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ABSTRACT

Backstepping based adaptive tracking control of non-
holonomic mobile robots in the presence of both kinematic
and dynamic parametric uncertainty is presented. The major
challenge is the possible singularity phenomenon due to the
approach of zero of the estimated input vector field entering
the denominator of the control input, a common drawback of
adaptive linearization-based schemes. A hybrid control
approach, which switches between an adaptive and a robust
control schemes, is developed for solving such a problem. It
retains the advantage of an adaptive control approach to a
greatest extent while avoiding the possible blowup of the
torque inputs simultaneously. A case study on a specific Type
(2; 0) mobile robot is provided in the final to verify the
usefulness of the proposed design.

1. INTRODUCTION

Tracking control of mobile robots with nonholonomic
constraints, due to its great potential in wide varieties of
applications, has received a lot of attentions recently [1], [3],
[14]. The design process is generally divided into the
kinematic and the dynamic stages.The former generally starts
from a driftless model describing motions on the
nonholonomic manifold, which is next converted into the
chained canonical form to facilitate the control design. Based
on such a model, numerous schemes, falling into the span of
the discontinuous control, the hybrid control, and the
backstepping designs, have been proposed to attain the control
objectives (see a review in [3], [9]). Among them, the so-
called integrator backstepping, due to its amenity to the
nested-coupling structure of the chained form systems, has
become the major tool for this application [17].

Assuming perfect knowledge of the system dynamics, a
backstepping computed torque scheme is proposed to solve
various tracking tasks in [8]. The design in [16] ensures the
exponential tracking stability on a mild persistent excitation
(PE) condition for a specific type of mobile robot systems.
The time-varying polynomial type stabilizer in [7] ensures the
global asymptotic stability for multi-input chained form
systems. Based on such an approach, various schemes, such as
the stabilization design for chained-form systems with
parametric uncertainty [11], [9], tracking control for

nonholonomic dynamic systems with inertia parametric
uncertainty [6], and the simultaneous tracking of motion and
force of a general mobile robot [10], have been proposed. An
integrated controller, which ensures the semiglobal asymptotic
stabilization and tracking stability of mobile robot systems
with both kinematic and dynamic

parametric uncertainties, was proposed in [12]. Robust
adaptive control design for a specific mobile robot with
parametric and nonparametric uncertainty is given in [5].
However, control designs for a general mobile robot with
parametric uncertainty in the input matrix are still in demand.
The major challenge is that the so-called singularity
phenomenon, due to the approach of zero of the denominator
of the estimated input vector field in a common adaptive
linearizing approach, may occur to saturate the actuators. A
Lyapunov-based smooth switching control algorithm,
modified from the design in [19], is therefore developed here
for alleviating such a difficulty. Such an approach is appealing
to practical applications in that it retains the advantage of the
adaptive control scheme to a greatest extent without igniting
the singularity phenomenon and the switching-induced
chattering behavior [18]. A case study on a unicycle-like
mobile robot is undertaken next to demonstrate its validity.
The remainder of the paper is organized as follows: The
kinematic and dynamical model of a mobile robot with
nonholonomic constraint is introduced in Section 2. The
essential properties and existing designs related to our work
are also described. The central part of this paper, namely, the
control design, is detailed in Section 3. To demonstrate its
usefulness, a case study of a mobile robot with two driving
wheels is given in Section 4. Concluding remarks are finally
made in Section 5.

2. SYSTEM MODEL
Let g € R™ denote the generalized coordinate vector of a
nonholonomic mobile robot. By definition, the corresponding
velocity vector satisfies the nonintegrable linear velocity
constraint
Ja)g=0 (@)
where J(g) € R™" is a full-rank matrix. Next, via the so
called Euler-Lagrange formulation, the system dynamics can
be obtained as
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M(a)§+C(q, q) 4+G(q) = B(q)t+]T(q)1 @)
where M(g) € R™" is the symmetric, positive definite inertia
matrix;t € R™" is the available motor torque vector and B(q)
is an nx r full-rank matrix; A€ R™ represents the constraint
force vector; C(q, q) q is the centripetal and Coriolis torque
vector while G(q) is the gravitational torque vector. For
simplicity and without loss of generality, we assume that the
robot is moving on a flat surface and therefore the
gravitational torque vector can be set to zero.

The following properties known to hold for a general robot
are summarized here for the ease of reference.

+ P1): The left-hand side of (2) is linear in the physical
parameters (masses, moment of inertia, etc.) and therefore
can be written in a compact form of

M(q)v+C(q, gv=H(q, q,v, V)B (3)
where B € RPdenotes the lumped parameter vector while

H € R™*Pis the regression matrix depending on g,q,v and v.

