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ABSTRACT 
Backstepping based adaptive tracking control of non-
holonomic mobile robots in the presence of both kinematic 
and dynamic parametric uncertainty is presented. The major 
challenge is the possible singularity phenomenon due to the 
approach of zero of the estimated input vector field entering 
the denominator of the control input, a common drawback of 
adaptive linearization-based schemes. A hybrid control 
approach, which switches between an adaptive and a robust 
control schemes, is developed for solving such a problem. It 
retains the advantage of an adaptive control approach to a 
greatest extent while avoiding the possible blowup of the 
torque inputs simultaneously. A case study on a specific Type 
(2; 0) mobile robot is provided in the final to verify the 
usefulness of the proposed design. 
 
1.        INTRODUCTION 
Tracking control of mobile robots with nonholonomic 
constraints, due to its great potential in wide varieties of 
applications, has received a lot of attentions recently [1], [3], 
[14]. The design process is generally divided into the 
kinematic and the dynamic stages.The former generally starts 
from a driftless model describing motions on the 
nonholonomic manifold, which is next converted into the 
chained canonical form to facilitate the control design. Based 
on such a model, numerous schemes, falling into the span of 
the discontinuous control, the hybrid control, and the 
backstepping designs, have been proposed to attain the control 
objectives (see a review in [3], [9]). Among them, the so-
called integrator backstepping, due to its amenity to the 
nested-coupling structure of the chained form systems, has 
become the major tool for this application [17]. 
Assuming perfect knowledge of the system dynamics, a 
backstepping computed torque scheme is proposed to solve 
various tracking tasks in [8]. The design in [16] ensures the 
exponential tracking stability on a mild persistent excitation 
(PE) condition for a specific type of mobile robot systems. 
The time-varying polynomial type stabilizer in [7] ensures the 
global asymptotic stability for multi-input chained form 
systems. Based on such an approach, various schemes, such as 
the stabilization design for chained-form systems with 
parametric uncertainty [11], [9], tracking control for 

nonholonomic dynamic systems with inertia parametric 
uncertainty [6], and the simultaneous tracking of motion and 
force of a general mobile robot [10], have been proposed. An 
integrated controller, which ensures the semiglobal asymptotic 
stabilization and tracking stability of mobile robot systems 
with both kinematic and dynamic 
parametric uncertainties, was proposed in [12]. Robust 
adaptive control design for a specific mobile robot with 
parametric and nonparametric uncertainty is given in [5]. 
However, control designs for a general mobile robot with 
parametric uncertainty in the input matrix are still in demand. 
The major challenge is that the so-called singularity 
phenomenon, due to the approach of zero of the denominator 
of the estimated input vector field in a common adaptive 
linearizing approach, may occur to saturate the actuators. A 
Lyapunov-based smooth switching control algorithm, 
modified from the design in [19], is therefore developed here 
for alleviating such a difficulty. Such an approach is appealing 
to practical applications in that it retains the advantage of the 
adaptive control scheme to a greatest extent without igniting 
the singularity phenomenon and the switching-induced 
chattering behavior [18]. A case study on a unicycle-like 
mobile robot is undertaken next to demonstrate its validity. 
The remainder of the paper is organized as follows: The 
kinematic and dynamical model of a mobile robot with 
nonholonomic constraint is introduced in Section 2. The 
essential properties and existing designs related to our work 
are also described. The central part of this paper, namely, the 
control design, is detailed in Section 3. To demonstrate its 
usefulness, a case study of a mobile robot with two driving 
wheels is given in Section 4. Concluding remarks are finally 
made in Section 5. 
 
2.       SYSTEM MODEL 
Let q  R  denote the generalized coordinate vector of a 
nonholonomic mobile robot. By definition, the corresponding 
velocity vector satisfies the nonintegrable linear velocity 
constraint 

J(q)q 0                                      (1) 
where J(q)  R  is a full-rank matrix. Next, via the so 
called Euler-Lagrange formulation, the system dynamics can 
be obtained as 
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M(q)q+C(q, q) q+G(q) = B(q)τ+J (q)λ              (2) 
where M(q)  R  is the symmetric, positive definite inertia 
matrix;τ  R  is the available motor torque vector and B(q) 
is an n r full-rank matrix; λ  R  represents the constraint 
force vector; C(q, q) q is the centripetal and Coriolis torque 
vector while G(q) is the gravitational torque vector. For 
simplicity and without loss of generality, we assume that the 
robot is moving on a flat surface and therefore the 
gravitational torque vector can be set to zero. 
The following properties known to hold for a general robot 
are summarized here for the ease of reference. 
‧P1): The left-hand side of (2) is linear in the physical 
parameters (masses, moment of inertia, etc.) and therefore 
can be written in a compact form of 

M(q)v+C(q, q)v= H(q, q,v, v β             (3) 
where β  R denotes the lumped parameter vector while 
H  R is the regression matrix depending on q,q,v and v. 
‧P2): The selection of the matrix C q, q) is not unique, and 
in particular, it can always be selected so that the matrix 
M 2C  is skew symmetric. 

