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ON PROJECTIVE SYSTEMS OF RATIONAL DIFFERENCE

EQUATIONS

FRANK J. PALLADINO

Dedicated to Professor Mustafa Kulenović on the occasion of his 60th birthday

Abstract. We discuss first order systems of rational difference equa-
tions which have the property that lines through the origin are mapped
into lines through the origin. We call such systems projective systems
of rational difference equations and we show a useful change of variables
which helps us to understand the behavior in these cases. We include
several examples to demonstrate the utility of this change of variables.

1. Introduction

We study first order systems of rational difference equations which have
the property that lines through the origin are mapped into lines through
the origin. We call such systems projective systems of rational difference
equations. Consider the most general first order system of linear fractional
rational difference equations.

xn+1,1 =
α1 +

∑k
i=1 β1,ixn,i

A1 +
∑k

i=1B1,ixn,i
, n ∈ N,

xn+1,2 =
α2 +

∑k
i=1 β2,ixn,i

A2 +
∑k

i=1B2,ixn,i
, n ∈ N,

...

xn+1,k =
αk +

∑k
i=1 βk,ixn,i

Ak +
∑k

i=1Bk,ixn,i
, n ∈ N.

It is customary to assume that initial conditions and parameters are nonneg-
ative. We will also make this assumption. However, we note that if proper
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care is taken to avoid problems which may arise from divison by zero, then
the changes of variables we present in this article will also work in the case
of complex parameters and complex initial conditions. In the following three
situations this system is projective. If αi = 0 = Ai for all 1 ≤ i ≤ k then
the system is projective. If αi = 0 for all 1 ≤ i ≤ k, Ai = Aj for all
i, j ∈ {1, . . . , k}, and Bℓi = Bℓj for all i, j, ℓ ∈ {1, . . . , k}, then the system is
projective. If Ai = 0 for all 1 ≤ i ≤ k, αi = αj for all i, j ∈ {1, . . . , k}, and
βℓi = βℓj for all i, j, ℓ ∈ {1, . . . , k}, then the system is projective.

In words, the three scenarios can be described as follows. The first sce-
nario is when all of the constants in the numerator and denominator, αi and
Ai, are zero. Such systems of rational difference equations are commonly
referred to as homogeneous systems of rational difference equations. Ho-
mogeneous systems of two rational difference equations have been studied
extensively in [3]. The strategy employed in [3] was to use the projective
change of variables to carry out a reduction from a rational system in the
plane, to a rational difference equation. This reduction in dimension from
two to one allowed the authors of [3] to determine the qualitative behavior
for many rational systems in the plane. We will call such systems projective
rational systems of homogeneous type.

The second scenario is when all of the constants in the numerator, αi, are
zero and the denominators are all the same. In this scenario, the projective
change of variables is commonly used to embed the linear fractional system
into a higher dimensional linear system. An example of this is the solution
of the Riccati difference equation which can be found in [2] and [4]. We will
call such systems projective rational systems of linear type.

The third scenario is when all of the constants in the denominator, Ai,
are zero and the numerators are all the same. We will call such systems
projective rational systems of hyperbolic type. We will focus on this scenario
in several examples to show how these changes of variables can be used to
simplify the problem considerably and determine global behavior.

In the next section of this article, we provide a change of variables for each
of the three types of projective rational difference equation. We then, in the
following section, give examples for each type of projective rational difference
equation. We show how the change of variables can be used to determine
the qualitative behavior of rational systems in several special cases. The
purpose of these examples is only to demonstrate the usefulness and time
saving nature of the various changes of variables presented.

2. A change of variables for each scenario

The general projective rational difference equation of homogeneous type
is the following system of rational difference equations. We will assume
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positive initial conditions for our work here.

xn+1,1 =

∑k
i=1 β1,ixn,i∑k
i=1B1,ixn,i

, n ∈ N,

...

xn+1,k =

∑k
i=1 βk,ixn,i∑k
i=1Bk,ixn,i

, n ∈ N.

