance of foot throws. This con-
firmed our other expectation that judgments would be inaccurate.

Experiment 4: Determining the Role of Object Size in the
Dynamics of Throwing Versus Projectile Motion

The particular smart perceptual mechanism hypothesis of G. P.
Bingham et al. (1989) is that object size and weight affect the
dynamics of hefting in a way similar to the way they affect the
dynamics of throwing so that hefting can provide information
about the effect of object size and weight on throwing. Thus, the
hypothesis requires that both object size and weight affect the
dynamics of overarm throwing. In Experiment 4, we tested this
assumption.

It is obvious in the throwing results of Experiment 1 that object
size affects throwing distances. Distances decreased as object size
increased, presumably because of the increased air resistance of
larger objects. However, size played another role. The greatest
distances were reached by objects of a particular optimal weight in
each size, and the optimal weight varied as a function of size. The
assumption required for our smart mechanism hypothesis is that
this functional relation between size and weight reflected a joint
effect of size and weight on the dynamics of throwing. However,
it is possible that object size only affected the dynamics of pro-
jectile motion with no effect on the dynamics of throwing. It is this
possibility that we then sought to test. It is known that object
weight affects throwing (e.g., Cross, 2004). Release velocities are
known to decrease as the weight of thrown objects increases.
However, the effect of object size on throwing is unknown.

We proceeded as follows. First, we tested 4 skilled throwers to
measure the release angles as they performed maximum distance
throws of our test objects. Next, we used the mean measured
release angles together with the mean thrown distances from
Experiment 1 and object sizes and weights in a simulation of the
dynamics of projectile motion to derive the release velocities. We
compared the resulting release velocities with results in the liter-
ature of studies on throwing measuring the effects of object
weights on release velocities. We found good correspondence in
these results. Accordingly, we next used a model of the effect of
weight on release velocities in throwing together with our mean
measured release angles, object sizes, and weights in simulations
of projectile motion to compute distances of throws. This model
entailed no effect of object size on throwing, only on projectile
motion. The question was how well might this model replicate our
mean throw distances.

Method

Apparatus. Twenty-four of the objects from Experiment 1
were used for throwing. All eight weights were used in three of the
sizes: 1 in. (2.5 cm), 3 in. (7.5 cm), and 5 in. (12.5 cm). In addition,
a digital video camera (SONY Handycam DCR-DVD605) on a
tripod was used to record the throwing. The sampling rate was 30
fps. The digital images were subsequently input to a computer and
processed using Protractor 4.0 software (Iconico, 2007) that mea-
sured the release angles.

Participants. Four adults at Indiana University volunteered to
participate in the experiment. All were skilled at overarm throw-
ing. Two were Olympic level athletes in badminton (one man and
one woman). One was very skilled in playing cricket. All partic-
ipants were in their late 20s. The last was a 52-year-old man skilled
in baseball. Participants all had good (corrected) vision and were
free of motor impairments.

Experimental procedure. Participants were tested in a large
field house–gymnasium at Indiana University. Participants stood
about 5 m in front of a cinderblock wall that provided a visible grid
and thus gravitational frame of reference. The digital camera was
positioned on its tripod at shoulder height and directly to the side
of the thrower (i.e., at 90° to the direction of throws) at a distance
of about 8 m. The participants warmed up their arms by throwing
balls back and forth to one another and also by performing some
maximum distance throws. Then each participant performed max-
imum distance throws of all 24 objects, thrown in a random order.
Subsequently, the digital video recordings were downloaded to a
computer for analysis. For each throw, two frames were used to
measure angle of release, the first frame in which the ball had left
the hand, and the following frame. The angle of the path of the ball
relative to the horizontal in the gravitational frame was measured
using a digital protractor.

