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A New Variational Association
Process for the Verification of
Geometrical Specifications
When this new association process of a datum is performed to verify a geometrical
specification, measured points are considered as perturbations which generate modifica-
tions of the nominal geometry by variation of its location, orientation, and intrinsic
dimensional characteristics, without requiring rotation and translation variables as the
traditional methods usually do (Bourdet, et al., 1996, Advanced Mathematical Tools in
Metrology II, World Scientific) with torsors or matrices. This new association process
(Choley, 2005, Ph.D. thesis, Ecole Central, Paris; Choley, et al., 2006, Advanced Math-
ematical and Computational Tools in Metrology, VII, World Scientific) is based on both a
reduced modeling of the geometry, taken out of the computer aided design system data-
base, and a variational distance function. The whole measured points set influence is
taken into account as an optimization criterion is applied (Bourdet and Clement, 1988,
Ann. CIRP 37(1), p. 503; Srinivasan, DIMACS Workshop on Computer Aided Design and
Manufacturing, Rutgers University, NJ, October 7–9). Thus, the least squares optimiza-
tion is achieved using the pseudo-inverse matrix, whereas the minimax optimization is
treated with an algorithm developed by the Physikalisch-Technische Bundesanstalt and
adapted for this purpose. In this paper, it is explained how this association process may
be applied to planes and cylinders, used as single datum, datum systems, or common
datum, with the least squares and minimax criteria. �DOI: 10.1115/1.2432900�

Keywords: variational association, geometrical specification, datum, verification, mini-
max criterion, least squares criterion, pseudo-inverse matrix
Introduction
Computer aided design �CAD� systems allow us to define the

ominal geometry as well as to specify the geometrical toleranc-
ng for each constituting part �see Fig. 1� of a product. Once a
eading of the geometrical specifications in the CAD system da-
abase is completed, a metrological analysis procedure checks to
etermine if the machined parts are in accordance with the design-
r’s requirements. To this end, specified datum are associated with
espect to the current ISO-GPS �Geometrical Product Specifica-
ions� standards �1�.

The Modeling of the Datum
Instead of a Cartesian �6� or a parametric modeling �7�, the

ariational association method �2,3� is based on a reduced model-
ng of the geometry, such as points, vectors, and intrinsic param-
ters to characterize the minimal reference geometric element
MRGE� of a technologically and topologically associated sur-
aces �TTRS� �8� or a geometrical product specifications �GPS�
ituation feature as proposed in ISO 17450 standard �9�. This re-
uced modeling is used:

• To locate the geometry with points;
• To orientate the geometry with vectors; and
• To dimension the geometry with intrinsic characteristics.

Some examples follow:

1. The modeling of a single datum �see Fig. 2�:

• The plane is characterized by its normal vector �orienta-
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tion� and a point of the surface �position�;
• The cylinder is characterized by its axis vector �orienta-

tion�, a point of the axis �position�, and its radius �size�;
• The cone is characterized by its axis vector �orientation�,

an angle �intrinsic characteristic�, and the apex �or a ra-
dius and the corresponding point of the axis� in order to
define the location; and

• The sphere is characterized by its center �location� and
its radius �intrinsic characteristic of size�.

2. The modeling of a datum system and a common datum:

• In Fig. 3 the whole datum �common or system�, made up
of three orthogonal planes, belongs to the complex sur-
faces class �8�. It is characterized by the point defined as
the intersection of the three planes, and the three normal
vectors.

This reduced modeling of a datum is not a minimal
one as it may be remarked in this case: choosing one
point and three vectors means 12 parameters which are
not independents. Thus, some constraints must be taken
into account, such as:

• Relations between vectors �e.g., perpendicularity, paral-
lelism�; and

• Relations on the norms of the vectors.
• In Fig. 4 the whole datum �common or system�, made up

of two coaxial cylinders and one orthogonal plane, be-
longs to the revolute surfaces class �8�. It is characterized
by a point, intersection of the plane and the axis, the
common axis vector of the cylinders, which is also the
normal vector of the plane, and the two radii.
To illustrate the previous case, the following example describes
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gear unit �see Fig. 5� with a three-dimensional �3D� CAD model
nd a design drawing of the main casing of the unit with geometri-
al specifications.