Now we divide through by one of the variables, in this example we will use
xn+1,k but this choice is arbitrary and any varaible may be used. In order
to do this, we should have k > 1. We get

xn+1,1

xn+1,k
=

(∑k
i=1 β1,i

xn,i

xn,k

)(∑k
i=1Bk,i

xn,i

xn,k

)
(∑k

i=1 βk,i
xn,i

xn,k

)(∑k
i=1B1,i

xn,i

xn,k

) , n ∈ N,

...

xn+1,k−1

xn+1,k
=

(∑k
i=1 βk−1,i

xn,i

xn,k

)(∑k
i=1Bk,i

xn,i

xn,k

)
(∑k

i=1 βk,i
xn,i

xn,k

)(∑k
i=1Bk−1,i

xn,i

xn,k

) , n ∈ N.

Using the change of variables un,i =
xn,i

xn,k
we get the following.

un+1,1 =

(
β1,k +

∑k−1
i=1 β1,iun,i

)(
Bk,k +

∑k−1
i=1 Bk,iun,i

)
(
βk,k +

∑k−1
i=1 βk,iun,i

)(
B1,k +

∑k−1
i=1 B1,iun,i

) , n ∈ N,

...

un+1,k−1 =

(
βk−1,k +

∑k−1
i=1 βk−1,iun,i

)(
Bk,k +

∑k−1
i=1 Bk,iun,i

)
(
βk,k +

∑k−1
i=1 βk,iun,i

)(
Bk−1,k +

∑k−1
i=1 Bk−1,iun,i

) , n ∈ N.

The general projective rational difference equation of linear type is the fol-
lowing system of rational difference equations. We will assume positive
initial conditions for our work here.

xn+1,1 =

∑k
i=1 β1,ixn,i

A1 +
∑k

i=1B1,ixn,i
, n ∈ N,

...

xn+1,k =

∑k
i=1 βk,ixn,i

A1 +
∑k

i=1B1,ixn,i
, n ∈ N.
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Now we divide through by one of the variables, in this example we will use
xn+1,k but this choice is arbitrary and any varaible may be used. In order
to do this, we should have k > 1. We get

xn+1,1

xn+1,k
=

∑k
i=1 β1,i

xn,i

xn,k∑k
i=1 βk,i

xn,i

xn,k

, n ∈ N,

...

xn+1,k−1

xn+1,k
=

∑k
i=1 βk−1,i

xn,i

xn,k∑k
i=1 βk,i

xn,i

xn,k

, n ∈ N,

Using the change of variables vn,i =
xn,i

xn,k
we get the following.

vn+1,1 =
β1,k +

∑k−1
i=1 β1,ivn,i

βk,k +
∑k−1

i=1 βk,ivn,i
, n ∈ N,

...

vn+1,k−1 =
βk−1,k +

∑k−1
i=1 βk−1,ivn,i

βk,k +
∑k−1

i=1 βk,ivn,i
, n ∈ N.

The general projective rational difference equation of hyperbolic type is the
following system of rational difference equations. We will assume positive
initial conditions for our work here.

xn+1,1 =
α1 +

∑k
i=1 β1,ixn,i∑k

i=1B1,ixn,i
, n ∈ N,

...

xn+1,k =
α1 +

∑k
i=1 β1,ixn,i∑k

i=1Bk,ixn,i
, n ∈ N.

Now we divide through by one of the variables, in this example we will use
xn+1,k but this choice is arbitrary and any varaible may be used. In order
to do this, we should have k > 1. We get

xn+1,1

xn+1,k
=

∑k
i=1Bk,i

xn,i

xn,k∑k
i=1B1,i

xn,i

xn,k

, n ∈ N,

...

xn+1,k−1

xn+1,k
=

∑k
i=1Bk,i

xn,i

xn,k∑k
i=1Bk−1,i

xn,i

xn,k

, n ∈ N.
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Using the change of variables wn,i =
xn,i

xn,k
we get the following.

wn+1,1 =
Bk,k +

∑k−1
i=1 Bk,iwn,i

B1,k +
∑k−1

i=1 B1,iwn,i

, n ∈ N,

...

wn+1,k−1 =
Bk,k +

∑k−1
i=1 Bk,iwn,i

Bk−1,k +
∑k−1

i=1 Bk−1,iwn,i

, n ∈ N.

3. Examples and remarks

We begin with a well known example which demonstrates the projective
change of variables of linear type. Our first example provides a different
change of variables for the Riccati equation than the standard change of
variables found in [4].

Example 1. Consider the difference equation

xn+1 =
α+ βxn
A+Bxn

, n = 0, 1, 2, . . . ,

with initial condition x0 ∈ (0,∞) and parameters α, β,A,B ∈ [0,∞) such
that (A + B)(α + β) ̸= 0. Inspired by the projective change of variables of
linear type we may construct the following linear system in the plane,

yn+1 = αzn + βyn, n = 0, 1, 2, . . . ,

zn+1 = Azn +Byn, n = 0, 1, 2, . . . .

