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ABSTRACT 

A numerical simulation is presented for several loading-
unloading cycles of an adhesive contact between an elastic-
plastic sphere and a rigid flat. The main goal of the simulation 
is to study the plastic deformation evolution in a contact bump 
material – the microscopic electrode found in a MEMS micro-
switch for providing a good electric contact. This bump  
subjected to a cyclic contact interaction with a harder substrate 
and cyclic plasticity of the bump material can lead to its wear 
and as result to a failure of the whole MEMS device. 

INTRODUCTION 
Elastic-plastic adhering contacts are widely found in 

modern micro/nano-scale applications such as MEMS micro-
switch, for example. In this case the contact pair operates in a 
cyclic manner i.e. approach of two contacting bodis 
successively alternates with their separation.  

“Stuck-closed” and “stuck-open” failures can b
experimentally observed during micro-switch cycling [1]. In the 
first case, the adhesion at the micro-switch contact exceeds the 
restoring beam force after release of its actuation, and the 
device remains permanently closed. In the second case, the 
electric resistance of the micro-switch contact progressively 
increases, deteriorating its performance. Multiple physical 
mechanisms can be involved in these failures (e.g. electric 
heating or oxidation), however, the dominant mechanism is 
plastic deformation [1], which progressively destroys the micro-
switch hemispherical contact bump, flattening its surface and 
causing material transfer from the bump to the contacting 
substrate. 

Cyclic loading of non-adhesive elastic-plastic contacts was 
studied regarding various engineering applications. The erosive 
wear of ductile metallic substrate caused by repeated impacts of 
hard eroding particles [2], for example, was modeled as a 
repeated contact of a rigid sphere with an elastic-plastic half-
space.  
dings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Us
 The adhesive attractive force plays an important role in a 
contact of micro/nano-bodies. The study of an adhesive contact 
has a long history [3] originating from the development of two 
classical elastic models, JKR [4] and DMT [5], based on 
limiting cases simplified analytical solutions. A dimensionless
parameter, µ , having the form:  
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was suggested by Tabor [6] as a criterion that characterizes the
above two limiting cases (large values of µ � correspond to the
JKR case while small ones to the DMT case). In the case of a

contact between an elastic sphere and a rigid flat, RR =* , 

where R is the sphere radius, )1/( 2* vEE −= where E  and ν  

are the Young's modulus and Poisson’s ratio, respectively, of the 
sphere material, γ∆  is the work of adhesion and ε  is the inter-

atomic equilibrium distance.  
More recent studies of an elastic adhesive contact, based on

the Lennard-Jones potential and various numerical solutions, 
provided universal models suitable for the entire range of µ  
(see e.g. [3]). These studies showed two possible stable states
for the same value of the contact approach of two adhering 
bodies. This occurs for significantly high µ values, when the
force-deformation relation becomes unstable and the sphere 
surface jumps into contact (jump-in instability) during loading, 
and jumps out of contact (jump-out instability) during 
unloading.  

Several experimental works (see e.g. [7]) showed at 
adhesion alone is able to initiate plastic deformation. It is also 
known (see e.g. [8]) that the separation of adhesive elastic-
plastic contacts can be purely elastic (brittle separation) or can
be accompanied by certain amount of plastic deformation 
(ductile separation). Some simplified analytical solutions of an 
elastic-plastic adhesive contact are provided in [9] for the 
loading stage, generalizing the DMT model for the elastic-
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plastic material, and in [10] for the unloading stage, assuming a 
brittle separation of plastically loaded spheres.  

A single load-unload cycle was studied by Finite Element 
simulations in [11] showing brittle and ductile separation for 
ruthenium (Ru) and for gold (Au) micro-contacts, respectively, 
when interacting with a rigid flat. Molecular Dynamic 
simulations studying a single load-unload cycle of  an adhesive 
contact [12] showed that extremely large plastic deformations 
which occur during the unloading stage can induce material 
transfer from one contacting body to the other.  

In a previous work [13] we studied a single load-unload 
cycle of adhesive contact between an elastic-plastic sphere and 
a rigid flat. In the current study we use the same model for the 
investigation of the load-approach curves evolution during 
subsequent loading-unloading cycles.  