Given a bounded reference state vector q , q  fulfilling the 
constraint (1), the control objective is, under the condition of 
the parameters β  and those in the input matrix B being 
unknown, to determine a control law for τ (t) such that 
q, q)→ q , q  as t →∞. 

The first step is to obtain the dynamics on the reduced 
constraint manifold, which is (n－m) dimensional and free 
from constraint forces. The assumption of J(q) being full-rank 
implies the existence of a smooth distribution, denoted by J , 
which totally annihilates the row vectors of J(q) for all q  
R [2]. Let S(q)  R be the matrix whose column 
vectors span J  (q), i.e., 

S (q) J (q) = 0                                  (4) 
Clearly, q must lie in J . More formally, there exists a set of 
linearly independent vector field v(q)  R  such that 

q = S(q)v(q),                                   (5) 
Taking time derivatives of (5) results in 

q = Sv+Sv                                     (6) 
By substituting (5) and (6) into (2) and then multiplying both 
sides by  S (q), it yields 

M (q) v+C (q, q)v= B (q) τ                (7) 
where M (q)  = S M(q)  S (q), C q, q  = S M(q)  S (q) ＋

S C q, q S q , and B q  =S B q . Equations (5) and (7) 
constitute a set of 2n － m algebraic-differential equations 
describing the dynamics on the constraint manifold. They are 
underactuated in the sense that the actual control inputs appear 
only in the last n －m differential equations [2]. The control 
objective can still be attained if the coupling state v(t) in (5) 
provides desired virtual control signal, which in turn is 
realized via actuating the torque inputs properly. 
To that end, it is quite common to first convert (5) into certain 
canonical forms to facilitate the control designs [2]. For 
simplicity and without loss of generality, we consider the case 
with v  R  in the sequel. Assume there exists a diffeomorphic 
coordinate transformation y q , u φ q v  with φ q
R , under which the kinematic subsystem (5) can be 
transformed  into the one-chain single-generator chained canoni

cal form 
y = u                                                        

y = u y  ,                                              
y = u ,  2 ≤ j ≤ n – 1                           (8) 

As a consequence, the dynamic model can be rewritten as 
M(y) u+C(y, y)u = B(y) τ                 (9) 

where 
M(y) = φ q M q φ q  |                 
C(y, y) = φ C q, q M q φ q  |               
B(y) = φ B q   |                               (10) 

It is easy to prove that M(y) remains as a symmetric positive-
definite matrix and 
‧P3): M y η C y, y η Φ y, y, η, η β, where Φ is some 
certain known regression matrix depending on q, q , ηandη.  
‧P4): The matrix (M－2C) is skew symmetric. 
The desired trajectory q  should also comply with the same 
constraint such that 

q  =S(q )v                                  (11) 
which, via the similar transformation y  =ψ( q ) and u  

=φ q v , can be converted into the same canonical form 
ζ   = v , ,                                                          
ζ   = v , , ,                                                    
ζ   = v , , 2 ≤ j ≤ n – 1                             (12) 

The trajectory tracking task has been converted into a model 
following problem, i.e, under the condition of the system’s 
parameters being unknown, the goal is to seek a robust 
switching adaptive controller, such that y →ζas t ∞. 
 
