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ABSTRACT
Scientific computing is only bound by the limits of Moore’s
Law and the scalability of high performance mathematical
library implementations. Most mathematical libraries how-
ever tend to focus only on general inputs, limiting their po-
tential performance and scalability by not tailoring their im-
plementation to specific inputs, such as non-negative inputs.
By removing this limitation it is possible to improve the per-
formance and accuracy of a range of problems. In this paper
we explore the limitations of hardware to improve accuracy
of non-negative matrix multiply by specifically comparing
implementations on the GPU and CPU and propose algo-
rithmic solutions to improve accuracy. Next, we demon-
strate a matrix multiply implementation that takes advan-
tage of asymptotically fast matrix multiply algorithms, which
have been shown to scale better than O(N3) matrix multi-
ply implementations, and improve accuracy by up to a whole
digit while increasing performance by up to 27% for matrices
where the input is positive. Finally, we propose to extend
the BLAS level 3 specification to non-negative matrices to
allow easy integration of our solution and allow other library
authors to implement their own solutions as part of an ex-
isting standard.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm Design and Anal-
ysis

General Terms
Algorithms, Performance
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1. INTRODUCTION
The adoption of parallel processors, and in particular graph-

ics cards (GPUs), are becoming increasingly popular in sci-
entific computing because of their low price and high per-
formance [17]. This has lead researchers to offer high per-
formance matrix multiply implementations for the GPU [22]
along with BLAS 3 (Basic Linear Algebra Subroutines) for
use in general scientific computing [1]. GPUs and GPU
like devices though, with idiosyncratic architecture and a
flat memory hierarchy, will yield drastically different ma-
trix multiply implementations [22] than their CPU counter-
parts [23]. Architectural limitations such as the size or even
availability of a cache not only change how matrix multi-
ply is implemented [12, 1], but also affects the overall accu-
racy of the computation as it dictates how the computation
is decomposed [5, 13], resulting in poorer accuracy on the
GPU. This deviation in accuracy due to algorithmic differ-
ences is true even though the GPU uses an FMA (Fused-
Multiply-Add) [20] which produces fewer rounding errors
than the CPU implementation [13, 12]. This is analyzed
and discussed in Section 3 and demonstrated empirically in
Section 5. To solve this accuracy problem, we approach so-
lutions by breaking apart the problem into two subclasses,
matrices with positive inputs and those with both positive
and negative inputs. Specifically, we will use uniform ran-
dom between [0, 1] for the input matrices. We place no re-
striction on the result matrix. This is natural as uniform
random matrices with inputs between [0, 1] and [−1, 1] are
considered representative of real world inputs and are widely
used [11, 13, 3]. In particular, problems that are represented
by the [0, 1] range include Markov chains [9], computational
biology [2] and pattern recognition [8]. Knowing this and
knowing the input allows us to specifically tailor algorithmic
solutions, combined with our understanding in how subtle
differences in the computation can be broken up to transcend
the architectural limitations of the GPU, we are able to not
only improve performance by up to 27%, we can also improve
accuracy when the matrix input is positive. In addition, be-
cause of the quantity of problems represented by the [0, 1]
input range and the ability and availability of algorithmic
solutions that cater to problems of this type, we propose
to extend the BLAS 3 specification to allow other library
authors to likewise provide solutions for these types of prob-
lems instead of always implementing solutions that cater to
the worst case, general inputs. We go into detail about the
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BLAS 3 extension proposal in Section 6. This will all be
presented through the lens of a new scalable GEMM imple-
mentation for the GPU. The rest of the paper is organized
as follows: We will start by briefly covering previous work
in the area of high performance matrix multiply and BLAS
3 implementations along with hybrid matrix multiply im-
plementations. We will then discuss how the decomposition
of the problem affects the overall numerical accuracy of the
result, demonstrating this difference empirically by compar-
ing different matrix multiply implementations on different
architectures, namely the CPU and the GPU. Next we will
demonstrate how this information can be used to build a hy-
brid matrix multiply implementation that improves perfor-
mance on the GPU by up to 27% over the native implemen-
tation and also improves accuracy by exploiting asymptot-
ically fast matrix multiply algorithms, such as Winograd’s
variant of Strassen’s algorithm [24], that behaves like the
canonical O(N3) matrix multiply algorithm in terms of ac-
curacy when the input is non-negative. Finally, capitalizing
on this insight, we propose an extension to the BLAS 3 spec-
ification to allow other library authors to take advantage of
other asymptotically fast matrix multiply algorithms with
similar properties.