Choosing initial conditions y0 = x0 and z0 = 1 we have, yn
zn

= xn for all
n ≥ 0. We prove this by induction, n = 0 provides the base case. Notice
that since (A + B)(α + β) ̸= 0 and y0, z0 ∈ (0,∞), yn, zn ∈ (0,∞) for all
n ∈ N. Now, suppose yn

zn
= xn, then

xn+1 =
α+ βxn
A+Bxn

=
α+ β yn

zn

A+B yn
zn

=
αzn + βyn
Azn +Byn

=
yn+1

zn+1
.

So yn
zn

= xn for all n ≥ 0.

In our next example, we use the projective change of variables of hyper-
bolic type and the results from [5] to determine the qualitative behavior of
a system of 3 rational difference equations.

Example 2. Consider the following system of three rational difference equa-
tions,

xn+1 =
xn

Cyn +Azn
, n = 0, 1, 2, . . . ,
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yn+1 =
xn
Dzn

, n = 0, 1, 2, . . . ,

zn+1 =
xn

βxn + αzn
, n = 0, 1, 2, . . . ,

with initial conditions x0, y0, z0 ∈ (0,∞) and parameters C,A,D, β, α ∈
(0,∞). For this system, {xn}∞n=1 converges to

x̄ =
(βD −AD − Cα)2 + 2αDβC

(β2C)
(
Cα+ βD −AD +

√
(βD −AD − Cα)2 + 4αDβC

)
+

(βD −AD − Cα)
√

(βD −AD − Cα)2 + 4αDβC

(β2C)
(
Cα+ βD −AD +

√
(βD −AD − Cα)2 + 4αDβC

) .
{yn}∞n=1 converges to

ȳ =
βD −AD − Cα+

√
(βD −AD − Cα)2 + 4αDβC

2βCD
.

{zn}∞n=1 converges to

z̄ =
βD −AD − Cα+

√
(βD −AD − Cα)2 + 4αDβC

αβC + β2D −ADβ + β
√

(βD −AD − Cα)2 + 4αDβC
.

Proof. Dividing through by zn+1 we have the following relationship,

xn+1

zn+1
=

βxn + αzn
Cyn +Azn

=
β xn

zn
+ α

C yn
zn

+A
, n = 0, 1, 2, . . . ,

yn+1

zn+1
=

βxn + αzn
Dzn

=
βxn
Dzn

+
α

D
, n = 0, 1, 2, . . . .

Relabeling so that un = xn
zn

and vn = yn
zn

we have,

un+1 =
βun + α

Cvn +A
, n = 0, 1, 2, . . . ,

vn+1 =
βun
D

+
α

D
, n = 0, 1, 2, . . . .

So the sequence {un}∞n=1 satisfies the following second order rational differ-
ence equation,

un+1 =
βun + α

βCun−1

D +A+ Cα
D

, n = 1, 2, . . . ,

with initial conditions u0 = u0 and u1 = βu0+α
Cv0+A . We know from [5] that

{un}∞n=1 converges to

ū =
βD −AD − Cα+

√
(βD −AD − Cα)2 + 4αDβC

2βC
.
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Thus, {vn}∞n=1 converges to

v̄ =
Cα+ βD −AD +

√
(βD −AD − Cα)2 + 4αDβC

2CD
.

Thus, since yn+1 =
un
D , {yn}∞n=1 converges to

ȳ =
βD −AD − Cα+

√
(βD −AD − Cα)2 + 4αDβC

2βCD
.

Since xn = unyn
vn

, {xn}∞n=1 converges to

x̄ =
(βD −AD − Cα)2 + 2αDβC

(β2C)
(
Cα+ βD −AD +

√
(βD −AD − Cα)2 + 4αDβC

)
+

(βD −AD − Cα)
√

(βD −AD − Cα)2 + 4αDβC

(β2C)
(
Cα+ βD −AD +

√
(βD −AD − Cα)2 + 4αDβC

) .
Since zn = yn

vn
, {zn}∞n=1 converges to

z̄ =
βD −AD − Cα+

√
(βD −AD − Cα)2 + 4αDβC

αβC + β2D −ADβ + β
√

(βD −AD − Cα)2 + 4αDβC
.