Results and Discussion

Release angles did not vary systematically with either object
size or object weight. All participants exhibited mean release
angles that were significantly less than the optimal release angle of
36°. The overall mean release angle was 24°. We performed a
multiple regression on release angles, with object size and log
weight vectors as continuous independent variables and a vector
consisting of their product, to assess the interaction. The result did
not reach significance ( p � .10). None of the vectors accounted for
a significant portion of the variance. The distribution of mean
release angles (with standard error bars) for the 24 objects is
shown in Figure 10 together with a best fit line representing a
simple regression of log(weight) on the mean release angles. The
variation was random, and thus release angles of throws were best
represented by the overall mean release angle of about 24°.

Next, we used the mean release angle together with the mean
throw distances found in Experiment 1 and the object sizes and
weights to perform simulations of projectile motion to discover the
corresponding release velocities. For a projectile with air resis-
tance and quadratic drag, the following parameters are considered
in predicting the distance of travel: the projectile’s mass and the
cross-sectional area, release angle, release velocity, the air density,
and the drag coefficient. With the available weights, sizes, release
angle, and thrown distances, we only needed the drag coefficient
and air density to recover the release velocities. According to
Parker (1977), the appropriate drag coefficient for our spheres and
velocities of travel is 0.5 and air density is 1.22 kg/m3. Using these
values, we employed standard numerical methods to integrate the
nonlinear equations of motion (see, e.g., Parker, 1977) to discover
the corresponding release velocities for each throw by varying the
initial velocities to find those required to generate the throw
distances.

We found that the recovered release velocities followed a func-
tion of object weight: As object weight increased, the release
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velocity decreased. However, velocities did not begin to decrease
until the object weight reached .05 kg (log weight � –1.30; see
Figure 11). A separate linear regression analysis was performed on
the data lying on each side of a weight value of .05 kg. For weights
less than .05 kg, the linear regression of weight on velocity was not
significant (r2 � .12), F(1, 16) � 2.0, p � .15, and the mean
velocity was 23 m/s. However, for weights greater than .05 kg, the
linear regression was significant (r2 � 0.85), F(1, 29) � 147.8,
p � .001, with a negative slope. We transformed the regression
function to a power law: Velocity � 14.8 � (Weight)–0.15. These
findings replicate those of Cross (2004), who investigated the

effect of object weight on release velocities. He measured release
velocities directly and modeled the resulting relation between
velocity and weight with the same power law. For object weights
greater than .05 kg, the release velocity followed a power function
of weight with an exponent of –0.15. Below .05 kg, the projectile
weight did not affect release velocities, which were constant at a
maximum release velocity of about 20 m/s.

This functional dependence of release velocity on weight, but
not on size, implied that only weight affects the dynamics of
throwing and that size does not. Instead, size must play a role in
producing the pattern of throw distances that we observed by
affecting the dynamics of projectile motion. That is, throw dis-
tances would be a function of the effect of object weights on
throwing together with the effects of object weight and size on
projectile motion. If this is the case, then we should be able to
simulate the pattern of mean distances of throws using the varia-
tions in release velocity caused only by weight (not size) varia-
tions. We ran the simulations of thrown distances again using the
weight-release velocity function. Two sets of release velocities
were employed. For objects equal to and lighter than .05 kg, we
used a constant velocity of 23 m/s. For objects heavier than .05 kg,
we used a set of velocities generated by the power law (V �
14.8W–.15). Otherwise, we used the same values previously used
for release angle, drag coefficient, air density, and sizes and
weights of the objects. The result reproduced our distance data
remarkably well, accounting for 82% of the variance (r2 � .82),
F(1, 46) � 208.1, p � .001 (see Figure 12). The resulting regres-
sion function was as follows: Mean throw distance � (.96 �
simulated distance) � 1.42. Additionally, the simulated distances
exhibited the same effects of size and weight as exhibited by the
data: Distances decreased with increasing size (because of the
increased air resistance in projectile motion), there was an optimal
weight level for each size at which objects were thrown to the
farthest distance, and those optimal weights increased with in-

Figure 10. Mean release angles in Experiment 4 plotted as a function of
the log weight of the objects thrown. Filled circles: 1-in. (2.5-cm) balls.
Filled squares: 3-in. (7.6-cm) balls. Filled triangles: 5-in. (12.7-cm) balls.
Error bars represent standard errors.