2. PREVIOUS WORK
Matrix multiply is ubiquitous in scientific computing. Con-

sequently, considerable effort has been spent on improving
its performance. One of the first BLAS 3 implementations
to be widely available was ATLAS [23]. ATLAS was unique
in that instead of writing architectural specific implemen-
tations it would attempt to automatically find the best im-
plementation for a given architecture through an exhaustive
search of standard optimization techniques such as block-
ing and loop unrolling. Various combinations of these tech-
niques would be compiled and tested on a given architec-
ture, the fastest implementation being saved and then used
as the basis for all other BLAS 3 functions. Further per-
formance could be found though by ignoring the L1 cache
and instead targeting the L2 cache. This insight became
the basis of Goto’s BLAS implementation [12]. Goto’s im-
plementation is widely considered the most efficient on x86
based machines and is even used in official vendor provided
libraries such as Intel’s Math Kernel Library [16]. With
Goto’s BLAS implementation, high performance implemen-
tations on x86 based machines reached their limit in terms
of efficient use of the processor. In order to further increase
performance hybrid matrix multiply implementations had
to be considered. Hybrid matrix multiply implementations
work by first decomposing a problem using matrix multiply
algorithms that are asymptotically faster than the canonical
O(N3) algorithm (An example of the canonical matrix mul-
tiply algorithm can be found in Section 3.4 Figure 4). The
hybrid matrix multiply algorithm then solves the decom-
posed parts using a high performance implementation like
the previously mentioned ATLAS [23] or Goto BLAS [12].
The current state of the art for hybrid matrix multiply al-
gorithms on x86 based machines is the implementation by
D’Alberto and Nicolau [10].

Unlike x86 based machines, GPU implementations vary
widely due to constantly changing architecture. Within the
Nvidia family of GPUs, the best currently available imple-
mentation for the Tesla chipset is that offered by Volkov and
Demmel [22]. The Fermi chipset, a more modern chipset

offered by Nvidia, the best implementation is that offered
through MAGMA BLAS [1]. Both implementations though,
like all high performance matrix multiply implementations,
are limited in terms of their efficient use of the architecture.
The only hybrid implementation on the GPU is that by Li,
Ranka and Sahni [18]. This implementation demonstrated
the performance hybrid matrix multiply algorithms on the
GPU. The accuracy analysis of their hybrid matrix multiply
algorithm however was fundamentally limited by hardware
implementation choices made by Nvidia for that chipset. On
the Tesla chipset, the FMADD (floating point multiply and
add) did not conform to the IEEE 754 standard, the interme-
diate result was truncated instead of rounded [20]. The effect
of which was exhaustively measured in our previous work [4].
High performance CPU implementations were also not com-
pared, which are well known to be more accurate than the
canonical O(N3) matrix multiply implementation [5]. Addi-
tionally, with the Fermi chipset Nvidia replaced the FMADD
operation with FMA (fused-multiply-and-add) which halves
the number of rounding errors committed [13]. In the next
section we will explore the consequences of FMADD versus
FMA in terms of theoretical bounds. We will then show em-
pirically how algorithmic decisions play a larger overall role
in the accuracy of high performance matrix multiply imple-
mentations than whether an FMA or an FMADD is used to
compute individual partial products. We will then show in
Section 4 how high performance matrix multiply implemen-
tations on the GPU can be improved using asymptotically
fast implementations, both in terms of performance and ac-
curacy.

3. NUMERICAL ACCURACY
As discussed in Section 2, there are a number of high

performance matrix multiply implementations that exist for
both the CPU and the GPU. In order to compare the differ-
ent matrix multiply implementations in terms of numerical
stability it becomes useful to have a way of modeling individ-
ual rounding errors created by individual operations. The
operations of primary concern are those associated with the
innermost dot product of each matrix multiply implementa-
tion, namely multiplication and addition. Though the model
also captures subtraction and division. This model is dis-
cussed in Section 3.1.

Empirical results are also useful as they help to not only
validate a model and bring to light hidden constants in any
error analysis but they can also sometimes illustrate just how
pessimistic a model can be. This is the case when compar-
ing asymptotically fast matrix multiply implementations as
their accuracy in terms of their error analysis is usually much
worse than they are in practice [5, 11]. The empirical results
are measured in terms of relative error and absolute error.
Relative error is useful as it attempts to capture the error
independently of the magnitude of the input, thus allowing
for direct comparison of different implementations and ar-
chitectures. Absolute error is useful if the input matrices are
between [0, 1] and [−1, 1] as one can simply scale this dif-
ference relative to the magnitude of the input matrices they
commonly use. Though other metrics for measuring error
exist [25, 21], they do not appear to be commonly used.