This example demonstrates the utility of the projective change of vari-
ables. If we were to try to analyze this system of three rational difference
equations without using the projective change of variables and Merino’s
results in [5], then we would be forced to overcome the same obstacles al-
ready overcome by Merino with the help of a lengthy Mathematica compu-
tation. �

In our next example, we use the projective change of variables of homo-
geneous type to reduce a 3 dimensional system which is neither competitive
nor cooperative, to a cooperative system in the plane. We then use the
available theory to determine the behavior for the reduced system. This
allows us to determine the qualitative behavior of the original system of 3
rational difference equations.

Example 3. Consider the following system of three rational difference equa-
tions,

xn+1 =
xn + yn

A1zn + xn + yn
, n = 0, 1, 2, . . . ,

yn+1 =
xn + yn

A2zn + xn + yn
, n = 0, 1, 2, . . . ,

zn+1 =
αzn + xn + yn

xn + yn
, n = 0, 1, 2, . . . ,
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with initial conditions x0, y0, z0 ∈ (0,∞) and positive parameters α, A1, and
A2. Define a polynomial,

P (w) = −w3 + (2−A1 −A2 − α)w2

+ (A1 +A2 − αA1 − αA2 −A1A2)w − αA1A2.

Further, define

wm =
2 (2−A1 −A2 − α)

3

+

√
4 (2−A1 −A2 − α)2 + 12 (A1 +A2 − αA1 − αA2 −A1A2)

3
.

Whenever P (wm) ≤ 0 or one of the following two conditions hold,

(1) A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) ≤
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

(2) A1 +A2 − αA1 − αA2 −A1A2 = 0 and A1 +A2 + α ≥ 2,

then

lim
n→∞

xn = 0,

lim
n→∞

yn = 0,

lim
n→∞

zn = ∞.

Whenever P (wm) > 0 and one of the following three conditions hold,

(1) A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) >
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

(2) A1 +A2 − αA1 − αA2 −A1A2 = 0 and A1 +A2 + α < 2,
(3) A1 +A2 − αA1 − αA2 −A1A2 > 0,

then the equation

w =
w2

α+ w

(
1

A1 + w
+

1

A2 + w

)
,

has three nonnegative solutions w = 0, w1, w2 with 0 < w1 < w2.
If x0+y0

z0
∈ [0, w1), then

lim
n→∞

xn = 0,

lim
n→∞

yn = 0,

lim
n→∞

zn = ∞.
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If x0+y0
z0

= w1, then

xn =
w1

A1 + w1
, n ≥ 1,

yn =
w1

A2 + w1
, n ≥ 1,

zn = 1 +
α

w1
, n ≥ 1.

If x0+y0
z0

∈ (w1,∞), then

lim
n→∞

xn =
w2

A1 + w2
,

limn→∞yn =
w2

A2 + w2
,

lim
n→∞

zn = 1 +
α

w2
.

Proof. Dividing through by zn+1 we have the following relationship,

xn+1

zn+1
=

(
xn
zn

+ yn
zn

)2(
A1 +

xn
zn

+ yn
zn

)(
α+ xn

zn
+ yn

zn

) , n = 0, 1, 2, . . . ,

yn+1

zn+1
=

(
xn
zn

+ yn
zn

)2(
A2 +

xn
zn

+ yn
zn

)(
α+ xn

zn
+ yn

zn

) , n = 0, 1, 2, . . . .

Relabeling so that un = xn
zn

and vn = yn
zn

we have,

un+1 =
(un + vn)

2

(A1 + un + vn) (α+ un + vn)
, n = 0, 1, 2, . . . ,

vn+1 =
(un + vn)

2

(A2 + un + vn) (α+ un + vn)
, n = 0, 1, 2, . . . .

Let wn = un + vn, then

wn+1 =
w2
n

α+ wn

(
1

A1 + wn
+

1

A2 + wn

)
, n = 0, 1, 2, . . . .

This is a first order difference equation in one variable where the function
is monotone increasing, so we may use the stair step diagram to find the
qualitative behavior of solutions. First, let us find the equilibria. We solve

w =
w2

α+ w

(
1

A1 + w
+

1

A2 + w

)
,
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0 = w

(
w (A1 +A2 + 2w)− (α+ w) (A1 + w) (A2 + w)

(α+ w) (A1 + w) (A2 + w)

)
,

0 = w

(
−w3 + (2−A1 −A2 − α)w2

(α+ w) (A1 + w) (A2 + w)

)
+ w

(
(A1 +A2 − αA1 − αA2 −A1A2)w − αA1A2

(α+ w) (A1 + w) (A2 + w)

)
.