« P2): The selection of the matrix C(q, q) is not unique, and
in particular, it can always be selected so that the matrix
(M — 2C) is skew symmetric.

Given a bounded reference state vector(qgq, qq) fulfilling the
constraint (1), the control objective is, under the condition of
the parameters 3 and those in the input matrix B being
unknown, to determine a control law for t () such that

(q! q)_)(qd' qd ast—oo,

The first step is to obtain the dynamics on the reduced
constraint manifold, which is (n—m) dimensional and free
from constraint forces. The assumption of J(q) being full-rank
implies the existence of a smooth distribution, denoted by J+,
which totally annihilates the row vectors of J(q) for all ge
R™[2]. Let S(q) € R™™ ™ he the matrix whose column
vectors span J* (q), i.e.,

ST(a))™(@) =0 (4)
Clearly, @ must lie in J*. More formally, there exists a set of
linearly independent vector field v(q) € R*™™ such that

q = S(q)v(a), (5)
Taking time derivatives of (5) results in
4 = Sv+Sv (6)

By substituting (5) and (6) into (2) and then multiplying both
sides by ST(q), it yields

M;(q) v+Ci(g, @v=B;(@)t (7)
where M; (q) = ST M(a) S(9), C1(q.4) =ST M(q) S(a) +
STC(q,9)S(q), and B;(q) =STB(q). Equations (5) and (7)
constitute a set of 2n — m algebraic-differential equations
describing the dynamics on the constraint manifold. They are
underactuated in the sense that the actual control inputs appear
only in the last n —m differential equations [2]. The control
objective can still be attained if the coupling state v(t) in (5)
provides desired virtual control signal, which in turn is
realized via actuating the torque inputs properly.
To that end, it is quite common to first convert (5) into certain
canonical forms to facilitate the control designs [2]. For
simplicity and without loss of generality, we consider the case
with ve R? in the sequel. Assume there exists a diffeomorphic
coordinate transformation y = ¢(q),u = @(q)v with ¢(q) €
R2¥2 | under which the kinematic subsystem (5) can be
transformed into the one-chain single-generator chained canoni

cal form
.}-’1: Uy
Y2= U1Y¥j41 s
Yn=Uz, 25j<n-1 (8)
As a consequence, the dynamic model can be rewritten as
M(y) u+C(y, y)u = B(y) Tt 9)
where

M) = ¢ @M (@) ¢ (@7 lg=p1(y)
CY,y) = @ "[C1(q, @) = My (D] |g=p-1¢y)
B(y) = ‘P_TB1(Q) |q=(p_1(y) (10)
It is easy to prove that M(y) remains as a symmetric positive-
definite matrix and
* P3): M(y) 77 + C(y,y)n = @(y,y,n,1)B, where @ is some
certain known regression matrix dependingon g, q, nand 7 .
« P4): The matrix (M— 2C) is skew symmetric.
The desired trajectory qq4 should also comply with the same
constraint such that
da =S(qa)va (11)
which, via the similar transformation y4 =¢(qq) and uq
=p(qq)Vq, Can be converted into the same canonical form

(.1 =Vaa,
<] = Vd,l,(]-+1,
Ch =Vg2,2<j<n-1 (12)

The trajectory tracking task has been converted into a model
following problem, i.e, under the condition of the system’s
parameters being unknown, the goal is to seek a robust

switching adaptive controller, such thaty — {ast — oo,

3. MAIN RESULTS

In this section, a backstepping based control design will be
formulated for attaining the objective mentioned above. In
particular, the smooth switching mechanism originated in [19]
will be included for avoiding the possible singularity
phenomenon arising from the denominator of the proposed
adaptive controller being close to zero.

The assumptions required for the upcoming designs are
summarized here first.

+ Al): The reference trajectory q4is bounded and smooth, and
lim,_,.. inf|ug|>0.

« A2): There exists a known matrix B4(y)€ R™?, such that
2oxTx < xTBB,x, VxER? with Ay > 0Obeing known a priori.
By subtracting (8) from (12), the kinematic tracking error
dynamics can be obtained

€ TUu; —Ugs
€ =Uq1€j+1 + (U —Ugq) Yjsg, 25j<n-1
€n = Uz —Ugp (13)
where e = y— . Denote the virtual controller (the desired
behavior) for the coupling state ej,; in & by o« . The
backstepping tool aims to specify a; recursively and in the
final a suitable actual controller is sought for stabilizing the
error dynamics between e;,; and q; to attain the objectives. To
that end, the following set of error states are defined first
Zy = ey,
Z]-:e]-—(x]-_ly ZSJSn
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Zn =ug — Up k, k= 1,2 (14)
where o € R" and u, € R? are the virtual controllers at
disposal. By a direct differentiation and taking (13) into
account, it yields

