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ABSTRACT

Perturbation theory based sensitivity analysis is a vital part of todays’ nuclear reactor design. This
paper presents an extension of standard techniques to examine coupled criticality problems with
mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics).
The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently
calculate the first order change in responses of interest due to variations of the parameters
describing the coupled problem.
The effect of the perturbations is considered in two different ways in our study: either a change is
allowed in the power level while maintaining criticality (power perturbation) or a change is allowed
in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response
can be the change in the power level, the reactivity worth of the perturbation, or the change in any
functional of the flux, the augmenting dependent variables and the input parameters. To obtain
power- and criticality-constrained sensitivities power- and k-reset procedures can be applied
yielding identical results.
Both the theoretical background and an application to a one dimensional slab problem are
presented, along with an iterative procedure to compute the necessary adjoint functions using the
neutronics and the augmenting codes separately, thus eliminating the need of developing new
programs to solve the coupled adjoint problem.

Key Words: Sensitivity analysis, adjoint sensitivity analysis procedure, coupled problems, Krylov
methods

1. INTRODUCTION

Sensitivity analysis is a very useful tool in modern reactor design which provides means of
calculating changes in responses of interest due to variations in parameters describing the system
being investigated. In neutron transport calculations the most common responses are the critical
eigenvalue and functionals of the flux, both for which perturbation methods are well established -
perturbation theory for the critical eigenvalue and generalized perturbation theory (GPT)
respectively [1–3]. These methods have the advantage that once an appropriate adjoint problem is
solved and a specific adjoint function is obtained, the change in the response caused by any
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perturbation of the input parameters can be calculated by simply performing an integration over
the phase-space, thus avoiding the need to solve the transport problem again and again. The
drawback is that the predicted variation is only accurate up to first order (as higher order terms are
usually neglected in the derivation of the perturbation formulas).

Sensitivity analysis for generic linear and non-linear problems has also been rigorously derived -
first order changes in both linear and non-linear responses can be easily calculated by applying
the adjoint sensitivity analysis procedure (ASAP) [4]. The same can be said for augmented,
coupled systems, a general approach is well presented in [5] and applications are also known of
(see for example [6]).

Regarding coupled reactor physics calculations sensitivity studies mainly focused on
time-dependent problems. In depletion perturbation theory coupled neutron-nuclide fields are
investigated [7,8] while in case of transient analyses usually adjoint techniques are applied to
point-kinetics coupled with simplified thermal-hydraulics [9,10].

A few papers have been published on the sensitivity analysis of shielding problems as well
[11–13]. In these usually fixed source coupled neutron-gamma transport is considered and the
adjoint transport equation is solved to provide first order changes in responses. However most
often there is only one-way coupling, i.e. only secondary photons induced by neutrons are taken
into account and gamma-neutron reactions are neglected.

This paper focuses on the sensitivity analysis of steady-state coupled criticality calculations. In
Section 2 the theoretical background is presented, Section 3 introduces a numerical method
proposed to solve the equations, while Section 4 demonstrates the application to a
one-dimensional slab model.

2. THEORY

2.1. Formulation of the Coupled Reactor Physics Problem

In criticality calculations the following problem is solved:

L̂(αn)φ(x) = λF̂ (αn)φ(x), (1)

where L̂ and F̂ are the standard loss and production operators, αn(x) represent the input
parameters (cross sections, geometrical sizes, etc.), while φ(x) and λ are the unknown flux and
critical eigenvalue. Equation 1 can represent any form of the transport equation (SN or PL
approximation, diffusion, etc.) with arbitrary discretization (finite volume, finite element, etc.), x
and φ are simply the appropriate independent and dependent variables (e.g. in case of a finite
volume multigroup diffusion approach x represents spatial points and energy groups, φ the group
fluxes in the volumes).

Equation 1 is an eigenvalue problem, hence the normalization of the flux is arbitrary and can be
expressed in general as

〈Cf (x), φ(x)〉φ
C

= 1,

2012 Advances in Reactor Physics Linking Research, Industry, and Education (PHYSOR 2012)
Knoxville, Tennessee, USA April 15-20, 2012

2/14



Sensitivity analysis of coupled criticality calculations

where 〈 , 〉φ indicates integration over the phase-space, while Cf (x) and C are a constraint
function and a preset constraint value. In this paper the constraint will be the system power
(C = P ) with an appropriate power function (Cf (x) = Pf (x) = QΣf (x)), but other
normalizations are also possible (a detector function and a detector response, a fission source of
one neutron, etc.).

