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Elastodynamic Scattering From 
Inclusions Surrounded by Thin 
Interface Layers 
The scattering of elastic waves by elastic inclusions surrounded by interface layers is 
a problem of interest for nondestructive evaluation of interfaces in composites. In 
the present paper the scattering by a single elastic inclusion is studied. The scattering 
problem is solved by means of the null field approach and the properties of the 
interface layer enters through the boundary conditions on the inclusion. Various 
ways of doing this have been tried, from the simpler approach of just keeping the 
inertia of the layer, to using a membrane type of approximation or a more 
sophisticated method that includes all effects to first order in the layer thickness. 
The results obtained by using these different methods are compared numerically and 
with the exact solution for a layered sphere and with some recent results for a 
spheroid obtained using a hybrid finite element and wave function expansion 
technique. The numerical results show significant dependence on parameters 
containing the thickness and stiffness of the interface layer. 

1 Introduction 
Three-dimensional scattering of elastic waves by inclusions 

has been the subject of investigation since the turn of the last 
century. Early studies were concerned only with spherical 
inclusions. A comprehensive review of these was published by 
Pao and Mow (1973). Elastodynamic scattering by inclusions 
of arbitrary shape is not amenable to exact solutions and only 
in recent years it has been possible to obtain numerical and 
approximate asymptotic solutions for scattering by spheroidal 
inclusions. The approximate solutions presented by Datta and 
Sangster (1974), Datta (1977), Gubernatis (1979), and Willis 
(1980) are valid at low frequenies. On the other hand, 
numerical solutions valid at arbitrary frequencies have been 
reported by Varadan and Varadan (1979), Bostrom (1980), 
Opsal and Visscher (1985), Olsson (1985), and others. In all 
these reported studies it has been assumed that the inclusion is 
perfectly bonded with the surrounding elastic matrix. 

In composites, particularly metal-matrix composites 
reinforced by fibers or particles, it is often the case that there 
is an interface layer surrounding the particles (or fibers) 
induced by processing conditions. The strength and fracture 
behavior of the composite is significantly influenced by this 
interface layer. It is, however, difficult to characterize this 
layer nondestructively. The purpose of this paper is to analyze 
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the effect of an interface layer on the scattering cross-section 
of a spheroidal inclusion. It is hoped that this study will help 
in assessing the feasibility of determining interface 
characteristics by ultrasonic means. In an earlier study Mai 
and Bose (1974) considered the effect of thin viscous layers on 
long wavelength scattering by spherical inclusions. More 
recently, Datta et al. (1988) have studied scattering by 
spherical inclusions surrounded by thin elastic interface layers. 
In both these studies it is assumed that the tractions are 
continuous across the layer, whereas the displacements satisfy 
jump conditions that are linear in the thickness of the layer. It 
may be noted that the approximate boundary conditions used 
in these studies are based on the assumption that inertial and 
curvature effects are negligible. 

In the present study the interface layer is modeled as a thin 
shell, the equations of motion of which enter the boundary 
conditions on the surface of the inclusion. The scattering 
problem is solved by the null field approach and results for 
some simple shell approximations are compared with one 
another and with the results obtained by Paskaramoorthy et 
al. (1988) using a finite element and eigenfunction expansion 
method. It is found that if all the terms of 0(h) are kept in the 
boundary conditions, then the results agree very well with the 
calculations based on modeling the interface layer exactly as a 
third phase. It is also found that the shell approximations give 
meaningful results at low frequencies, but tend to 
underestimate the scattering cross-section at moderate 
frequencies. 

2 The Null Field Approach 

Consider an elastic inclusion surrounded by a thin interface 
layer in an otherwise homogeneous elastic matrix. The matrix 
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has density p, Lame parameters, X and /n, and wave numbers, 
k„ and ks (the time factor exp ( - zW) is assumed throughout). 
The corresponding quantities in the inclusion and layer are p , , 
X,, /*,, kpU ks, and p0, X0, /i0. *po> *™> respectively. The 
thickness ft of the layer is assumed to be small. The surface of 
the inclusion is denoted S0 and its outward-pointing unit 
normal n. The outer surface of the layer is denoted SA. 