Zy =& +Up; —Uqy,
7 = ud1(Z]+1 + 0‘]) + (&t up, — ud,l)Yj+1 -
O(]-_l, 2 <J <n-1
Zn =& tUupy —Ugy — Qg (15)
On the other hand, the dynamics in (9) can be expressed in
terms of the error vector & as follows

M(y)E = B(Y)T -0 (YJ yv Up, ub)B - C(yv Y)E (16)
Denote f{®(t) = df/dtk, & =[e;, - - -,¢]T, and ﬁfiki
[ugs, = -+ - ,ugfi]T for brevity of notation. The proposed
virtual controllers are given by

0(1 = 0, 3
O‘1(52'ud 1) = —K,2uq 17,

o
al(e]’udl Y) = _Z] 1 — kg jug, 1z + % a] —re +

Z] 2 00—y (k+1)
k=0 5, (k)

,3<j<n-1
Up1 = Ug1 + 1,

_ On—1
Up2 = Ud2 — U4,1Zpn-1 — kznZn + Ug1 Zk 1—ae
n-29an_1 (k+1)
k=0 @ Ud1 (17)
Y4,1

where n=2k+1,k> n—3 and neER is a dynamic
variableobeying

N =—Kkon—hy (18)
with
_ a
hy =z, + Z;n zl(Yj+1 Z]k 11 ;2 1Yk+1)*
a
Zn Vi o Vi1 (19)

By substituting (17) into (15), the resulting closed-loop
kinematics becomes
z; =8 +n 3
Z; =UgqZ3 — kz,zuﬁjlzz + (5,1_"' n)ys
Zj = Ug,1Zj+1 — Ugq, 1Z] 17 kzj“ﬁﬁl + & +n)
da
(Yj+1 - Z]k 11 dex yk+1) 3<j<n-1
Zpn = EZ Uq,1Zn-1 — ZnZn (El + T])
dan
TR e i (20)
This type of kinematic controllers, originated from [7], is
extensively adopted in many existing schemes [10], [6]. Next,
it will be backstepped into the dynamic model (16) where the
inertia parameters and those in the input matrix B are
unknown. We aim to develop a torque controller at this stage
to attain the objectives mentioned above.
The following switching function, which plays a key role in
the upcoming design, is introduced here first [19]

p(x) 21 —exp[-(x/ w)?)], xER (21)
where w > 0 is the corresponding transition width at disposal.
It possesses the following useful properties

*P7):0<p(x) <1, VXER.

- P8): p(X)—>0asx - 0.

+ P9): p(x) » 1,as x > 0.

+ P10): The value max,.., p(x)/x is bounded.

The first one is a general criterion of a switching function. In
the later derivation, x represents the estimated input vector
fields entering the denominator of the controller. Therefore, a
small x signifies the approach of singularity and a switch from
the adaptive controller to its deputy should be initiated. The
second property can then be used to guarantee a safe switch in
that case, while the third one is to totally recover the adaptive
control. Finally, the last property guarantees the finiteness of
the torque input.
Assume that n= 2 for simplicity and without loss of generality.
Also, for brevity of notation, the argument of a function will
be omitted in the sequel when no ambiguity arises. The torque
input is specified as

T=T,+ T, R
0, &8, =0
fal = é)i_%(_ka‘ii —h; + (OB)),  else, =12
i
ky||h—®
T = 52401 - p) [l + 2= B g (22)

where k,, k; > 0,j = 1,2 are gain constants, B; is the i'th
column vector of the matrix B, (*) is the estimation of (-) and
O =0O-Opi=pEB)andh=[hy,z,]".
The corresponding update algorithms for § and B are given by
B=-Lo"¢
ﬁ — Fbpi _Ei[kazi:;ii_(‘bgi] E: | :1’2 (23)
where [,,I;, > 0 are the diagonal gain matrices.
We’re now in a position to conclude that
Theorem 1: Consider the error dynamics in (14) and (16),
with the control in (17) and (22), the update algorithm in (23).
If the control gains are selected to fulfill
ky =k, /A ky, = 1/2, (24)
then
*T1): all the signals in the closed-loop system remain bounded
vt = 0;
*T2): the tracking error e(t)— 0 as t— oo.
Proof:
Select the Lyapunov function as follows
V(O =3 ("2 +n? + EME+ BB + I2, B I, "By (25)
where. z=[z,,z,,, z,]T € R™. The time derivative of V (&),
taking (20) and (22)-(23) into account, can be calculated as
follows
V() = 20+ 0 + ETME + 2 ETME + BT
+Xi EiTFb_lﬁi -
=&+ )z, + 2z, [ud,123 k, zUH,’ilzz + (& + W)Y3]
+Z]n_33 Z [ug, 1Z] 1~ kuuﬁilz] + @& +m)
(Yj+1 Ek 1 ;" ] + Zn[EZ Ug,1Zp—1 — kz,nZn
5 ne
-G +tn) Zﬂ:% :ekl Vi1l — kon? —nhy
+E7[B(y)T — B + f] + BTI; 1B
1 .- . ~ 1
+E7 ;M - Co.y)|§ + £2, BIT; 1B, (26)
By taking advantage of P4) and using (23), it leads to
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Fig. 1 Unicycle-like mobile robot
n-1
VO =~ Y, ey +lenrd) ~kon® +E'h
+¢7[B, — of| + 32, BTT; B,
_— Zn_: Ky 22 + Kynz2) — kon? + €7h