So w = 0 is an equilibrium and by Descartes’ rule of signs there are ei-
ther 2 positive equilibira, or zero positive equilibria. Let us examine the
polynomial,

P (w) = −w3 + (2−A1 −A2 − α)w2

+ (A1 +A2 − αA1 − αA2 −A1A2)w − αA1A2,

more closely. The derivative of this polynomial is

D(w) = −3w2 + 2 (2−A1 −A2 − α)w +A1 +A2 − αA1 − αA2 −A1A2.

So, if A1 +A2 − αA1 − αA2 −A1A2 > 0, then the root

wm =
2 (2−A1 −A2 − α)

3

+

√
4 (2−A1 −A2 − α)2 + 12 (A1 +A2 − αA1 − αA2 −A1A2)

3
,

is the only positive root of D(w). Since D(0) > 0 and limw→∞D(w) = −∞
in this case, wm is a local maximum for P (w) and the largest value of P (w)
for positive w. Since P (0) < 0, we have two possibilities in the case where
A1+A2−αA1−αA2−A1A2 > 0. If A1+A2−αA1−αA2−A1A2 > 0 and
P (wm) > 0, then there are three equilibria w = 0, w1, w2 with 0 < w1 < w2.
In this case,

f(w) =
w2

α+ w

(
1

A1 + w
+

1

A2 + w

)
− w

is negative on the intervals (0, w1) and (w2,∞) and positive on the interval
(w1, w2). So, we have that the basin of attraction of 0 is [0, w1), the basin
of attraction of w1 is {w1}, and the basin of attraction of w2 is (w1,∞).

If A1+A2−αA1−αA2−A1A2 > 0 and P (wm) = 0, then this contradicts
Descartes’ rule of signs since there is a single positive equilibrium in this
case. If A1+A2−αA1−αA2−A1A2 > 0 and P (wm) < 0, then the function

f(w) =
w2

α+ w

(
1

A1 + w
+

1

A2 + w

)
− w
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is negative on (0,∞) so there is only one non-negative equilibrium w = 0
and this equilibrium is globally asymptotically stable.

If A1+A2−αA1−αA2−A1A2 = 0 and A1+A2+α ≥ 2, then by Descartes’
rule of signs P (w) has no positive zeros, so f(w) is negative on (0,∞) so
there is only one non-negative equilibrium w = 0 and this equilibrium is
globally asymptotically stable.

Now, whenever A1 +A2 − αA1 − αA2 −A1A2 = 0 and A1 +A2 + α < 2,
then

D

(
2−A1 −A2 − α

3

)
> 0,

and limw→∞D(w) = −∞. Thus, in this case, wm is a local maximum for
P (w) and the largest value of P (w) for positive w. Since P (0) < 0, we have
two possibilities in the case where A1 + A2 − αA1 − αA2 − A1A2 = 0 and
A1+A2+α < 2. If A1+A2−αA1−αA2−A1A2 = 0, A1+A2+α < 2, and
P (wm) > 0, then there are three equilibria w = 0, w1, w2 with 0 < w1 <
w2. In this case, f(w) is negative on the intervals (0, w1) and (w2,∞) and
positive on the interval (w1, w2). So, the basin of attraction of 0 is [0, w1),
the basin of attraction of w1 is {w1}, and the basin of attraction of w2 is
(w1,∞).

If A1 +A2 − αA1 − αA2 −A1A2 = 0, A1 +A2 + α < 2, and P (wm) = 0,
then this contradicts Descartes’ rule of signs since there is a single positive
equilibrium in this case. If A1+A2−αA1−αA2−A1A2 = 0, A1+A2+α < 2,
and P (wm) < 0, then the function f(w) is negative on (0,∞) so there is
only one non-negative equilibrium w = 0 and this equilibrium is globally
asymptotically stable.

If A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) <
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

then D(w) has no positive real roots. Since D(0) is clearly negative, we
get that D(w) is negative on (0,∞). Thus, since P (0) is negative, P (w) is
negative on (0,∞). Thus, f(w) is negative on (0,∞). So there is only one
non-negative equilibrium w = 0 and this equilibrium is globally asymptoti-
cally stable.