For the rest of the paper we also define blocking to mean
breaking apart the computation on a single dimension. For
instance, by using the canonical three nested loop version
of matrix multiply from Section 3.4 Figure 4 as an exam-



ple, there are three different loops, or rather, three different
dimensions that can be blocked on. Blocking involves com-
puting a certain number of elements of a given dimension
together instead of computing all elements available in that
dimension. For example, given three matrices A, B and C
with dimensions M×K, K×N and M×N , respectively, and
a matrix product A×B = C. If we were to write that we are
blocking on M and N , we would be blocking on the result
matrix C. This means that all of K would be computed
for a given block of M and N . Blocking on the M and N
dimensions, also known as blocking on the result matrix C,
is a common strategy for parallelization as each block of C
can be computed independently. For instance, if each block
size was M/2 by N/2, four independent submatrices of C
could be computed in parallel. It is important to note that
blocking on the K dimension is the only dimension that will
affect accuracy. A more detailed blocking example can be
found in Section 3.4 as well as an analysis of how blocking
on K affects accuracy in Section 3.3.

3.1 Measuring Rounding Error
Before discussing the standard model, some concepts and

notation must first be introduced, namely the concept of
“unit roundoff”. Unit roundoff, also known as machine ep-
silon, is defined as β1−p where β is the base, in this case 2 as
we are dealing with binary arithmetic and p is the precision
being used. This means that unit roundoff will vary with the
precision used in the computation. For the rest of the paper
we will represent unit roundoff with the letter u. We also
assume round to nearest in all our analysis and testing as it
is the IEEE default rounding mode. In the next subsection
we will cover the notation we will be using to analyze the
various matrix multiply implementations.

3.2 Notation
In this paper we will use identical notation as that used

in “Accuracy and Stability of Numerical Algorithms” by
Higham [13]. To briefly cover the important ideas from the
book that are relevant to this paper: If x and y are values,
and their product is expressed as xy, then fl(xy) would be
the product rounded to the precision of the machine. Like-
wise, if we assign z = xy then we can represent the machine
computed result using ẑ so that ẑ = fl(xy). The difference
between the compute result and the actual result can then
be expressed simply as |z − ẑ|. To quantify exactly how
much that difference is, we turn to the standard model as
presented in Higham’s book [13] as the model is widely used
and holds for IEEE standard arithmetic. In this model, the
result of an individual floating point operations is:

fl(x op y) = (x op y)(1 + δ) (3.1)

Here δ represents the relative error of an individual opera-
tion and is assumed to be |δ| ≤ u. This means that equa-
tion 3.1 says that the real answer, rounded to machine pre-
cision, is equal to the real answer plus some small relative
error, less than or equal to machine epsilon.

3.3 Analysis
Using the standard model represented by equation 3.1,

the following forward error bound for the inner product of

0 2000 4000 6000 8000 10000
0.00E+000

2.00E-003

4.00E-003

6.00E-003

8.00E-003

1.00E-002

1.20E-002

1.40E-002

1.60E-002

CPU
(goto sgemm)

GPU
(cublas sgemm)

Problem Size

A
b

so
lu

te
 E

rr
o

r

Figure 1: Single - Uni Random [0,1] - Absolute Error

matrix multiply is derived in [13]:

|xT y − fl(xT y)| ≤ γK
K∑
i=1

|xiyi| = γK |x|T |y|, (3.2)

where γK = Ku/(1−Ku). Simplified, this becomes:

|sK − ŝK | ≤ γK |x|T |y|, (3.3)

where sK is the correct result and ŝK is the computed re-
sult. This model holds for the canonical O(N3) matrix mul-
tiply (or specifically O(MNK)), however it no longer holds
when the computation is broken up, the normal result of
implementing a blocking strategy. If the inner product is
broken up into K/b strips, where K is the problem size and
each strip contains b summands, the forward error bound
becomes:

|sK − ŝK | ≤ γK
b
+b−1|x|

T |y| (3.4)