j=

+ 2 [6Bin, — pi& (OB ] .
+§TBT, — X2, (1 — p) §(PR); + X, BT, 'B;

- n-1
== <u3,+11 Z 5 kz,ij2 + kz,an21> - koﬂz - kaETE
]:

+ 212:1 B’;F{Fb—l’B‘l + —Ppifilka&i+hi—(PB)i 3}

£TB;
3241 = p{lk, + K, 2Pl BB
—&[Ka& + h; — (PB)]} (27)
Based on A2) and using (23) again, it can be further simplified

as follows
_ n-1
V(t) < - (ulcll:'l-l Z . kz,ij2 + kz,nZ121> - koﬂz - kaETE
j=

= 32,1 - p{ll, + i, 0Pl BR g

—lIEll kallgll + |[h — @B}
_ n-1
<- (uszl Z k2 + kz,nz§> — kon? — k,ETE

j=2
— 32 (1= p ki — Ky + (oo — 1) 0Pl

< —(ufi" 25 k7] + kynzd) — kon® — ka8TE (28)
The Lyapunov function V (t) is thus nonincreasing and
therefore V (o) is well defined since V (t) is lower-bounded.
It follows immediately that n,z, and & are bounded, which in
turn implies the boundedness of e by the definition of z in (14)
and a in (17).
Therefore, y = e+§ and & + u,, k = 1,2 are bounded.In view
of (18)-(20), (16) and (22), one obtains immediately that
1,z and £ are uniformly bounded. Next, by integrating (28)

from 0to oo, it can be seen that the signals n,ugjlzj,zn,

086

;
— %%,

- %%,
%%

0AF 1\

02r

L L Il 1 L L 1 J
5 10 15 20 25 30 35 40
Time (second)

-0.8
0

Fig. 2 Trajectories of tracking errors

2 <j<n-—1,and&belong to L, functions, which, together
with the fact of their derivatives being uniformly bounded,
imply their convergence to zero as t — oo, from Barbalat’s
lemma. By the assumption Al), it can be further concluded

that z;, 2 < j < n tend to zero.
To prove that z, also tends to zero, we differentiate the
vanishing signal ugjln to yield
d - _
at [UEﬁln] = —ugjlzl + @+ Dug;ugm
—ugﬁl (kon +hy —z4) (29)
From the definition of hl in (19) and the vanishing nature of
the signals of n andz;, 2 < j < n — 1 mentioned above, it can
be easily checked that the second and the third terms on the
right-hand side of (29) tend to zero eventually. This fact,
together with the uniform continuity of the first term, imply
the convergence of (d/dt)( ugjln) to zero and therefore
ugjlzl — 0as t— ocoby Lemma 2 in [10]. Sustained Al), it
follows immediately that z; 50 as t - .
Finally, to establish the asymptotic tracking stability, i.e.,
e(t) > 0as t— oo, it is first noted that e, é,,e, and &, all
tend to zero, by (13)-(14) and (17). From the smoothness and
boundedness of ug,, one obtains that a, and &, go to zero,
which imply that e, é; and &; — 0 as t — oco.The convergence
of as; and d&; to zero leads to the vanishing of oy and &, to
zero eventually. By similar reasoning, it can be easily
concluded thatlim,_,e; = lim,,,&; = 0,5 <j<n.

4, SIMULATION

To demonstrate the validity of the proposed design, simulation
on a unicycle-like wheeled mobile robot moving on a
horizontal plane as shown in Fig. 1 (see [4] for more details),
is undertaken in this section.