In the null field approach all pertinent fields are expanded 
in spherical vector waves (Bostrom, 1980; Olsson, 1985). In 
the matrix the regular waves are denoted Re^„ and the 
outgoing ones are denoted \p„, where n is a quadruple index. 
The corresponding regular waves in the inclusion are Re^j,. 
The incoming and scattered displacement fields are then 
expanded as 

(i) 

(2) 

Here, a„ is assumed known and/„ is to be determined, i.e., the 
problem is to determine the transition matrix, T„„, that gives 
the linear relationship between a„ and / „ : 

Jn i,j * nn'®n' • (3) 

Following the usual procedure in the null field approach, the 
outer integral representation gives relation between an,f„, and 
the surface displacement u + and traction t + : 

a„=-iks/A [ u + . t ( ^ f l ) - t + . ^ ] r f S (4) 
Jsh 

f„=iks/J [ u + . t ( R e ^ ) - t + . R e * J d S . (5) 

The index + denotes the limit from the outside and t(-) is the 
traction operator. The surface field on the inclusion is expand
ed in the regular spherical waves within the inclusion 

u - = X]a«Re^ (6) 

and the inner integral representation then gives an expansion 
of the surface traction on the inclusion as 

t_ = ! > , * ' ( R e * J ) (7) 

where t'(«) is the traction operator for the inclusion. 
The question is now how to relate u + and t + on Sh appear

ing in equations (4) and (5) to u _ and t _ on S0 appearing in 
equations (6) and (7). One way to proceed would be to use the 
null field approach for a layered medium (Bostrom, 1980), but 
in the present context with a thin layer one would then violate 
the requirement that the circumscribing sphere of the inner 
surface should not intersect the outer surface (Bostrom, 1984). 
Instead the assumed smallness of h is used to expand the right-
hand sides of equation (4) to (5) to order h and it must then be 
remembered that the surface, the surface fields, and the par
tial waves all depend on the location of the outer surface. 
Thus, one gets 

a„=ik,/p[ [ u _ . W ) I ) - t _ . * J r f S 
j s 0 

f r du dt 1 

-ik ikAsn
h[n-

3 m„)-t-'^r^„]ds 
dn dn 

-ik :/J [u_ . . (*„)- t_ .*„]f r -
dn 

-dS (8) 

and similarly for / „ . The first integral is what one gets if there 
were no interface layer, the second will reflect the properties 
of the layer as will be presented, and the third and fourth are 
geometrical terms which arise because S0 and Sh are different 
surfaces. 

The normal derivatives of the displacement and traction in 
the second integral in equation (8) must now be expressed in 
terms of u _ and t _ . This is done by using the properties of the 
interface layer and a consistent approach is to start with the 
three-dimensional constitutive equation and equations of mo
tion and extract the desired quantities with the normal 
derivatives present. For a rotationally symmetric inclusion 
when the azimuthal unit vector $ and the unit vector f = $xn 
are tangential to S0 this leads to 

(9) 

(10) 

and 

B(u, 

(-

h 

o= 

du \ 

dn / t a n 

du 

dn 

- \Po">' 

= [(t_: 

i 

(x0 + : 

at 
~dn 

l u + V , 

) tan /M 0 ->" 

— [ « . t _ 
2 / 0 

= B(u_, t 

>(?(U) 

V 

-

-) (11) 

dn * » 
+ «V s - t + ttanVs»/2 + T't—— + 4>'t(4>'V)n (12) 

dr 

(. X0+2/*0 J 

The tangential stress tensor in the layer is 

du 

dr 

a^(u) = X0Vs 'U + 2Ai0<£«(i«V)u 

du 
0^00 = /*<,[<£• 

dr 
•+T'(<f>' v > .] 