The benefit of blocking on K is empirically demonstrated
in Figures 1 and 2 by comparing SGEMM (single preci-
sion general matrix multiply) implementations from Nvidia’s
CUBLAS on a Nvidia Tesla C2070 as compared to Go-
toBLAS on a Q9450 Penryn Intel Quad Core processor.
For both Figures 1 and 2 the input is uniform random be-
tween [0, 1], the result is computed using single precision
(SGEMM) and the standard the result is compared against
is computed using double precision on the CPU. There are
no restrictions on the result. Individual points on the graph
are the max of the max for 10 runs for each problem size.
Figure 1 is the absolute error and Figure 2 is the rela-
tive error. The relative error for GotoBLAS in Figure 2
appears to improve because the tile size chosen by Goto-
BLAS is targeting a larger problem size, effecting the way
the computation is broken up. One interesting side effect
of (3.4) is when b =

√
K, which is being illustrated in Fig-

ure 2 as the problem size approaches b2. These results are
particularly striking since the CPU implementation is us-
ing a floaing-point-multiply-and-add (FMADD) [12, 14, 15]
whereas the GPU implementation is using a fused-multiply-
and-add (FMA) [20]. How peculiar this result at first ap-
pears becomes more apparent when directly comparing the
two operations using the standard model. In the standard
model, an FMA is modeled as [13]:

fl(x+ y × z) = (x+ y × z)(1 + δ), (3.5)
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Figure 2: Single - Uni Random [0,1] - Relative Error

where |δ| ≤ u. What this means is that an FMA effec-
tively commits roughly half as many rounding errors as the
FMADD since the result is only rounded once, after the ad-
dition, instead of twice as is the case with the FMADD (once
after the multiplication, once after the addition). However,
the worst case forward error for a dot product computed us-
ing an FMA is still the same as 3.3. A simple analysis is as
follows:

Let us assume we have two vectors, y and z, both of length
n and a scalar variable x. Using the standard model, an
FMA can be expressed with equation 3.5. Applying this
model to the first two products we have as follows:

ŝK = (x+ y1 × z1)(1 + δ)

ŝK = [(x+ y1 × z1)(1 + δ) + (y2 × z2)](1 + δ)

ŝK = (x+ y1 × z1)(1 + δ)2 + (y2 × z2)(1 + δ)

It is easy to see that if this pattern was carried out to n
elements, the result would be:

ŝK = (x+ y1 × z1)(1 + δ)K

+ (y2 × z2)(1 + δ)K−1...+ (yK × zK)(1 + δ)

Using the same analysis that was used to derive the inner
product forward error bound for the canonical matrix mul-
tiply algorithm [13], we end up with the same forward error
bound as represented by equation 3.3. What this means
is that the inner product computed using an FMADD and
the inner product computed using an FMA have the same
worst case forward error bound. More importantly, both
are clearly worse than the forward error bound represented
by equation 3.4, which is empirically demonstrated in Fig-
ures 1 and 2 by comparing the CUBLAS SGEMM imple-
mentation against the SGEMM implementation in Goto-
BLAS [12]. This is because the SGEMM implementation
in GotoBLAS is broken up along the K dimension of the
matrix product whereas the computation is not broken up
along the K dimension in the CUBLAS implementation.
This is because the GotoBLAS implementation is blocked
on all three dimensions of the matrix product whereas the
GPU implementation is only blocked on the result matrix,
dimensions M and N . (For reference, GotoBLAS1, the Tesla

1http://www.tacc.utexas.edu/tacc-projects/gotoblas2

ALGORITHM: Blocked Matrix Multiply
procedure blockedMultiply(A,B,C,M,K,N, bSize)
for (i = 0, i < M, i = i+ bSize)

for (j = 0, j < N, j = j + bSize)
for (k = 0, k < K, k = k + bSize)

AOffset = i ∗K + k
BOffset = k ∗N + j
COffset = i ∗N + j
leafMultiply(A+AOffset,K,B+BOffset, N,

C+COffset, N, bSize, bSize, bSize)

Figure 3: Blocked Matrix Multiply

ALGORITHM: Direct Matrix Multiply (Preload)
procedure leafMultiply(A, ldA,B, ldB,C, ldC,M,K,N)
begin
for (i = 0, i < M, i+ +)

for (j = 0, < N, j + +)
for (k = 0, k < K, k + +)
C[i ∗ ldC + j] += A[i ∗ ldA+ k] ∗B[k ∗ ldB + j]

Figure 4: Preload Matrix Multiply

chipset implementation by Volkov and Demmel2 as well as
the MagmaBLAS implementation3 for the Fermi chipset are
publicly available.) This means the accuracy difference be-
tween the two SGEMM implementations is almost entirely
algorithmic and not architectural. In the next subsection we
offer a simple example to help illustrate this analysis.