If A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) =
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

then D(w) has only one positive real root. Since D(0) is clearly negative
and limw→∞ = −∞, we get that D(w) is nonpositive on (0,∞). Thus,
since P (0) is negative, P (w) is negative on (0,∞). Thus, f(w) is negative
on (0,∞). So there is only one non-negative equilibrium w = 0 and this
equilibrium is globally asymptotically stable.
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If A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) >
√

−12 (A1 +A2 − αA1 − αA2 −A1A2), (1)

then D(w) has two positive real roots. D(0) is clearly negative and

D

(
2−A1 −A2 − α

3

)
=

(2−A1 −A2 − α)2

3
−A1+A2−αA1−αA2−A1A2.

Thus by the inequality (1),

D

(
2−A1 −A2 − α

3

)
> 0.

Moreover, limw→∞ = −∞. Thus, in this case, wm is a local maximum for
P (w) and either P (0) or P (wm) is the largest value of P (w) for nonnegative
w. Since P (0) < 0, we have two possibilities in the case where A1 + A2 −
αA1 −αA2 −A1A2 < 0 and (1) holds. If A1 +A2 −αA1 −αA2 −A1A2 < 0,
(1) holds, and P (wm) > 0, then there are three equilibria w = 0, w1, w2

with 0 < w1 < w2. In this case, f(w) is negative on the intervals (0, w1) and
(w2,∞) and positive on the interval (w1, w2). So, the basin of attraction of
0 is [0, w1), the basin of attraction of w1 is {w1}, and the basin of attraction
of w2 is (w1,∞).

If A1+A2−αA1−αA2−A1A2 < 0, (1) holds, and P (wm) = 0, then this
contradicts Descartes’ rule of signs since there is a single positive equilibrium
in this case. If A1+A2−αA1−αA2−A1A2 < 0, (1) holds, and P (wm) < 0,
then the function f(w) is negative on (0,∞) so there is only one non-negative
equilibrium w = 0 and this equilibrium is globally asymptotically stable.

Thus summarizing the results obtained above via the stair step method
from [4], we get the following result. Whenever P (wm) > 0 and one of the
following three conditions hold,

(1) A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) >
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

(2) A1 +A2 − αA1 − αA2 −A1A2 = 0 and A1 +A2 + α < 2,
(3) A1 +A2 − αA1 − αA2 −A1A2 > 0,

then there are three equilibria w = 0, w1, w2 with 0 < w1 < w2. The basin
of attraction of 0 is [0, w1), the basin of attraction of w1 is {w1}, and the
basin of attraction of w2 is (w1,∞).

Since wn = xn+yn
zn

, we have:

xn+1 =
1

A1
wn

+ 1
, n = 0, 1, 2, . . . ,

yn+1 =
1

A2
wn

+ 1
, n = 0, 1, 2, . . . ,
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zn+1 = 1 +
α

wn
, n = 0, 1, 2, . . . .

Thus in this case if x0+y0
z0

∈ [0, w1), then

lim
n→∞

xn = 0,

lim
n→∞

yn = 0,

lim
n→∞

zn = ∞.

If x0+y0
z0

= w1, then

xn =
w1

A1 + w1
, n ≥ 1,

yn =
w1

A2 + w1
, n ≥ 1,

zn = 1 +
α

w1
, n ≥ 1.

If x0+y0
z0

∈ (w1,∞), then

lim
n→∞

xn =
w2

A1 + w2
,

lim
n→∞

yn =
w2

A2 + w2
,

lim
n→∞

zn = 1 +
α

w2
.

Whenever P (wm) ≤ 0 or one of the following two conditions hold,

(1) A1 +A2 − αA1 − αA2 −A1A2 < 0 and

2 (2−A1 −A2 − α) ≤
√

−12 (A1 +A2 − αA1 − αA2 −A1A2),

(2) A1 +A2 − αA1 − αA2 −A1A2 = 0 and A1 +A2 + α ≥ 2,

then

lim
n→∞

xn = 0,

lim
n→∞

yn = 0,

lim
n→∞

zn = ∞.

�
In our next example, we use the projective change of variables of hyper-

bolic type to reduce a 3 dimensional system to the rational system in the
plane numbered (11,11), in the numbering system introduced in [1]. We
then further reduce the system to a second order difference equation which
decouples into two Riccati difference equations for which the solutions are
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known. This allows us to determine the qualitative behavior of the original
system of 3 rational difference equations.