In coupled criticality calculations the above model is extended to account for physical processes
other than neutron transport (for example thermal-hydraulics, xenon-poisoning, etc.). The extra
phenomena are described by additional dependent variables T (y) (which can depend on
independent variables y different from x), input parameters αT (y) and equations. The coupling
between neutronics and the augmenting system is taken into account by allowing some of the
original parameters αn to depend on extra parameters and the augmenting dependent variable,
moreover the flux and some of the neutronic parameters to enter the augmenting equations. For
example if coupling to thermal-hydraulics is considered the augmenting variable can simply be
the temperature and cross sections in the extended model can take the form of

Σ(T ) = Σ(T1) +
Σ(T2)− Σ(T1)

T2 − T1

(T − T1),

where T is some spatially averaged temperature (e.g. an average fuel temperature), whereas
Σ(T1) and Σ(T2) are the cross sections evaluated at average temperatures T1 and T2. In such a
case Σ(T1), Σ(T2), etc. would be the extra input parameters and the original parameter (αn)
would simply be the cross section evaluated at a certain average temperature.

The simplest way to describe the entire coupled system is to consider a full set of input
parameters α, consisting of the neutronic parameters being unaffected by the augmentation
process (for example geometrical sizes and cross sections not depending on the augmenting
variables), the additional parameters describing the dependency of the neutronic parameters on
the augmenting dependent variables (Σ(T1), Σ(T2), etc.) and the augmenting parameters (αT ).

With the above said the coupled criticality problem can be represented by Equations 2-4, where
the independent variables have been omitted for simplicity:

L̂(T, α)φ = λF̂ (T, α)φ (2)

N̂(T, φ, α) = 0 (3)
〈Cf (T, α), φ〉φ

C
= 1. (4)

The loss and production operators now also depend on the augmenting variable and the additional
parameters. The augmenting equations are indicated with a general operator N̂ acting linearly or
non-linearly on the augmenting variables, the flux and all the input parameters. Moreover the
normalization of the flux is such that the constraint function Cf gives the constraint value C.

2.2. Power Perturbation

In reality the coupled problem described by Equations 2-3 has a unique solution, the true physical
steady-state, for which criticality (λ = 1) is always ensured by the feedbacks and no arbitrary flux
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normalization is allowed. Hence the problem can be considered as

L̂(T, α)φ = F̂ (T, α)φ

N̂(T, φ, α) = 0,

and for a given parameter set α0 the solution is φ0 and T 0. The corresponding unique power
(constraint) value is

P 0 = C0 =
〈
Cf (T

0, α0), φ0
〉
φ

=
〈
Pf (T

0, α0), φ0
〉
φ
.

When perturbations are made to the input parameters (∆α) a different steady-state is reached at a
possibly different power level. To investigate the effects of such perturbations the standard adjoint
sensitivity analysis procedure (ASAP) can be used [4]. Here only the final equations needed to be
solved and the formulas to calculate response variations are presented (for the notations see
APPENDIX A).

The relative change in the power level is given by

∆P

P 0
=

1

P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ

+
1

P 0

〈
∂Pf
∂T

∣∣∣∣
0

∆T, φ0

〉
φ

+
1

P 0

〈
P 0
f ,∆φ

〉
φ

=

=
1

P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ

+
1

P 0

〈(
∂Pf
∂T

∣∣∣∣
0

)∗
φ0,∆T

〉
T

+
1

P 0

〈
P 0
f ,∆φ

〉
φ
. (5)

To evaluate the terms containing ∆φ and ∆T (the indirect terms) in Equation 5 without having to
recalculate the original coupled problem again and again for every perturbation of the input
parameters the following adjoint problem needs to be solved:

(
M̂0
)∗
w0
φ +

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
w0
T =

w0
P

P 0
P 0
f (6)

(
Ĵ0
)∗
w0
φ +

(
∂N̂

∂T

∣∣∣∣∣
0

)∗
w0
T =

w0
P

P 0

(
∂Pf
∂T

∣∣∣∣
0

)∗
φ0. (7)