In order to achieve the association for the chosen location
pecification, Fig. 6 described the modifications of the nominal
eometry as follows:

• The normal and common axis vector n is modified with dn,
thus becoming n+dn;

• The common point A is also modified, thus becoming A
+dA; and

• The two radii Ra and Rc become Ra+dRa and Rc+dRc.

Description of the Variational Association Process

3.1 A Variational Distance Function. A distance function
see Fig. 7� is defined to associate an ideal geometry to the actual
eometry with the association process:

ig. 1 The association of a datum for the verification of a GPS
pecification

Fig. 3 The modeling of a common datum
Fig. 4 The modeling of a common datum or a
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1. �O ,x ,y ,z� is a unique reference system for the CAD model
and the CMM;

2. G�u� is an ideal geometry characterized by its parameter u
�position, location, and intrinsic characteristics depending of
its class�; and

3. E= �Mi , i=1. .n� is a set of measured points the locations of
which are defined by the vectors Mi=OMi.

F�Mi ,G� is a variational distance function delivering the scalar,
smallest Euclidian orthogonal distance between Mi and G�u�. It
inherits of the parameter u. Some examples are as follows

For a plane defined by

u = �n

A
�

the distance function may be

Fig. 2 The modeling of single datum

datum system „three orthogonal planes…
datum system „a plane and two cylinders…
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F�M,G� = AM .
n

	n	
�1�

For a cylinder defined by

u = 
n

A

R
�

he distance function may be

F�M,G� = 	�AM − �AM . n�n�	 − R �2�

3.2 The Association Process. This association process relies
n the variational distance function and is described by Fig. 8.

For a given measured point Mi, Eq. �3� describes the process,
hich can be linearized as shown in Eqs. �4� and �5�

F�Mi,G�u�� = F�Mi,G�u0 + du�� �3�

Fig. 5 CAD model and main ca
Fig. 6 The variational association proces

8 / Vol. 7, MARCH 2007

 https://computingengineering.asmedigitalcollection.asme.org on 06/30/2019 Term
F�Mi,G�u�� = F�Mi,G�u0�� + dF�Mi,G�u0�� �4�
with

dF�Mi,G�u0�� = �
j=1

j=m
�F�Mi,G�u0��

�uj
duj �5�

Equation �6� permits us to formulate the process as a system of
equations that takes into account all the measured points of the
actual geometry. J is the Jacobian matrix of the variational dis-
tance function for parameter u0

F = F0 + J du �6�

4 Optimization of the Association
In order to define the associated geometry, it is necessary to

determine du while minimizing the norm of the optimized dis-

g design drawing of a gear unit
s for the chosen location specification
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ances F0+J du. Thus, the least squares optimization is achieved
sing the pseudo-inverse matrix, whereas the minimax optimiza-
ion is treated with an algorithm developed by the Physikalisch-
echnische Bundesanstalt �PTB� �6� and adapted for this purpose.

4.1 Optimization With the Least Squares Criterion. The
ptimization problem is expressed by Eq. �7�, Eq. �8� gives its
ormal solution, with J+ being the pseudo-inverse matrix that per-
its to solve the problem while minimizing the L2 norm �4,5� of
0+J du

J du = − F0 �7�

du = − J+F0 �8�
f an additional constraint—Eq. �9�—needs to be taken into ac-
ount, the use of a Lagrangian multiplier—Eq. �10�—is recom-
ended. The optimized constrained solution is then obtained from

he unconstrained one as described in Eq. �11�

cTdu = k �9�

� =
k − cTdu

1 + cT�JTJ�−1c
�10�

du� = du + ��JTJ�−1c �11�

ig. 7 Distance function between the actual geometry and the
deal geometry

Fig. 8 The variation
Fig. 9 The “nonideal s
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4.2 Optimization With the Minimax Criterion. Applying
the PTB combinatory method �6� implies that the “tangent outside
material” and the “tangent inside material” geometries are simu-
lated as shown in Fig. 9. The t parameters allow us to allocate and
to permute the contacting points on each side of the “nonideal
simulated” geometry, in order to perform the combinatory process
based on essential subsets of points

F�Mk,G�u�� = tk . e �12�

dF�Mk,G�u0�� − tk . e = − F�Mk,G�u0�� �13�

The system of equations has to be written as follow, with dv being
du complemented with the thickness parameter e, and A being the
modified Jacobian matrix with an additional column for the t pa-
rameters

A dv = − F0 �14�

As long as essential subsets of points �6� are processed, A is a
square matrix of maximal rank, thus easily invertible. For each
subset, it is then possible to find the solution that minimizes e,
allowing us to carry on with the PTB algorithm �see Fig. 10�.