(13) 

(14) 

(15) 

In the foregoing formulas, V,* and Vsx are the surface 
divergence and curl, respectively. It should be noted that 
earlier investigations of problems of the present type (see Dat-
ta et al. (1988) for a recent example) have usually assumed the 
traction to be continuous across the layer; i.e., it has been 
assumed that B = 0. Moreover, curvature effects have usually 
been neglected so that the last terms in equations (9) and (10) 
are dropped. 

A straightforward collection of all the previous formulas 
now determines the transition matrix as 

Tm- = - E R e Q ^ Q - ' W (16) 

with 

Qm- =k,/iL \ [tGM'Reify - ^ - ( ' ( R e ^ V ) ] ^ 

+ k,/A M W J ' I K R e ^ t ' t R e ^ , ) ) 
j sn 

Journal of Applied Mechanics SEPTEMBER 1990, Vol. 57 / 673 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



- ^ • Q R e ^ . t ' C R e ^ , , ) ) ] ^ 

-V/*JS h[Re+},. 
dn 

-t(*„) 

- t ' ( R e ^ ) . 

where 

C(u, t) = -

9« 
-*P„]dS + ks/»\s [ t ( W R e ^ . 

. ^ . t ' ( R e ^ . ) ] A — - ^ / S 
3« 

(17) 

- ( n ' t - X 0 V s » u ) - t t a n / ^ 0 
X0 + 2/t0 

~nx(Vsxu) (18) 

and ReQ„„. contains Re^„ instead of \p„ in all places. For 
some details concerning the computation of d/dn dS and d/dn 
t(^,), see the Appendix. 

The exact order h expressions given previously are hideously 
complicated to use in actual computations and there are, 
therefore, good reasons to look for simplified theories that 
might contain the most important effects. One way is to use a 
membrane shell type of approximation, i.e., to skip the last 
two integrals, the operator C and all of B except the first term 
in equation (17). This has been shown earlier to lead to mean
ingful results (Olsson et al., 1988). In fact, one could also skip 
the second term in B and only keep the first inertial term, and 
this actually captures the main effects of the interface layer at 
low frequencies. As mentioned previously, another approach 
is to put B = 0 and to skip the second and fourth terms in C in 
equation (18). 

3 Numerical Results and Discussion 

The present section contains some examples of computa
tions performed by means of the approach developed in the 
previous section. The total scattering cross-sections for S and 
P wave scattering from spherical and spheroidal inclusions 
have been computed. The normalization chosen is with respect 
to the square of the radius of the sphere circumscribing the in
clusion inside the layer. The main emphasis is on checking, by 
comparing the results from other methods, that the approx
imate boundary conditions derived in the previous section in
deed yield meaningful results. 

Table 1 Material parameters for the SiC Inclusion in 41 

Matrix 

Inclusion 

Layer 

p = 2.706 kg m~3 , (A + 2/x , /*) = (1.105 , 0.267) x 1011 Pa 

Pl = 3.181 kg m~3 , (Ax + 2/2x , /zj = (4.742 , 1.881) x 1011 Pa 

Po = (P + Pi) /2 , A 0 - (A + AJ /2 , fi 0 = (/i + /ij /2 

The inclusion is taken to be a SiC inclusion used by 
Paskaramoorthy, Datta, and Shah (1988). The properties are 
given in Table 1. 

To check the null field computer program, various tests 
have been performed. One is that of taking the center of a 
spherical inclusion to be displaced from the origin of the 
spherical coordinate system employed. For an incident P wave 
at ksa = 2, where a is the radius of the sphere, and thickness 
h = Q.la, the results from calculations for a sphere displaced 
by 0.5a differ by less than 5 x 10~6 from those for a sphere 
centered at the.origin. This should be compared to the value of 
the scattering cross-section, which is roughly 1.5. 