In Equations 6-7 we introduced M̂0 = L̂0 − λ0F̂ 0 and Ĵ0∆T =
∂M̂

∂T

∣∣∣∣∣
0

∆Tφ0 (with λ0 = 1), and

w0
P can be arbitrarily chosen. The boundary conditions usually need a more detailed discussion,

here it is only emphasized that they have to be chosen in a way that the bilinear terms coming
from the definition of the adjoint operators vanish (or at least become dependent only on the
unperturbed solution, the known parameters and the parameter changes [4]). In Equations 6-7 the
coupled adjoint operator on the left hand side is similar to that presented in [14], where GPT is
used to efficiently calculate loading pattern characteristics for boiling water reactors taking into
account the coupling between neutronics and thermal-hydraulics. However here no a priori
distinction is made between “strong” and “weak” unknowns, all augmenting variables are
included.

Having obtained the adjoint functions w0
φ and w0

T (for a chosen w0
P ) the relative change in the
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power level is given by Equation 8.

∆P

P 0
=

1

P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ

− 1

w0
P

〈
w0
φ,
∂M̂

∂α

∣∣∣∣∣
0

∆αφ0

〉
φ

− 1

w0
P

〈
w0
T ,
∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

. (8)

For other response functionals R(φ, T, α) the change caused by the perturbation of the input
parameters can be written as

∆R =
∂R

∂α

∣∣∣∣
0

∆α +

〈
∂R

∂φ

∣∣∣∣
0

,∆φ

〉
φ

+

〈
∂R

∂T

∣∣∣∣
0

,∆T

〉
T

=
∂R

∂α

∣∣∣∣
0

∆α + ∆Rindirect,

with an associated change (∆P ) in the power level. Again, to get rid of the indirect term an
adjoint problem needs to be solved:(

M̂0
)∗
wPφ +

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
wPT =

∂R

∂φ

∣∣∣∣
0

(9)

(
Ĵ0
)∗
wPφ +

(
∂N̂

∂T

∣∣∣∣∣
0

)∗
wPT =

∂R

∂T

∣∣∣∣
0

. (10)

This leads to the following expression for the change in the response:

∆R =
∂R

∂α

∣∣∣∣
0

∆α−

〈
wPφ ,

∂M̂

∂α

∣∣∣∣∣
0

∆αφ0

〉
φ

−

〈
wPT ,

∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

(11)

In practice reactors are most often operated at a given power level, hence it may be desirable to
investigate sensitivities when the power is constrained (or the preset constraint value C has to be
met). This can be done by tuning an appropriate parameter (which we will call the control
parameter and designate by αc in the rest of this paper) to counterbalance the changes in the
power caused by the perturbation of the (other) input parameters, so that:

∆P∆α

P 0
= −∆P∆αc

P 0
.

This ”power-reset” procedure is very much the same as the ”k-reset” used in traditional GPT [3].
Equation 8 can be used to evaluate both sides, leading to the following formula for the change in
the control parameter:

∆αc = −

w0
P

P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ

−

〈
w0
φ,
∂M̂

∂α

∣∣∣∣∣
0

∆αφ0

〉
φ

−

〈
w0
T ,
∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

w0
P

P 0

〈
∂Pf
∂αc

∣∣∣∣
0

, φ0

〉
φ

−

〈
w0
φ,
∂M̂

∂αc

∣∣∣∣∣
0

φ0

〉
φ

−

〈
w0
T ,
∂N̂

∂αc

∣∣∣∣∣
0

〉
T

. (12)

Using Equation 11 and Equation 12 the power-constrained response perturbation is given by
Equation 13:

∆RP−reset =
∂R

∂α

∣∣∣∣
0

∆α+
∂R

∂αc

∣∣∣∣
0

∆αc−

〈wPφ , ∂M̂∂α
∣∣∣∣∣
0

∆αφ0

〉
φ

+

〈
wPφ ,

∂M̂

∂αc

∣∣∣∣∣
0

∆αcφ
0

〉
φ

− ...
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−

[〈
wPT ,

∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

+

〈
wPT ,

∂N̂

∂αc

∣∣∣∣∣
0

∆αc

〉
T

]
. (13)

2.3. Eigenvalue Perturbation

One can also be interested in the reactivity worth of perturbations, which is one of the main
interests in pure reactor physics problems. In coupled criticality calculations such a response can
be calculated if we constrain the flux normalization while perturbing the input parameters (here
no control parameter is used yet). Hence the problem being investigated is:

L̂(T, α)φ = λF̂ (T, α)φ

N̂(T, φ, α) = 0

〈Pf (T, α), φ〉φ
P

= 1,

where P is the preset power (constraint) value that has to be met. The unperturbed system
(characterized by a parameter set α0) is critical, hence λ0 = 1, the corresponding steady state
solution is φ0 and T 0, while the total system power is P 0. Perturbing the input parameters while
constraining the flux normalization to the power of P 0, the eigenvalue will differ from one, this
difference can be interpreted as the reactivity worth of the perturbation and can be calculated as

∆λ =

〈w0
φ,
∂M̂

∂α

∣∣∣∣∣
0

∆αφ0

〉
φ

+

〈
w0
T ,
∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

− w0
P

P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ


〈
w0
φ, F̂

0φ0
〉
φ

. (14)

In Equation 14 w0
φ and w0

T are the solution of Equations 6-7 for the arbitrarily chosen w0
P . The

derivation of Equation 14 and the corresponding adjoint problem is quite similar to that presented
in [3] for pure criticality problems, moreover Equation 14 reduces to the standard eigenvalue
perturbation formula when no coupling is present.

For responses other than the critical eigenvalue, the adjoint problem that needs to be solved is

(
M̂0
)∗
wλφ +

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
wλT =

wλP
P 0

P 0
f +

∂R

∂φ

∣∣∣∣
0

(15)

(
Ĵ0
)∗
wλφ +

(
∂N̂

∂T

∣∣∣∣∣
0

)∗
wλT =

wλP
P 0

(
∂Pf
∂T

∣∣∣∣
0

)∗
φ0 +

∂R

∂T

∣∣∣∣
0

, (16)

with the auxillary condition that 〈
wλφ, F̂

0φ0
〉
φ

= 0.

The above condition is needed so that the term ∆λ
〈
wλφ, F̂

0φ0
〉
φ

in the derivation disappears. As

in the coupled case the neutronic adjoint is unique (unless the coupled adjoint operator is
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singular), this can be done by the proper choice of wλP . The final expression for the response
variation is

∆R =
∂R

∂α

∣∣∣∣
0

∆α−

〈
wλφ,

∂M̂

∂α

∣∣∣∣∣
0

∆αφ0

〉
φ

−

〈
wλT ,

∂N̂

∂α

∣∣∣∣∣
0

∆α

〉
T

+
wλP
P 0

〈
∂Pf
∂α

∣∣∣∣
0

∆α, φ0

〉
φ

. (17)

Just like in standard GPT, one can apply a ”k-reset” procedure to obtain criticality constrained
sensitivities. Equation 14 can be used to evaluate both sides of

∂λ

∂α

∣∣∣∣
0

∆α = − ∂λ

∂αc

∣∣∣∣
0

∆αc,

leading to the same formula for the control parameter change as Equation 12. Finally,
Equation 17 can be used to evaluate the change in the response both due to the input parameter
perturbations and the control parameter change, leading to the following expression for the
criticality-constrained sensitivities (which coincide with the power-constrained sensitivities):

∆Rk−reset =
∂R

∂α

∣∣∣∣
0

∆α +
∂R

∂αc

∣∣∣∣
0

∆αc −

〈
wλφ,

[
∂M̂

∂α

∣∣∣∣∣
0

∆α +
∂M̂

∂αc

∣∣∣∣∣
0

∆αc

]
φ0

〉
φ

− ...

−

〈
wλT ,

[
∂N̂

∂α

∣∣∣∣∣
0

∆α +
∂N̂

∂αc

∣∣∣∣∣
0

∆αc

]〉
T

+
wλP
P 0

〈[
∂Pf
∂α

∣∣∣∣
0

∆α +
∂Pf
∂αc

∣∣∣∣
0

∆αc

]
, φ0

〉
φ

. (18)

3. NUMERICAL METHODS FOR SOLVING THE COUPLED ADJOINT PROBLEM

The different approaches and responses lead to very similar adjoint problems. When a reactivity
worth, a power change or the control parameter change has to be calculated, Equations 6-7 have
to be solved. When other responses are considered the adjoint problems (Equations 9-10 and
Equations 15-16) are the same, only the source terms are different.