5 The Process Applied to Datums Systems and Com-
mon Datums

The variational treatment of a common datum or a datums sys-
tem implies building the matrix J �least squares criterion� and A
�minimax with PTB algorithm� with different distance functions
relative to each single surface included in the datum. In order to
respect the ISO standards, the association process needs a “one
shot” solving in the case of a common datum, while it has to
remain a sequential solving in the case of a datums system.

5.1 A Common Datum With Least Squares Criterion. Fig-
ure 11 displays the structure of the matrix J for a common datum
made of three orthogonal planes A, B, and C.

1. With one measured point on A, m measured points on B and
n measured points on C, the matrix is built with 1+m+n
lines; and

2. Since the parameters are the components of the three normal
vectors and the coordinates of the common point, there are

ssociation process
imulated” geometry
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12 columns in matrix A.

he association process with the least squares criterion implies
hat:

1. Three constraints are taken into account with three Lagrang-
ian multipliers, in order to assure that the vectors remain
orthogonal; and

2. Three others constraints are taken into account with three

Fig. 10 The PTB combinatorial algorithm

Fig. 11 Matrix J for a common datum, thr
Fig. 12 Matrix A for a datum system, thre
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Lagrangian multipliers, in order to preserve the norm of
each vector equal to 1.

Since the matrix is not directly invertible, the optimization process
uses the pseudo-inverse matrix, with SVD decomposition if nec-
essary. An offset is applied to the result in order to be “tangent
outside material.”

5.2 A Datums System With Minimax Criterion. Figure 12
displays the structure of matrix A in the case of a datums system
�see Fig. 4� made of three orthogonal planes: A �primary datum�,
B �secondary datum�, and C �tertiary datum�. Additional geometri-
cal constraints are added, thus allowing the matrix to be invertible.
The optimization criteria is the minimax, with PTB algorithm.
Since the datum is a datum system:

1. Four lines of the matrix correspond to four measured points
on A. Thus, the primary datum is completely defined;

2. Three lines of the matrix correspond to three measured
points on B. These define the secondary datum, along with a
perpendicularity constraint between B and A; and

3. Two lines of the matrix correspond to two measured points
on C. These define the tertiary datum, along with two per-

orthogonal planes, least squares criterion
ee
e orthogonal planes, minimax criterion
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pendicularity constraints between C and A, and between C,
and A.

he association process with the minimax criterion implies that:

1. Three constraints are taken into account with three more
lines in the matrix, in order to assure that the vectors remain
orthogonal. For the vectors nA and nB, the constraint is

�nA + dnA� · �nB + dnB� = 0 �15�
that can be simplified �second order is neglected�

nA . dnB + nB . dnA = − nA . nB �16�
2. Three others constraints are taken into account with three

more lines in the matrix, in order to keep the norm of each
vector equal to 1. For the vector nA, the constraint is

�nA + dnA� . �nA + dnA� = 1 �17�
that can be simplified �second order is neglected�

2nA . dnA = 1 − nA
2 �18�

Since the matrix is directly invertible �15 columns and 15
lines, maximal rank�, the PTB algorithm can be used. An
offset is applied to the result in order to be “tangent outside
material.”

Conclusion and Perspectives
This new association process has been tested on single datum,

ommon datum, and datum systems defined with cylinders and
lanes, using least squares and minimax criteria. Based on a
nique common mathematical modeling and treatment, it can be
pplied to compare the association criteria used on different types
f datum. It still needs to be extended to other geometrical fea-
ures, such as cone, torus, and complex surfaces, as well as to
ther criteria �minimum circumscribed, maximum inscribed, both

asily derived from the minimax algorithm. . .�.
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Since this association process does not use geometric transfor-
mations such as rotations and translations, it may also be applied
to multiphysic systems �e.g., mechatronic systems� that conjugate
geometry, mechanisms, electronics, electromagnetism, or even hy-
draulic, in order to evaluate the global behavior of a whole com-
plex system �e.g., a system of systems�. In this particular case,
each multiphysic parameter �speed, torque, voltage, intensity, etc.�
can be treated as an intrinsic parameter is treated for the modifi-
cation of the geometry �radius, angle, etc.�.
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