THE PHYSICAL AND NUMERICAL MODELS 
Following the previous study [11], the contact of the micro-

switch bump with contacting substrate can be assumed as a 
contact of a deformable elastic-plastic sphere and a rigid flat 
(see Fig. 2a). The undeformed shape of the sphere is shown by 
the dashed line. The parameter ω (which is used as the input
parameter in the current model) denotes the approach between 
the summit of the undeformed sphere and the rigid flat. The 
interaction between the sphere and the flat is governed by the
Lenard-Jones potential [3]. Hence, the local traction, p(r), 
acting on the sphere surface is given by: 
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where h(r) is the local distance between the deformed sphe 
and the flat. The reactive force, P, (the total force acting 
between two contacting bodies) holds the flat at the given input 
approach ω from the sphere. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic representation of an adhesive contact 
 

A commercial ANSYS 9.0 Finite Element package wa
used to solve this axi-symmetric elastic-plastic problem. The 
non-linear relation between the local traction, )(rp , and the 

local separation, )(rh , is simulated by uniformly distributed 

imaginary nonlinear springs that connect the sphere surface to 
the rigid flat (see Fig. 2b). Each spring applies a pointwise force 
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to the sphere in accordance to its extension (see [13] for more 
detailed explanation). 

The material of the sphere is assumed elastic liner 
kinematic hardening with a tangent modulus TE  that is 2% of 

the Young’s modulusE . The von Mises yielding criterion is 
used to detect local transition from elastic to plastic 
deformation, and the Hooke and the Prandtl Reuss constitutive 
laws govern the stress-strain state in the elastic and plastic 
deformation zones, respectively. 

RESULTS AND DISCUSSIONS 
Three main dimensionless parameters define the problem 

of the adhesive cyclic contact [13]; the Tabor parameter, µ , 

(see Eq. 1) and the plasticity parameter, 0/ YS εγ∆= , where 

0Y is the virgin yield strength of the sphere material. A third 

dimensionless parameter, εω /max , represents the maximum 

approach during the entire loading-unloading cycle. 
In the current work we consider (as in [13]) a gold nano-

sphere with a typical radius of 300 nm, and typical material 
properties: Young’s modulus GPa80=E , Poisson’s ratio 

42.0=ν , energy of adhesion 2J/m1=γ∆ , virgin yield micro-

strength 2.10 =Y GPa (see [14] where the yield strength i

calculated according to Mackenzie’s method) and a
equilibrium inter-atomic distance nm3.0=ε . The 

dimensionless parameters of the contact pair are then:  1=µ  

and 8.2=S . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Dimensionless load-approach relation during the 
cyclic loading of the elastic-plastic adhesive contact 

 
Figure 3 presents the total force, P , acting between the 

sphere and the flat, normalized by γ∆πR2 , as a function of the 

dimensionless approach, εω / , for the case of 4/max =εω . 

Negative values of force correspond to attraction between the 
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sphere and the flat while positive values to repulsion between 
them. The results are shown for three subsequent load-unload 
cycles, where the dashed lines refer to the first load-unload 
cycle and the full lines to the following two cycles. As can be 
seen from Fig. 3 there is a clear distinction between the first 
load-unload cycle and the two subsequent ones. The difference 
exists mainly for the first loading half-cycle. It is also shown 
that the load-unload cycles that follow the firs cycle coincide 
and repeat themselves. This load-unload repeated loop contains 
both the jump-in and jump-out instabilities and exhibits a 
plastic hysteresis where, as is shown in Fig. 3, the loading half 
cycle does not coincide with the unloading one, especially in 
the range of 02 <ω<ε− . It indicates alternative plasticity in
which kinematic hardening material repeatedly undergoes 
plastic deformation during both the loading and unloading half-
cycles, while the increment of plastic deformation during the 
whole load-unload cycle vanishes [14]. This phenomenon is 
called, plastic shakedown (also known as “plastic fatigue”), 
which leads to material failure. Similar failure is commonly 
observed during cyclic bending of paper clips that after a 
number of cycles can be fractured. The material of a contact 
bump undergoes similar damage process during the cycling of a 
micro-switch. 

CONCLUSIONS 
A numerical model for a cyclic adhesive contact between 

an elastic-plastic sphere and a rigid flat was developed. This 
model allows simulating the destruction of a MEMS micro-
switch contact bump based on adhesion and kinema 
hardening plasticity. The load-approach relation obtained from 
the numerical simulation shows the existence of plastic 
shakedown of the contact bump during the cycling of the micro-
switch. Cyclic plasticity can lead to the flattening of the contact 
bump and to increase of its electric resistance by material 
destruction - e.g. wear particles transfer from the bump to the 
contacting substrate.  
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