3.        MAIN RESULTS 
In this section, a backstepping based control design will be 
formulated for attaining the objective mentioned above. In 
particular, the smooth switching mechanism originated in [19] 
will be included for avoiding the possible singularity 
phenomenon arising from the denominator of the proposed 
adaptive controller being close to zero. 
The assumptions required for the upcoming designs are 
summarized here first. 
‧A1): The reference trajectory q is bounded and smooth, and 
lim ∞ inf u , ＞0.  
‧A2): There exists a known matrix B (y) R , such that 
λ x, x∈R  with λ 0being known a priori. 
By subtracting (8) from (12), the kinematic tracking error 
dynamics can be obtained 

e   = u u ,                                                                
e   = u , e u u ,  y , 2 ≤ j ≤ n – 1              
e   = u u ,                                                        (13) 

where e = y－ζ . Denote the virtual controller (the desired 
behavior) for the coupling state e  in e  by α . The 
backstepping tool aims to specify α  recursively and in the 
final a suitable actual controller is sought for stabilizing the 
error dynamics between e  and α  to attain the objectives. To 
that end, the following set of error states are defined first 

z  = e ,                                                             
z  = e α ,     2 ≤ j ≤ n                                
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z  = u u , ,      k = 1,2                         (14) 
where α R  and u  R  are the virtual controllers at 
disposal. By a direct differentiation and taking (13) into 
account, it yields 

z ξ u , u , ,                                            
                       z u , z α ξ u , u , y
                                   α ,                 2 ≤ j ≤ n – 1 

z ξ u , u , α ,                        (15) 
On the other hand, the dynamics in (9) can be expressed in
terms of the error vector ξ as follows 

M(y)ξ B y τ Φ y, y, u , u β C y, y ξ         (16) 
Denote f t  d f/dt , e e , ．．．, e , and u ,

u , , ．．．, u , for brevity of notation. The proposed 
virtual controllers are given by 

α 0,                                                                                
α e , u , k , u , z ,                                                

          α e , u , z k , u , ∑ e

                                       
,

∑
,

u , , 3 ≤ j ≤ n – 1 

u , u , η,                                                                 
  
         u , u , u , z k , z u , ∑ e

                                     ∑
,

u , ,                                 (17) 

where n 2k 1, k n 3  and η R  is a dynamic 
variableobeying 

η k η h                                   (18) 
with 
                                  h z ∑ y －∑ y －     

                                             z ∑ y                           (19)                            
 

By substituting (17) into (15), the resulting closed-loop 
kinematics becomes 
                    z ξ η 

z u , z k , u , z ξ η y  
                  z  u , z u , z k , u , ξ η  

                         (y ∑ y ), 3 j n 1 
                  z ξ u , z k , z ξ η  
                          ∑ y                                            (20) 
This type of kinematic controllers, originated from [7], is 
extensively adopted in many existing schemes [10], [6]. Next, 
it will be backstepped into the dynamic model (16) where the 
inertia parameters and those in the input matrix B are 
unknown. We aim to develop a torque controller at this stage 
t o  a t t a i n  t h e  o b j e c t i v e s  m e n t i o n e d  a b o v e . 
The following switching function, which plays a key role  in 
the upcoming design, is introduced here first [19] 

ρ x 1 exp x  ω⁄ )],  x  R                (21) 
where w  0 is the corresponding transition width at disposal. 
It possesses the following useful properties 
‧P7): 0 ρ x 1, x R. 
‧P8): 0, as x 0. 

‧P9): ρ x 1, as x ∞. 
‧P10): The value max  ρ x /x is bounded. 
The first one is a general criterion of a switching function. In 
the later derivation, x represents the estimated input vector 
fields entering the denominator of the controller. Therefore, a 
small x signifies the approach of singularity and a switch from 
the adaptive controller to its deputy should be initiated. The 
second property can then be used to guarantee a safe switch in 
that case, while the third one is to totally recover the adaptive 
control. Finally, the last property guarantees the finiteness of 
the torque input. 
Assume that n= 2 for simplicity and without loss of generality. 
Also, for brevity of notation, the argument of a function will 
be omitted in the sequel when no ambiguity arises. The torque 
input is specified as 
      τ τ τ , 

τ ,

0,  ξ B 0
p ξ
ξ B

k ξ h Φβ , else, 1,2 

    τ ∑ 1 p k B ξ,                         (22) 
where k , k 0, 1,2 are gain constants, B  is the i th 
column vector of the matrix B, ·  is the estimation of (·) and 
· · · ,p p ξ B  and h = h , z . 