3.4 Matrix Multiply Blocking Example
Blocking is a common strategy within high performance

matrix multiply kernels. The primary goal of blocking is
to maximize reuse of the data in the cache and hence im-
prove performance. Subtleties in how the individual blocks
are added to the whole greatly impact the forward error
bound on the inner product [13]. This difference is some-
times referred to as preload versus postload [7]. We adopt
this terminology in this paper.

Preload and postload are best discussed in the context of
a specific blocking strategy. Consider the code shown in Fig-
ure 3, which multiplies the M ×K matrix A by the K ×N
matrix B to produce the M × N matrix C. The matrices
are stored in row-major order. The blocks are square, of
size bSize × bSize. For simplicity, we assume that the ma-
trix dimensions are all even multiples of the block size. The
strategy in Figure 3 is to compute C one column of blocks
at a time, always keeping in memory a bSize × k strip of A
along with the block of C currently being computed. The
code repeatedly multiplies a block of A by a block of B and
adds the result to a block of C. Each partial block compu-
tation is performed by calling the procedure

leafMultiply(A,ldA,B,ldB,C,ldC,M,K,N)

where A,B, and C are the addresses of the start of the
blocks; the blocks are of sizes M ×K, K ×N , and M ×N
respectively; and ldA, ldB, and ldC are the strides (i.e., the
row lengths) of the three matrices.

The error of the algorithm shown in Figure 3 depends on

2http://www.cs.berkeley.edu/˜volkov/
3http://icl.cs.utk.edu/magma/software/index.html



ALGORITHM: Direct Matrix Multiply (Postload)
procedure leafMultiply(A, ldA,B, ldB,C, ldC,M,K,N)
begin
for (i = 0, i < M, i+ +)

for (j = 0, < N, j + +)
sum = 0
for (k = 0, k < K, k + +)
sum += A[i ∗ ldA+ k] ∗B[k ∗ ldB + j]

end for
C[i ∗ ldC + j] += sum

end for
end for

Figure 5: Postload Matrix Multiply

how the inner kernel (i.e., the leafMultiply() procedure)
is implemented. If the implementation is the preload code
shown in Figure 4, the summation of the inner product is
the standard summation of K terms, for which the forward
error bound is modeled by equation 3.3. In contrast, the
postload code shown in Figure 5 computes the contribution
of the block to the inner product in a temporary variable
and adds this sum to the inner product. When the code of
Figures 3 and 5 is combined, the net effect is to compute
the dot product as the sum of K/bSize partial sums, each
of which is the sum of bSize terms. As discussed in the
previous subsection, breaking apart the summation affects
the accuracy. By applying equation 3.4, the forward error
bound for the postload implementation becomes:

|sK − ŝK | ≤ γ K
bSize

+bSize−1|x|
T |y| (3.6)

Which obviously produces a smaller forward error than the
preload implementation for values of bSize that are not
equal to 1 or K.

Current GPU implementations on both the Tesla chipset
and the Fermi chipset effectively use a preload implemen-
tation [1, 22], as illustrated in Figure 4. The forward error
bound for the preload implementation is exactly the same as
a standard summation, represented by equation 3.3 in Sec-
tion 3.3. Notice that there is no difference in error between
blocking on k and using a preload implementation versus
using a postload implementation and changing the update
rule in the inner most loop of Figure 3 from “k = k+ bSize”
to “k = k + 1”. This is what GPU implementations do2,3.
This implementation detail is in contrast to CPU implemen-
tations that effectively use a postload implementation [12,
23], as illustrated in Figure 5. The forward error bound for
the postload implementation is represented by equation 3.4
in Section 3.3. This difference has a significant effect on
the forward error bound, as was analyzed in Section 3.3 and
demonstrated empirically in Figures 1 and 2. In the next
section we will discuss algorithmic solutions to improve ac-
curacy on the GPU.

4. ALGORITHMIC SOLUTIONS
As we discussed in Section 3, in order to improve the ac-

curacy of a dot product the computation must be broken
up. The most obvious way to break up the inner product
is by blocking on k [7]. This is the preferred method for
processors with deep memory hierarchies like the CPU as

it maximizes cache hits which maximizes reuse of the data,
thus avoiding costly trips to main memory [12, 23]. As we
demonstrated in our previous work on the CPU, a simi-
lar effect can be achieved by breaking up the computation
by using the outer product [5]. In general though, and in
particular for flat memory hierarchy machines such as that
provided by the GPU, blocking on k general leads to poorer
performance since any resources allocated for blocking along
k could be used to further improve performance as blocking
on k has to be simulated with additional registers. Likewise,
if the high performance matrix multiply implementation on
the GPU is anywhere near 100% utilization of the GPU,
you must steal resources from the implementation, reduc-
ing performance to increase accuracy. Applying the outer
product recursively though requires no additional resources
nor does it apply additional operations. The overhead of
recursion is entirely limited to how the GPU driver handles
multiple kernel launches, namely, if it inserts barriers be-
tween kernel launches that access disparate pieces of data.
We discuss outer product recursion in detail in the following
subsection.