Figure 11. The recovered release velocities as a function of log object
weights. The vertical line at log weight � – 1.30 marks the point at which
weight begins to effect release velocity. The linear regression on the left
side of the reference line shows no correlation between release velocity and
object weight (R2 � .08), whereas the linear regression on the right side of
the reference line shows strong negative correlation between release ve-
locity and object weight (R2 � .85).

Figure 12. A scatterplot of the simulated thrown distances versus the
thrown distances in Experiment 1 together with a line fit by least square
regression.

940 ZHU AND BINGHAM



creasing object size exactly in the simulation as in the data from
Experiment 1 (see Figure 13). Thus, according to these results, the
affordance property is emergent from the combined dynamics of
throwing and projectile motion.

General Discussion

We investigated the ability of people to judge the optimal
weight of different sized objects for maximum distance throws.
Experiment 1 was performed to replicate G. P. Bingham et al.
(1989). The results confirmed the earlier finding that the affor-
dance property, optimal object to be thrown to the farthest dis-
tance, can be well perceived by hefting an object in the hand. The
weights chosen by hefting were thrown to the farthest distance. As
found previously, the preferred weights increased with increasing
object size. Next, we tested an assumption required for the hy-
pothesis that this hefting functions as a certain kind of smart
mechanism. The assumption is that a dynamically similar limb
(i.e., an arm and hand) would have to be used for both hefting and
throwing. In Experiment 2, we tested whether people can still
judge the optimal weight for overarm throwing when hefting using
a limb different from the arm and hand. The results showed that
people picked heavier weights when they hefted objects using
either the elbow or the foot, and the judgments were more variable
than those generated using the hand. In Experiment 3, we inves-
tigated the relationship between hefting using the foot and throw-
ing using the foot. Again, a variable and elevated judgment of
optimal weight was found, and the thrown distances were very
small compared with when participants used the hand. This indi-
cated that throwing using a leg and foot was simply unskilled.
Furthermore, lighter weights than those chosen were thrown to the
farthest distance, so the judgments were inaccurate. Finally, the
selected weights were not different in respect to mean or variabil-
ity from a random selection. The findings from Experiment 2 and
Experiment 3 indicated that hefting using the specific skilled limb
is necessary for accurate selection of the optimal objects.

The results of these experiments supported the smart mechanism
hypothesis of G. P. Bingham et al. (1989), which presumes that
object size and weight affect hefting in a way similar to their effect

on throwing, so that hefting can serve us a window on the effect of
object size and weight on throwing. The objects selected as opti-
mal were of increasing weight for increasing sizes. G. P. Bingham
et al. had found evidence that grasping larger objects causes the
stiffness of the wrist joint to increase. They suggested that heavier
objects are selected accordingly to preserve the frequency and/or
amplitude of motion about the wrist so as to preserve relative
timing of motions in throwing. If so, then both hefting and throw-
ing would be affected by variations in object size in the same way,
and thus hefting would provide perceptual access to requisite
variations in weight given changes in size.

However, the distance of throws is determined ultimately by
both the dynamics of throwing and the dynamics of projectile
motion. The interface between the two is the release angle and
velocity. We found in Experiment 4 that skilled throwers failed to
exhibit optimal release angles. Release angles varied about a mean
angle equal to 24°, less than the optimal angle of 36°. The
variations were random. So, release angle is best represented by
the 24° mean. If both size and weight of thrown objects affect the
dynamics of throwing, then the effect should be apparent in vari-
ations of release velocities. Previous studies of throwing have
shown that object weight does affect release velocity (e.g., Cross,
2004), but there have been no studies of the effect of object size on
release velocity. We used our data to investigate this question
through simulations of projectile motion.