Example 4. Consider the following system of three rational difference equa-
tions,

xn+1 =
1

Azn +Byn
, n = 0, 1, 2, . . . ,

yn+1 =
1

Czn +Dxn
, n = 0, 1, 2, . . . ,

zn+1 =
1

zn
, n = 0, 1, 2, . . . ,

with initial conditions x0, y0, z0∈(0,∞) and parameters A,B,C,D∈(0,∞).
Then every solution converges to the not necessarily prime period 2 solution,

x2n = z0
D −AC −B +

√
(D −AC −B)2 + 4ADC

2AD
,

y2n = z0
2A

AC +D −B +
√

(D −AC −B)2 + 4ADC
,

z2n = z0,

x2n+1 =
D −AC −B +

√
(D −AC −B)2 + 4ADC

2ADz0
,

y2n+1 =
2A

z0

(
AC +D −B +

√
(D −AC −B)2 + 4ADC

) ,
z2n+1 =

1

z0
.

Proof. Dividing through by zn+1 we have the following relationship,

xn+1

zn+1
=

1

A+B yn
zn

, n = 0, 1, 2, . . . ,

yn+1

zn+1
=

1

C +D xn
zn

, n = 0, 1, 2, . . . .

Relabeling so that un = xn
zn

and vn = yn
zn

we have,

un+1 =
1

A+Bvn
, n = 0, 1, 2, . . . ,

vn+1 =
1

C +Dun
, n = 0, 1, 2, . . . .
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So the sequence {un}∞n=1 satisfies the following second order rational differ-
ence equation,

un+1 =
C +Dun−1

AC +ADun−1 +B
, n = 1, 2, . . . ,

with initial conditions u0 = u0 and u1 = 1
A+Bv0

. This equation decouples
into two Riccati difference equations. Thus every solution converges to the
positive equilibrium

ū =
D −AC −B +

√
(D −AC −B)2 + 4ADC

2AD
.

Thus {vn}∞n=1 converges to the positive equilibrium

v̄ =
2A

AC +D −B +
√

(D −AC −B)2 + 4ADC
.

Now, clearly z2n = z0 and z2n+1 = 1
z0

for the sequence {zn}∞n=1. Since

{un}∞n=1 converges to the positive equilibrium

ū =
D −AC −B +

√
(D −AC −B)2 + 4ADC

2AD
,

and un = xn
zn
, {xn}∞n=1 converges to the period two sequence,

x2n = z0
D −AC −B +

√
(D −AC −B)2 + 4ADC

2AD
,

and

x2n+1 =
D −AC −B +

√
(D −AC −B)2 + 4ADC

2ADz0
.

Since {vn}∞n=1 converges to the positive equilibrium

v̄ =
2A

AC +D −B +
√

(D −AC −B)2 + 4ADC
,

and vn = yn
zn
, {yn}∞n=1 converges to the period two sequence,

y2n = z0
2A

AC +D −B +
√

(D −AC −B)2 + 4ADC
,

and

y2n+1 =
2A

z0

(
AC +D −B +

√
(D −AC −B)2 + 4ADC

) .
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Thus, for our original system, every solution with initial conditions x0, y0, z0,
converges to the not necessarily prime period 2 solution,

x2n = z0
D −AC −B +

√
(D −AC −B)2 + 4ADC

2AD
,

y2n = z0
2A

AC +D −B +
√

(D −AC −B)2 + 4ADC
,

z2n = z0,

x2n+1 =
D −AC −B +

√
(D −AC −B)2 + 4ADC

2ADz0
,

y2n+1 =
2A

z0

(
AC +D −B +

√
(D −AC −B)2 + 4ADC

) ,
z2n+1 =

1

z0
.

�

4. Conclusion

We have presented 3 full families of projective rational difference equations
with the corresponding changes of variables. This should be of interest to
researchers in the area for two reasons. First, we point out the geometric
origins of well known changes of variables. Second, we present new families of
projective rational difference equations and give a useful change of variables
in each case.

Moreover, we have presented several special cases where the projective
change of variables can be used to completely determine the qualitative be-
havior. These special cases are interesting in their own right and it would
have been exceedingly difficult to determine the qualitative behavior in cer-
tain cases without the projective change of variables.
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