4.1 Outer Product - Recursion
An alternative approach to breaking up the computation

is by recursively breaking apart the matrix and computing
the outer product. This can be accomplished as follows,
given the following matrices:

A =

[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
, and

C =

[
C11 C12
C21 C22

]
the entries of C are given by

C11 = A11×B11 +A12×B21,

C12 = A11×B12 +A12×B22,

C21 = A21×B11 +A22×B21, and

C22 = A21×B12 +A22×B22.

Each submatrix of A, B and C can likewise be broken up,
yielding:

A11 =


A1111 A1112 A1113 A1114

A1121 A1122 A1123 A1124

A1131 A1132 A1133 A1134

A1141 A1142 A1143 A1144

 ,
where the first half of C1111 is now computed by

C1111 = (A1111 ×B1111) + (A1112 ×B1121)+

(A1113 ×B1131) + (A1114 ×B1141)

In this way, you are effectively halving the error with each
additional level of recursion, a special case of this being pair-
wise summation [13, 5]. What is important here to realize
is that this recursive decomposition need not be done with
simply the canonical O(N3) matrix multiply algorithm, this
can be done with any asymptotically fast matrix multiply al-
gorithm that can be expressive recursively. Normally this is
not pursued because as seen in Figures 1 and 2 Goto’s imple-
mentation of SGEMM is very accurate and simply reducing
the leaf size to even K

8
, the result of applying a recursive

matrix multiply implementation to a depth of three, is not
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Figure 6: Single - Uni Random [0,1] - Absolute Error
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Figure 7: Single - Uni Random [0,1] - Relative Error

enough to out run the constant error that an asymptotically
fast matrix multiply algorithm multiplies for each level of
recursion. However, this is not the case for preload imple-
mentations like those found on GPUs, as we will discuss in
the next subsection.

4.2 Winograd
Winograd’s variant of Strassen’s algorithm, which will be

referred to as Winograd’s algorithm, is an asymptotically
fast matrix multiply algorithm that changes the schedule
of operations in Strassen’s algorithm, thereby reducing the
number of additions in Strassen’s algorithm [24]. Addition-
ally, both algorithms only require 7 matrix multiply oper-
ations whereas the canonical O(N3) algorithm requires 8,
making them asymptotically faster than the canonical ma-
trix multiply algorithm. Given the same matrices as in Sub-
section 4.1, the specific schedule we use for Winograd’s al-
gorithm (as there are many different schedules and each one
has different effects on accuracy) is described in Table 1.
The important thing to notice is that for each multiplication
in Winograd’s algorithm, when the final value is written to

matrix C it is done so with either an assignment or through
addition, never subtraction. This includes the temporary
value U . What this means is that if Winograd’s algorithm
is applied to input matrices that are all of the same sign, or
in this case, every element in both matrix A and B is non-
negative, then there is only cancellation if the sub-product is
negative. This is commonly referred to as lacking“true”sub-
traction, as subtraction only occurs if the submatrix being
added contains elements of a different sign than the matrix
it is being added to. This means that though the overall
worst case accuracy bound of Winograd’s algorithm has not
changed (as the bound makes no assumption on the input),
in practice, the error is contained within the least significant
bits as catastrophic cancellation through subtraction (actu-
ally using the subtraction operator when applying the par-
tial sum to the result matrix C) is generally avoided. This
allows Winograd’s algorithm, in practice, to behave more
like the canonical matrix multiply algorithm when the input
is uniform (in this case, uniformly random in [0, 1]). Wino-
grad’s algorithm has been demonstrated to be, in practice,
more accurate than Strassen’s algorithm in previous work [5,
11] when the input is uniform random in [0, 1]. The key dif-
ference here is that since the underlying high performance
implementation on the GPU is a preload implementation,
the recursive decomposition of Winograd’s algorithm breaks
up the chains of additions. This effect is not as pronounced
when the high performance implementation blocks on K, as
most CPU implementations do [12, 23]. The reason for this
is there is only really one source of rounding errors but two
ways it can be exposed. The first way is if there is some
small error in the least significant digits that is suddenly
exposed by subtraction, that the least significant digits be-
come the most significant digits (this is commonly referred
to as catastrophic cancellation). The second way, and only
true source of rounding errors, is the slow accumulation of
rounding errors from each individual operation. The pace of
this march can be slowed though by breaking up the chains
of operations, as we explained in Subsection 4.1.