In Table 2 a comparison is made between the results of the 
various approximations for a thin layer on a spherical inclu
sion, and the exact analytical results. A conclusion from the 
table is that in the frequency interval considered the results of 
including only the jump in the displacement to order h (and no 
geometrical effects, etc.) are inferior to the full-order h 
results, as well as to the membrane and inertial approxima
tions described in Section 2. The importance of the 
geometrical terms is also borne out in the table. Only the full-
order h column contains the effects of including the last two 
terms, the geometrical ones, in equation (17). Note that the 
last two columns contain values which are actually below the 
values for a sphere without a surrounding layer. The cor
responding boundary conditions thus represent a kind of 
smoothing of the contrast between the inclusion and the 
matrix. 

Turning now to the plots, in Figs. 1 and 2 are found results 
for scattering from spherical inclusions. The full-order h 
results are here compared to the results from exact separation 
of variables calculations. A good agreement is found between 
the exact results and those of the order h theory in the frequen
cy range considered, but it can be noted that the P wave results 
are in close agreement over a larger interval than are the S 
wave results. This is only to be expected from the difference in 
wavelength between P and S waves, ksh being roughly twice as 
large as kph. Note also that the S wave curve peaks at 
ksa~ 4.5, while the P wave curve does not peak in the interval 
considered. For larger frequencies the curves are of course ex
pected to approach a constant value. The great effect of the in
terface layer on the cross-section can be clearly seen in these 
and the following plots, since results for inclusions without a 
layer are also included. 

Figure 3 contains results for the total scattering cross-
section for an SV wave incident at 45 deg angle to the sym
metry axis on an 1:2 oblate spheriod. For comparison, data 
points from the FEM calculations of Paskaramoorthy, Datta, 
and Shah (1988) are included for scatterers with and without 
interface layers. The agreement between the results is in this 
case very good. (It should be noted that the frequency variable 
and the normalization used here differs from that of the 
previous reference. The difference only matters for 

Table 2 Comparison of analytical and numerical results for the total 
scattering cross-section for a plane P wave incident on a coated SiC 
sphere in A1.h = al1Q 

k8a 

0.1 

0.5 

1.0 

1.5 

2.0 

Analytical 

4.232 X K T 5 

2.212 X 1 0 - 2 

0.2339 

0.7504 

1.5574 

Full order 
h 

4.211 X K T 5 

2.201 X 1 0 - 2 

0.2328 

0.7469 

1.5474 

Membrane 

3.880 X 1 0 - 5 

2.142 X 10~2 

0.2443 

0.7559 

1.4113 

Inertial 

3.741 X 10~5 

2.067 X 10~2 

0.2355 

0.7234 

1.3379 

Only jump 
in u 

2.346 X 10"5 

1.264 X 10" 2 

0.1408 

0.4675 

0.9831 

Order h without 
geometrical effects 

2.414 X K T 5 

1.313 X 10"2 

0.1482 

0.4874 

1.0029 
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12 

10 

8 

I 6 

4 

— h=0.1a Order h 
— h=0 Analytic 
-° - h=0.1a Analytic 

10 

Fig. 1 The total scattering cross-section normalized by a2 for P wave 
scattering from a sphere of radius a 

— h=0.1a Order h 
— h=0 Analytic 
-°- h=0.1a Analytic 

0 1 2 3 4 5 

Fig. 2 Same as Fig. 1 but for S wave scattering 

nonspherical bodies.) The discrepancy is not appreciably 
larger for the inclusion with a layer than for the one without a 
layer. 

A less good agreement with FEM is found in the next plot, 
Fig. 4, which shows the scattering cross-section for SV in
cidence at 45 deg on a prolate 2:1 spheriod. However, we 
again find that the disagreement is roughly the same for the 
cases h = 0. la and h = 0. In the latter case, the case of an inclu
sion without a layer, the present method reduces to the or
dinary (well-tested) null field approach. The discrepancy is 
possibly due to discretization errors in the FEM calculation. 
Curiously, the largest differences occur at an intermediate 
frequency. 