From the programming point of view the desired path to follow when dealing with these
equations is not to solve the coupled problem as a whole, but to iteratively solve the separate
adjoint problems (i.e. the adjoint transport equation and the adjoint augmenting equation) and
take care of the coupling terms as sources. This way the already existing neutronics and
augmenting codes capable of solving the respective adjoint problems with fixed sources can be
used. One problem with this approach is that the adjoint transport operator

(
M̂0
)∗

is singular,
which means that equations like

(
M̂0
)∗
w

(k)
φ = S∗φ −

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
w

(k−1)
T

can only be solved if the source on the right hand side is orthogonal to the solution of the forward
problem (φ0) [3], which is most probably not the case in every step of the iteration. This difficulty
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can be overcome by splitting the fission operator and recasting the adjoint problem in the
following way:(

M̂0
l

)∗
wφ +

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
wT =S∗φ + λ0l

(
F̂ 0
)∗
wφ

(
Ĵ0
)∗
wφ +

(
∂N̂

∂T

∣∣∣∣∣
0

)∗
wT =S∗T .

Here the non-singular operator M̂0
l = D̂0 − λ0(1− l)F̂ 0 was introduced. The above form of the

coupled adjoint problem provides a natural iterative scheme for solution:(
M̂0

l

)∗
w

(k+ 1
2

)

φ =S∗φ −

(
∂N̂

∂φ

∣∣∣∣∣
0

)∗
w

(k)
T +λ0l

(
F̂ 0
)∗
w

(k)
φ (19)(

∂N̂

∂T

∣∣∣∣∣
0

)∗
w

(k+ 1
2

)

T =S∗T −
(
Ĵ0
)∗
w

(k+ 1
2

)

φ (20)

w
(k+1)
φ = w

(k)
φ + rφ

(
w

(k+ 1
2

)

φ − w(k)
φ

)
w

(k+1)
T = w

(k)
T + rT

(
w

(k+ 1
2

)

T − w(k)
T

)
,

where rφ and rT are some relaxation constants. Experience so far indicates that such methods
work with strong enough under-relaxation regardless of the value of l, but are not too robust and
can become unstable if the relaxation constants are too large. However they seem to be excellent
preconditioners for Krylov methods [15] applied to the full coupled adjoint problem.

4. APPLICATION TO A ONE-DIMENSIONAL SLAB

The theory presented above was applied to a one-dimensional slab problem, characterized by
two-group diffusion and heat conduction, both subject to zero boundary conditions (at ±a):

−D1
d2

dx2
φ1(x) +

(
Σt

1(T )− Σtr
1→1

)
φ1(x) −Σtr

2→1φ2(x)− λχ1

[
νΣf

1φ1(x) + νΣf
2φ2(x)

]
=0

−D2
d2

dx2
φ2(x) +

(
Σt

2 − Σtr
2→2

)
φ2(x) −Σtr

1→2φ1(x)− λχ2

[
νΣf

1φ1(x) + νΣf
2φ2(x)

]
=0

h
d2

dx2
T (x)+ Q

[
Σf

1φ1(x) + Σf
2φ2(x)

]
=0∫ a

−a
dxQ

[
Σf

1(x)φ1(x) + Σf
2(x)φ2(x)

]
=P.

A constant thermal conductivity (h) was supposed and feedback was present due to the
dependence of the total cross section of group one on the average temperature of the slab, i.e.

Σt
1(T ) = Σt,1

1 + Σt,2
1 ·
(
T − 300

)
= Σt,1

1 + Σt,2
1 ·
(

1

2a

∫ a

−a
T (x)dx− 300

)
.
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All the used parameter values are summarized in Table I. Under these conditions both the forward
and the adjoint problem for the eigenvalue and the power (Equations 6-7) have an analytical
solution, hence simple responses can be expressed as functions of the input parameters. Naturally
for more complicated responses and perturbations only numerical solutions are possible, these
were obtained by using finite difference discretization of the forward and the adjoint problem and
solving the resulting equations in MATLAB with LU factorization. The iterative scheme
described in Section 3 for the coupled adjoint problem was tested with different values of l and
the relaxation constants and convergence could be reached with typically 100-200 iterations.
When Equations 19-20 were applied as a preconditioner for the MATLAB GMRES algorithm
less then 10 Krylov iterations were needed.