The implication of this insight can be clearly seen in Fig-
ures 6 and 7, (performance for which is provided in Figure 8),
where Winograd’s variant of Strassen’s algorithm (labeled
as ‘GPU sngemm’ and ‘GPU dngemm’, respectively) is ap-
plied to a leaf size of 1024 and the input is between [0, 1].
Additional levels of Winograd’s algorithm actually improve
the accuracy as compared to the implementation offered by
Nvidia’s CUBLAS. This improvement gives back a digit of
accuracy over using Nvidia’s CUBLAS, as seen in Figure 6.
Though the accuracy of working on the GPU is still worse
than that of the CPU, it is much improved over all other
implementations offered on the GPU. It is also important
to note that blocked postload CPU implementations like
Goto’s are amongst the most accurate high performance im-
plementations [5]. In order to improve accuracy beyond that
provided by blocked postload high performance implemen-
tations, such as that provided by GotoBLAS [12], requires a
three level hybrid to maintain performance [5] or can be done
using pairwise summation at the cost of performance [13, 5].

The benefit of choosing to use Winograd’s algorithm over
the canonical O(N3) algorithm is also obvious as seen by
the performance gained in Figure 8. The GPU in the gen-
eral case is faster than the CPU for matrix multiply [1] and
we further extend this lead. In the next section we will



Winograd’s Algorithm
Multiplication # Operations

1
S = A21 +A22, T = B12−B11,
U = S × T,
C12 = U,C22 = U

2
U = A11×B11
C11 = U

3 C11+ = A1×B21

4
S = S −A11, T = B22− T
U+ = S × T
C12+ = U

5
S = A12− S
C12+ = S ×B22

6
T = B21− T
C21 = A22× T

7
S = A11−A21, T = B22−B12
U+ = S × T
C22+ = U,C21+ = U

Table 1: Winograd’s Variant of Strassen’s Algorithm

demonstrate and discuss the benefits to both performance
and accuracy to using Winograd’s algorithm on the GPU.

5. EMPIRICAL RESULTS
In this section we will demonstrate empirically that it is

possible to get both performance and accuracy when us-
ing hybrid matrix multiply algorithms, we demonstrate this
on the GPU. The results were computed on Kubuntu 11.04
with CUDA version 4.1 using a Nvidia Tesla C2070. The
CPU is a Q9450 Penryn Intel Quad Core processor using
GotoBLAS2 version 1.13. The performance was measured
by comparing the various implementations to an O(N3) im-
plementation, assuming 2×N3 operations. Timing was done
by using CUDA Events. The matrices computed are square
for convenience. Accuracy was measured using relative er-
ror and absolute error [13], which is discussed at length in
Section 3.1. Winograd’s variant of Strassen’s algorithm is la-
beled as ‘GPU sngemm’ for single precision matrix multiply
and ‘GPU dngemm’ for double precision matrix multiply.
An explanation of this naming scheme is provided in Sec-
tion 6. For our implementation we wrote custom CUDA
kernels for assignment, addition and subtraction. Our al-
gorithm is implemented recursively using the schedule in
Table 1, calling the CUBLAS GEMM implementation in
the leaves for the multiplications. In the next two subsec-
tions we will provide and discuss additional performance and
accuracy data, including for problems computed in double
precision.

5.1 Performance
As seen in Figures 8 and 9, the Winograd variant of Strassen’s

algorithm clearly scales better than the canonical implemen-
tation offered by Nvidia, offering up to 26% better perfor-
mance in single precision and up to 27% better performance
in double precision. The key difference though between the
single and double precision implementation is that of the
crossover point. As seen in Figure 8, the break even point
is a leaf of 1k whereas the break even point for double pre-
cision is 2k, as seen in Figure 9. This makes perfect sense
given the size difference between single and double precision,
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namely, the cost associated with trading multiplications for
additions and the additional overhead in bandwidth associ-
ated with the additions. To be explicit, it costs more to add
matrices in double precision than it does if they are stored
in single precision, so the time saved on the multiplication
needs to be greater to offset the time lost doing the addi-
tions. Thus the crossover point for double precision is a leaf
size of 2k whereas the crossover point for single precision is
1k. In either case though, the performance benefit of apply-
ing Winograd’s variant of Strassen’s algorithm is obvious.