The corresponding update algorithms for β and B are given by 
                 β Γ Φ ξ 
                 B Γ p ξ,       i =1,2          (23) 

where Γ ,Γ 0 are the diagonal gain matrices. 
We’re now in a position to conclude that 
Theorem 1: Consider the error dynamics in (14) and (16), 
with the control in (17) and (22), the update algorithm in (23).  
If the control gains are selected to fulfill 

k k /λ    k 1/λ                            (24) 
then 
•T1): all the signals in the closed-loop system remain bounded 

t 0; 
•T2): the tracking error e(t) 0 as t ∞. 
Proof: 

Select the Lyapunov function as follows 
V t z z η ξ Mξ β Γ β ∑ B Γ B    (25) 
where. z= z , z ,···, z R .  The time derivative of V (t), 
taking (20) and (22)-(23) into account, can be calculated as 
follows 
V t z n ηη ξ Mξ ξ Mξ β Γ β        

+∑ B Γ B  
         = (ξ η)z z u , z k , u , z ξ η y  
        ∑ z u , z k , u , z ξ η  

        (y ∑ y z ξ u , z k , z  

        ξ η ∑ y k η ηh  

        ξ B y τ Φβ Φβ β Γ β 
        ξ M C y, y ξ ∑ B Γ B                          (26) 
By taking advantage of P4) and using (23), it leads to 
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Fig. 1 Unicycle-like mobile robot 

 

V t u , k , z k , z k η ξ h 

                      ξ Bτ Φβ ∑ B Γ B  

                    u , k , z k , z k η ξ h 

                      ∑ ξ B τ , p ξ Φβ  
                      ξ Bτ ∑ 1 p ξ Φβ ∑ B Γ B  

                    u , k , z k , z k η k ξ ξ 

                      ∑ B Γ B ξ  

                      ∑ 1 p {[k k ]ξ BB ξ 

                        ξ k ξ h Φβ }                                  (27) 
Based on A2) and using (23) again, it can be further simplified 
as follows 

    V t u , k , z k , z k η k ξ ξ 

                ∑ 1 p {[k k ]ξ BB ξ 

                ξ k ξ h Φβ } 

     u , k , z k , z k η k ξ ξ 

               ∑ 1 p {[k λ k k λ 1 ]ξ ξ 

            u , ∑ k , z k , z k η k ξ ξ     (28) 
The Lyapunov function V (t) is thus nonincreasing and 
therefore V (∞) is well defined since V (t) is lower-bounded. 
It follows immediately that η,z, and ξ are bounded, which in 
turn implies the boundedness of e by the definition of z in (14) 
and α in (17). 
Therefore, y = e+ξ and ξ u , , k 1,2 are bounded.In view 
of (18)-(20), (16) and (22), one obtains immediately that 
η, z and ξ are uniformly bounded. Next, by integrating (28) 
from  0 to ∞,  it  can  be  seen  that  the  signals  η, u , z , z , 

 
 

Fig. 2 Trajectories of tracking errors 
 

2 j n 1, and ξ belong to L  functions, which, together 
with the fact of their derivatives being uniformly bounded, 
imply their convergence to zero as t ∞, from Barbalat’s 

lemma. By the assumption A1), it can be further concluded 
that z , 2 j n tend to zero. 

To prove that z  also tends to zero, we differentiate the 
vanishing signal u , η to yield 

d
dt

u , η u , z n 1 u , u , η 

                                      u , k η h z                    (29) 
From the definition of h1 in (19) and the vanishing nature of 
the signals of η andz , 2 j n 1 mentioned above, it can 
be easily checked that the second and the third terms on the 
right-hand side of (29) tend to zero eventually. This fact, 
together with the uniform continuity of the first term, imply 
the convergence of d dt⁄ )( u , η) to   zero   and    therefore 
u , z 0 as t ∞ by Lemma 2 in [10]. Sustained A1), it 
f o l l o w s  i m m e d i a t e l y  t h a t  z 0  a s  t  ∞ . 
Finally, to establish the asymptotic tracking stability, i.e., 
 e t 0 as t ∞, it is first noted that e , e , e  and e  all 
tend to zero, by (13)-(14) and (17). From the smoothness and 
boundedness of u , , one obtains that α  and α  go to zero,  
which imply that e , e  and α 0 as t ∞.The convergence 
of  α  and α  to zero leads to the vanishing of α  and α  to  
zero eventually. By similar reasoning, it can be easily 
concluded thatlim e lim e 0,5 j n. 
 