Similar remarks can be made concerning Fig. 5, which con
tains results for P wave scattering from a coated 1:2 oblate 
spheroid, except that here the largest differences occur at the 
highest frequency compared. Note also that while the curves in 
Fig. 3 seem to be approaching a peak just outside the frequen
cy interval plotted, the curves in Fig. 5 have just reached at 
most an inflection point. As for the sphere, this is a result of 
the different wavelengths of P and S waves. 

4 Conclusion 

The main conclusions of the present study are the following., 
First, the results of using approximate boundary conditions 
coupled with the null field method are in agreement with those 
obtained by Paskaramoorthy et al. (1988), who used a hybrid 
finite element (FE) and eigenfunction expansions technique to 
take into account the interface layer properties in an exact 
manner. These results indicate that the effect of an interface 
layer is to significantly increase the scattering cross-section. 
Second, the results of the simpler membrane shell and 

h=0.1b Order h 
h=0 Null field 
h=0.1b FEM 
h=0 FEM 

Fig. 3 The total scattering cross-section normalized by R2 for SV wave 
scattering from an oblate spheroid; major axis a = fi, minor axis b = all; 
angle of incidence 45 deg from axis of symmetry 

Fig. 4 The total scattering cross-section normalized by ft2 for SV wave 
scattering from a prolate spheroid; major axis b = R, minor axis a = W2; 
angle of incidence 45 deg from axis of symmetry 

0 1 2 3 4 5 

Fig. 5 Same as Fig. 3 but for P wave scattering 

"phenomenological" approaches presented here and by 
Olsson et al. (1988) are in close agreement at low frequencies 
(ksR = 2) with the exact calculations for the sphere and with 
the hybrid FE results for spheroids. As seen from Table 2, the 
usual approximation of considering the jump in u without the 
geometrical effects underestimates the scattering cross-
sections considerably. Third, the full 0(h) calculations in-
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eluding the geometrical effects presented in this study are 
found to agree quite well with the exact results for the sphere 
even at moderately high frequencies (ksR = 6). Thus, it may be 
concluded that the "phenomemological" approach is mean
ingful at low frequencies in describing the effect of interface 
thin layers in composite materials with arbitrarily shaped in
clusions. At higher frequencies, however, one needs to take in
to account all terms of 0{h) in the boundary conditions. 

Although only a single scattering problem is considered 
here, the results obtained in this case can be used to study 
dispersion and attenuation of plane waves in the presence of a 
distribution of inclusions. We plan to present these results in a 
future communicatiofl. 

In the case of the "phenomenological" approach of taking 
t + — t _ proportional to u _ , we have here simply taken the 
constant of proportionality to be the same as that of the iner-
tial term of (11). To achieve better results, one could possible 
vary this constant, and even have different constants for the 
normal and tangential components, respectively. We hope to 
pursue these possibilities further in the future. 
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A P P E N D I X 

Consider a family of surfaces Se, 0<e<h, given by the 
parametrization 

Y = Ye(0.*)-To(0.*) + <:«o@.*) 

where y = y0(6, <j>) is a parametrization of S0, and n0 is the out
ward pointing unit normal of S0. 
The normal derivative of the surface element at S„ can then be 
computed as 

d (3 dy, dy, I ~) I 
dS=) — — x — — \ddd<t> . 

dn L de 36 d<fr I J I e = 0 

Quantities like the no rma l derivative of the unit normal at S0 
can similarly be computed as 

dn _ d , 
dn de e e=o 

where 

dye x dye 

36 3<t> 
ne= 

dfe x dy, 
3d 34> 

defines the unit normal of Se. Incidentally, dn/dn turns out to 
be zero. 

Thus , 

3 „ 3 
—— t(u) = « - — — <r(u) 

3n 3n 

where a is the stress tensor . 

676 / Vol. 57, SEPTEMBER 1990 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