5.2 Accuracy
As seen in Figures 10 and 11, double precision behaves

identically in terms of absolute and relative error to that of
single precision, as introduced in Subsection 4.2 and seen in
Figures 6 and 7. Though the overall accuracy of this solu-
tion is not better than that of the CPU, if one is choosing to
use the GPU for performance reasons, the solution provided
in this paper is much more accurate than simply using the
standard matrix multiply implementation provided. This
difference can be quite large, as seen in Figure 10, for a
problem size of 8k, a whole digit of accuracy is returned. In
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the next section we will discuss expanding the Basic Linear
Algebra Subroutines level 3 (BLAS 3) specification in order
to offer a standardized method for library authors to imple-
ment, as opposed to forcing the general scientific community
to reimplement various solutions, or worse, to constantly re-
organizing the structure of their programs as new algorithms
are implemented using different, incompatible standards.

6. BLAS EXTENSION
It should be clear by now that there are many problems

that have non-negative matrix inputs and would benefit
from solutions like those offered in this paper. The problem
however is the lack of a standard makes adoption unlikely
as new implementations will offer new function definitions,
forcing the general scientific community to constantly up-
date their program to match the new implementation. In
addition, simply replacing an existing BLAS (Basic Linear
Algebra Subroutines) level 3 function introduces confusion
and creates a conflict with the existing function and limits
the new implementation to programs that do not require
both the new and original functionality of the method being
replaced. The current BLAS level 3 specification is orga-
nized as follows:

In the existing BLAS level 3 specification, the functions
are named according to the following scheme: One letter
for type, followed by two letters specifying something spe-

cial about the input, for instance, if the input is symmetric,
followed by two letters specifying the operation performed.
The types supported are ‘S’ for single precision, ‘D’ for dou-
ble precision, ‘C’ for single complex and ‘Z’ for double com-
plex. The options that specify something about the input
are:

GE General Matrix

HE Hermitian Matrix

SY Symmetric Matrix

TR Triangular Matrix

To give an example, this means a function called DGEMM
would translate into a function that performs an operation
on Double precision, on a GEneral matrix input, and the
operation performed is Matrix Multiply. What we wish to
do is provide a narrow extension to the input specification.
Over the years, several broader extensions to BLAS have
been proposed and implemented [19, 6]. What we aim to
do is simply avoid confusion with the existing methods al-
ready provided. Keeping with the existing nomenclature, we
propose the addition of ‘N’ to specify non-negative inputs.
This ’N’ would be inserted between the type of input and the
two letter option that further specifies something about the
input. In this way, we can allow for both non-negative and
symmetric inputs, for instance. Using the DGEMM example
from before, this means a new function would be available
called DNGEMM, translating into a function that performs
on an input that is Double precision, Non-Negative and per-
forms GEneral Matrix Multiply. The benefit of adapting
this existing standard as opposed to proposing an entirely
new standard is that current scientific programs need only
change the name of the function being called in order to
gain the benefit of implementations like those provided in
this paper as the rest of the function prototype is identical.

7. CONCLUSION
In this paper we have explained and demonstrated empir-

ically that the simple addition of an FMA (Fused-Multiply-
Add) will not necessarily result in better accuracy, specif-
ically with regards to matrix multiply. We demonstrated
this by comparing high performance implementations on
two different architectures, a GPU that provided an FMA,
and a CPU that did not. In Subsection 3.3 we showed
that surprisingly, the architecture that lacked an FMA, the
CPU, actually had better accuracy with regards to matrix
multiply than that of the architecture that did have an
FMA, the GPU. Next, we analyzed why using the standard
model in Section 3, and explored algorithmic solutions to
improve the accuracy of matrix multiply on the GPU in Sec-
tion 4, proposing Winograd’s variant of Strassen’s algorithm
in Subsection 4.2 for improving the accuracy of non-negative
matrices. Next, in Section 5, we empirically verified our so-
lution, demonstrating that not only can our solution improve
accuracy over the standard high performance implementa-
tion provided by Nvidia, it can also improve performance
by up to 26% in single precision and 27% in double preci-
sion. Finally, in Section 6, we proposed to extend the BLAS
(Basic Linear Algebra Subroutines) level 3 specification to
include non-negative matrix inputs, ‘N’, thus allowing li-
brary authors to offer their own solutions under an already



accepted standard, thereby enabling the general scientific
community to easily transition existing programs to using
this new solution.
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