First, we worked backwards from given distances of throws for
each object size and weight (taken from the means in Experiment
1) using a simulation of the dynamics of projectile motion together
with the mean measured release angle to derive release velocities.
We found that the resulting release velocities matched the results
of Cross (2004), who investigated the effects of object weights on
release velocities of throws. Our data conformed to the same
power law relation that captured his data. The implication was that
only object weight affects release velocities, not object sizes.

To confirm this, we again performed projectile motion simula-
tions. This time we plugged our object weights into the power law
relation to generate corresponding release velocities, which we
then used together with object sizes and weights and the constant

Figure 13. Mean throwing distance as a function of object size and log object weight. Left: Data from
Experiment 1. Right: Data from simulations. 1-in. balls: circles; 2-in. balls: squares; 3-in. balls: triangles; 4-in.
balls: diamonds; 5-in. balls: inverted triangles; 6-in. balls: crosses (i.e., from 2.5 cm to 15 cm in diameter).
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24° release angle to perform simulations generating distances of
throws. The resulting pattern of distances matched that found in
Experiment 1, accounting for over 80% of the variance.

Most important is that this model produced exactly the size–
weight relation exhibited in Experiment 1 corresponding to the
maximum distance in each size. This relation was produced with
no effect of object size in the dynamics of throwing. The only role
of object size was in the dynamics of projectile motion. Object
weight, on the other hand, played a role in both dynamics. If object
size only plays a role in determining distances of throws through
projectile motion and does not affect the dynamics of throwing as
suggested by the results of Experiment 4, the clear implication is
that the size–weight relation corresponding to optimal objects for
throwing can only be known by seeing how far different objects
can be thrown. The only way to apprehend the effect of size, if it
acts only through the dynamics of projectile motion, is to see what
happens when objects of different sizes and weights are thrown.

This last result undermines our particular smart mechanism
hypothesis. Bingham et al. (1989) produced some evidence in
support of the hypothesis. In particular, they showed that the
grasping of different sized objects changed the stiffness of the
wrist exhibited by hefting motions. Grasping bigger objects
yielded a stiffer wrist. They hypothesized that heavier objects were
selected in proportion to this change in stiffness to preserve the
frequency of motion (f � k/m). In Experiments 2 and 3, we tested
an assumption required for this smart mechanism hypothesis with
results that again supported this hypothesis. The dynamics of
overarm throwing is dependent on the anatomical structure of the
arm and hand. If a similarity in the dynamics of hefting and
throwing is to be the basis of information about throwable objects,
then hefting should be performed using the arm and hand if it is to
be effective in yielding information. This is what we found.

So, where do we stand? The projectile motion simulation data
accounted for about 80% of the variance in the mean distance data
of Experiment 1. It remains possible that some of the remaining
20% of the variance is produced by size-specific effects on throw-
ing akin to that hypothesized and studied by Bingham et al. (1989).
In this case, our smart mechanism hypothesis might still be correct.
The question is how might one reveal this?

There is another way to study this smart mechanism hypothesis.
One could study the learning of the affordance as people practice
to acquire skilled overarm throwing. If the hypothesis is correct,
then participants should be able to acquire sensitivity to the affor-
dance by practicing only with a single set of constant density
objects in which size and weight covary. Such a set of objects
representing a single cut through the surface (shown in Figure 9)
should be sufficient as long as the cut is not parallel to the ridge,
that is, the cut should yield a curve with an optimum. This should
enable learners to develop sensitivity to the information, and once
they do, then it should generalize to objects in which size and
weight vary independently and arbitrarily within the range of
throwable objects. If this result were obtained, then given the logic
described in this article, one would have to conclude that object
size does affect the dynamics of throwing but that this effect is
small compared with the affect of object size on projectile motion
and thus it is otherwise difficult to measure. However, if the
hypothesis is false and experience of knowledge of results for
function learning is required, then more general experience of

projectiles varying independently in size and weight will be re-
quired. We are currently testing these hypotheses.
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