Table I. Input Parameter Values of the 1D Slab Problem

Parameter Value Parameter Value Parameter Value Parameter Value

Σt,1
1 [cm−1] 0.04 Σt,2

1 [cm−1] 0.0004 Σt
2[cm−1] 0.139

D1[cm] 0.0025 Σf
1 [cm−1] 0.005 D2[cm] 0.001 Σf

2 [cm−1] 0.05
χ1 0.9 ν1 3 χ2 0.1 ν2 2.5

Σtr
1→1[cm−1] 0.0075 Σtr

1→2[cm−1] 0.02 Σtr
2→1[cm−1] 0.0 Σtr

2→2[cm−1] 0.015

h[Wm−1K−1] 1 a[m] 2 Q[MeV ] 200

4.1. Sample responses

Figure 1 shows the steady-state power as a function of the perturbation of the feedback coefficient
(the temperature dependent part of the total cross section of group one, Σt,2

1 ) and the thermal
conductivity. The power decreases with the total cross section, as criticality can only be ensured if
the increased absorption due to the stronger feedback coefficient is counterbalanced by a lower
temperature, which can only be met at a lower power level and smaller flux values. In contrast the
increase of thermal conductivity increases the power, as criticality is always reached at the same
temperature distribution, therefore the power level and the flux can be higher in case of better
conduction. In this latter case the perturbation theory prediction is exact, as it can be shown
analytically that the steady-state power level is linearly proportional to the thermal conductivity.

Figure 2 shows the change of fast fission rate (R =
∫ a

−a Σf
1Φ1(x)dx) due to the perturbation of

the thermal conductivity. When the conductivity increases the temperature distribution at which
the reactor is critical is reached at a higher power and flux, which increases the fission rate as well
(again, when the power level is not constrained, the fission rate is linear in k). When power-reset
is used (which was done by adjusting the group two total cross section, Σt,1

2 ) the increase is even
bigger as the power decrease induced by the control parameter perturbation hardens the spectrum,
the flux decrease in group two is accompanied by an increase in group one. As the response is
non-linear when the power is reset, the prediction of Equation 13 is only accurate for small
perturbations for which the linear approximation holds.
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Figure 1. The Change of Power due to Perturbations. The increased conductivity makes it
possible to reach higher powers at the same average temperature (as needed for criticality), whereas
the increased absorption has to be counterbalanced by decreased temperatures (and hence power)
to regain criticality.
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Figure 2. The Change of Fast Fission Reaction Rate due to the Thermal Conductivity Per-
turbation. When no power-reset is applied the fast fission rate increases as the power increases.
When the power is reset by adjusting the group two total cross section (Σt,1

2 ) the spectral changes
further increase the fast fission rate.
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Figure 3 shows the multiplication factor as a function of the uniform perturbation of the thermal
conductivity and the perturbation of the total cross section of group one between ±0.8a (all other
perturbations are uniform). When the power is constrained to the unperturbed value the increase
of the thermal conductivity decreases the temperatures and increases the k-effective due to the
negative feedback. When the absorption cross section is perturbed in the middle the power and
temperature distributions are distorted (no longer cosine functions) and the difference between the
reactivity effect predicted by the standard expression for ∆λ (considering only neutronics) and
Equation 14 (taking into account the coupling) can be emphasized. In both cases the sensitivity is
negative, however the pure neutronics prediction is significantly stronger than the coupled one, as
in the latter case the increased absorption in the middle causes the power distribution to flatten out
and the average temperature to decrease, which counterbalances the reactivity decrease somewhat.

Finally Figure 4 shows the number of outer Krylov iterations needed when solving Equations 6-7
with different values of l and different numbers of k during preconditioning (when
Equations 19-20 were used as the preconditioner no underrelaxation was needed, hence
rφ = rT = 1 was chosen). The higher the value of l is the more the adjoint transport operator is
distorted, hence the easier it gets to solve the adjoint transport problem (Equation 19), however
the more Krylov iterations are needed. When the number of iterations in the preconditioning step
is increased (k) the lower the number of the Krylov iterations gets, however the more times the
adjoint transport and augmenting problem need to be solved. Obviously there is a trade-off
between the number of Krylov iterations and the number of inner iterations, as well as the value
of l in the preconditioning step.