The nonsliding assumption on the mobile robot restricts its
linear velocity perpendicular to the symmetric axis being zero,
ie.
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Fig. 3 Torques of purely adaptive linearizing control

J(@)q £ [cosH, sin6, 0] [yp] =0 (30)

where (xp,yp) is the coordinate of the centre of mass P with

respect to the inertial frame I,1, while 0 is the orientation of
the reference frame XY with respect to the inertial frame. The
null space of ](q)T, as can be easily verified, is spanned by the
column vector field of the matrix S(q) defined by
—sin® 0
S(q) = [ cosO 0]

0 1
The constraint kinematics and dynamics can be respectively

written as follows

)

—sin® 0
q= cos@ vi(q) + 0] v2(q), (32)
1
—sme —sin® cosO
0 m 0 cose cosf [ ]+7\ sinf| (33)
—L 0

Where m is the mass of the robot, I, is the moment of inertia of
the z-axis, W is the radius of the wheel, 2L is the distance
between the centers of the two rear wheels,t; and t,are the
torques from the two motors mounted on the rear wheels, v,(q)
is the translational velocity along the x, axis and v, (Q)
represents the angular velocity of the mobile robot with
respect to the vertical axis. Note that the gravitational torque
is mull in this case for the motion is on a non-elevated surface.
The coordinate and input transformations for converting the
kinematic subsystem (32) into a canonical chained form are

defined by [13]
Xp
H we[ ] e
—cotG

uz —o(q) & [ sin@ 0 HV1] (35)

csc?l v,
It is diffeomorphic for all g with smG;tO. Regarding this, we
assume that the workspace is D 2{q|q€R3,0 < q; < w}in the
sequel. Within D, the kinematic model in (32) can be

ulated torques
=l

Calc
o

LB

_\ci

o 5 10 15 20 2 30 s 40
Time (second)

Fig. 4 Torques of the switching adaptive control

converted into the following chained form

Y1 = U,
}fz =Yysuy,
Y3 = Uy, (36)

For this application, the reduced dynamics on the constraint
space in (9) can now be written explicitly as
M(y)u + C(y,y)u = B(y)t 37)
where
M(y) = [m(y3 + 1),0;0,I(y3 + D],
C(y,y) = [mysys/yy; +1,0;0,—2laysy3/(y5 + 1?7,
B(y) =W [y} + 1, —/y] + LL/(¥3 + 1),
—L/(y5 + D" (38)
Define p=[m,I,]T. By inspecting (37), the corresponding
regression matrix can be easily obtained as

CD(Y!Y' Up, ub) = )
(3 + D1 + Y3735 + 1) 2upy 0
0 Up 2—2y3Y3Ub2 (39)
w3+1)?

The desired trajectory is a line segment
qq= [3sin0.2t, 3sin0.2t, 31t/4]T with the corresponding &4 =
[3sin0.2t, 3sin0.2t, 1]T. By definition, ug; = §; = 0.6c0s0.2t
and ug, =& =0 under such circumstances. Clearly,
Assumption Al) sustains with respect to the y4 and ug here.
For finding a properB, we assume the availability of the
nominal values of L and W, denoted by L, and W, ,
respectively, such that

CoLg < L,and W < ¢, W, (40)
with ¢, c;being known a priori. Select
—aWo/\yi+1 2GR +1D)
B = (41)
_C1W0/VY§ +1 _Cclo_‘]:vz( 3+1)
It is not hard to obtain that
2+ Lxz)
T oLy 2
< 2xTx, (42)

Wo
xTBBgx = 2¢; W

which implies A, = 2.
The adopted numerical values in this simulation are ky =k, =
1, k2 =kz3 =1k, =10,k; = 15T, = diag[0.1], T, =
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diag[0.2] L =1.0,Ly = 0.5,W = 0.2, W, = 0.1,¢, = 1.0,¢; =
2,and w = 0.02. The initial state is
q(0) = [-0.7,—0.7,2.46]". The tracking errors converge to
zero in about thirty seconds, as can be seen in Fig. 2. To
highlight the main achievement of our design, the calculated
control torques, without and the switching algorithm, are
depicted in Fig. 3 and Fig. 4, respectively. As can be seen, the
peaks in the former case have been effectively suppressed by
our scheme.

5. CONCLUSION

We have constructed a switching adaptive controller for a
general nonholonomic mobile robot with both kinematic and
dynamic parametric uncertainty. Sustained the assumptions
Al) and A2), it ensures the asymptotic tracking stability and
suppressing the singularity phenomenon at the same time. The
numerical results in Section IV further justify this assertion.
Extension of such an approach to more general cases such as
systems with both parametric and nonparametric uncertainty,
etc., is quite challenging and is currently under our
investigation.
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