4.        SIMULATION 
To demonstrate the validity of the proposed design, simulation 
on a unicycle-like  wheeled mobile robot moving on a 
horizontal plane as shown in Fig. 1 (see [4] for more details), 
is undertaken in this section. 
The nonsliding assumption on the mobile robot restricts its 
linear velocity perpendicular to the symmetric axis being zero, 
i.e. 
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Fig. 3 Torques of purely adaptive linearizing control 
 

                        J q q cosθ, sinθ, 0
x
y
θ

0                 (30) 

where (x , y ) is the coordinate of the centre of mass P with 
respect to the inertial frame I I  while θ is the orientation of 
the reference frame XY with respect to the inertial frame. The 
null space of J q , as can be easily verified, is spanned by the 
column vector field of the matrix S(q) defined by 

                                  S q
sinθ

cosθ
0

     
0
0
1

                            (31) 

The constraint kinematics and dynamics can be respectively 
written as follows 

                       q  
sinθ

cosθ
0

  v q
0
0
1

v q ,                  (32) 

m 0 0
0 m 0
0 0 I

x
y
θ

sinθ
cosθ

L
     

sinθ
cosθ

L
 

τ
τ λ

cosθ
sinθ

0
  (33) 

where m is the mass of the robot, I  is the moment of inertia of 
the z-axis, W is the radius of the wheel, 2L is the distance 
between the centers of the two rear wheels,τ  and τ are the 
torques from the two motors mounted on the rear wheels,  v (q) 
is the translational velocity along the x  axis and v (q) 
represents the angular velocity of the mobile robot with 
respect  to the vertical axis. Note that the gravitational torque 
is mull in this case for the motion is on a non-elevated surface. 
The coordinate and input transformations for converting the 
kinematic subsystem (32) into a canonical chained form are 
defined by [13] 

                                 
y
y
y

q
x
y
cotθ

                            34  

                             
u
u φ q  sinθ 0

0 csc
v
v             35  

It is diffeomorphic for all q with sinθ 0. Regarding this, we 
assume that the workspace is D q|q R ,0 q in the 
sequel. Within D, the kinematic model in (32) can be

 
 

Fig. 4 Torques of the switching adaptive control 
 
converted into the following chained form 
                                          y u , 

y y u , 
                                          y u ,                                       (36) 
For this application, the reduced dynamics on the constraint 
space in (9) can now be written explicitly as 
                         M y u C y, y u B y τ                          (37) 
where 
           M y m y 1 , 0; 0, I y 1 , 
        C y, y my y / y 1, 0; 0, 2I y y / y 1 , 
           B y W y 1, y 1; L/ y 1 ,  
                        L/ y 1 .                                             (38) 
Define β=[m, I . By inspecting (37), the corresponding 
regression matrix can be easily obtained as 
Φ y, y, u , u  

y 1 u , y y y 1 u , 0

0 , ,               (39) 

The desired trajectory is a line segment 
q = 3sin0.2t, 3sin0.2t, 3π/4  with the corresponding ξ  
3sin0.2t, 3sin0.2t, 1 . By definition, u , ζ 0.6cos0.2t 

and u , ξ 0  under such circumstances. Clearly, 
Assumption A1) sustains with respect to the y  and u  here. 
For finding a properB , we assume the availability of the 
nominal values of L and W, denoted by L  and W , 
respectively, such that 
                           c L L, and W c W                            (40) 
with c , c being known a priori. Select 

            B
c W / y 1 y 1

c W / y 1 y 1
             (41) 

It is not hard to obtain that 

x BB x 2c
W
W

x
L

c L
x  

                                     2x x,                                             (42) 
which implies λ  = 2. 
The adopted numerical values in this simulation are k  k  = 
1, k , k , 1, k 10, k 15, Γ diag 0.1 ,  Γ
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diag 0.2  L = 1.0,L 0.5, W 0.2, W 0.1, c 1.0, c
2, and w 0.02.  The initial state is 
q 0 0.7, 0.7,2.46 .  The tracking errors converge to 
zero in about thirty seconds, as can be seen in Fig. 2. To 
highlight the main achievement of our design, the calculated 
control torques, without and the switching algorithm, are 
depicted in Fig. 3 and Fig. 4, respectively. As can be seen, the 
peaks in the former case have been effectively suppressed by 
our scheme.  
 
5.         CONCLUSION 
 We have constructed a switching adaptive controller for a 
general nonholonomic mobile robot with both kinematic and 
dynamic parametric uncertainty. Sustained the assumptions 
A1) and A2), it ensures the asymptotic tracking stability and 
suppressing the singularity phenomenon at the same time. The 
numerical results in Section IV further justify this assertion. 
Extension of such an approach to more general cases such as 
systems with both parametric and nonparametric uncertainty, 
etc., is quite challenging and is currently under our 
investigation. 
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