5. Conclusions

This paper presented an extension of standard adjoint based sensitivity techniques making it
possible to examine coupled criticality problems, in which physical processes other than neutron
transport (e.g. thermal-hydraulics) are also taken into account. The proposed procedure uses
appropriate adjoint functions and enables the efficient calculation of first-order changes in
responses of interest due to perturbation of both the neutronic parameters and those describing the
additional phenomena. To accommodate practical situations sensitivities can also be determined
with a constraint on the power level or the criticality using the power- or k-reset procedures.

Numerical aspects of calculating the needed adjoint functions were also investigated and a
possible iterative scheme was presented that relies on using the neutron transport and the
augmenting codes separately in order to obtain the solution of the coupled adjoint problem. As
was demonstrated on a one-dimensional slab model this method provides especially good
convergence properties when used as a preconditioner for Krylov solvers. This makes the
application of the technique to large-scale coupled problems promising, since Krylov algorithms
are expected to be relatively easy to implement once the neutron transport and the augmenting
codes together with their adjoints are available.
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Figure 3. The Change of k-effective due to Perturbations. Due to the negative feedback the
increased heat conduction has a positive reactivity worth. The increase of the total cross section in
the middle of the slab decreases the k-effective, which is somewhat counterbalanced by the lower
average temperature due to the changed power distribution in the coupled case.
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Figure 4. The Number of Krylov Iterations with Different Preconditioners. The number
of Krylov iterations increases with l (but the solution of the adjoint transport problem becomes
easier) and decreases with the number of iterations during preconditioning (but that increases the
total number of transport and augmenting calculations).
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APPENDIX A. Notations

In this paper the following notations are used:

L̂0 = L̂(T 0, α0) F̂ 0 = F̂ (T 0, α0) M̂0 = L̂0 − λ0F̂ 0

∂L̂

∂T

∣∣∣∣∣
0

=
∂L̂(T, α)

∂T

∣∣∣∣∣
T 0,α0

∂F̂

∂T

∣∣∣∣∣
0

=
∂F̂ (T, α)

∂T

∣∣∣∣∣
T 0,α0

∂M̂

∂T

∣∣∣∣∣
0

=
∂L̂

∂T

∣∣∣∣∣
0

− λ0 ∂F̂

∂T

∣∣∣∣∣
0

∂L̂

∂α

∣∣∣∣∣
0

=
∂L̂(T, α)

∂α

∣∣∣∣∣
T 0,α0

∂F̂

∂α

∣∣∣∣∣
0

=
∂F̂ (T, α)

∂α

∣∣∣∣∣
T 0,α0

∂M̂

∂α

∣∣∣∣∣
0

=
∂L̂

∂α

∣∣∣∣∣
0

− λ0 ∂F̂

∂α

∣∣∣∣∣
0

∂L̂

∂αc

∣∣∣∣∣
0

=
∂L̂(T, α)

∂αc

∣∣∣∣∣
T 0,α0

∂F̂

∂αc

∣∣∣∣∣
0

=
∂F̂ (T, α)

∂αc

∣∣∣∣∣
T 0,α0

∂M̂

∂αc

∣∣∣∣∣
0

=
∂L̂

∂αc

∣∣∣∣∣
0

− λ0 ∂F̂

∂αc

∣∣∣∣∣
0

N̂0 = N̂(T 0, φ0, α0)
∂N̂

∂T

∣∣∣∣∣
0

=
∂N̂(T, φ, α)

∂T

∣∣∣∣∣
T 0,φ0,α0

∂N̂

∂α

∣∣∣∣∣
0

=
∂N̂(T, φ, α)

∂α

∣∣∣∣∣
T 0,φ0,α0

∂N̂

∂αc

∣∣∣∣∣
0

=
∂N̂(T, φ, α)

∂αc

∣∣∣∣∣
T 0,φ0,α0

∂N̂

∂φ

∣∣∣∣∣
0

=
∂N̂(T, φ, α)

∂φ

∣∣∣∣∣
T 0,φ0,α0

P 0
f = Pf (T

0, α0)
∂Pf
∂T

∣∣∣∣
0

=
∂Pf (T, α)

∂T

∣∣∣∣
T 0,α0

∂Pf
∂α

∣∣∣∣
0

=
∂Pf (T, α)

∂α

∣∣∣∣
T 0,α0

∂Pf
∂αc

∣∣∣∣
0

=
∂Pf (T, α)

∂αc

∣∣∣∣
T 0,α0
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