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An optimal control problem for a class of hybrid impulsive and switching systems is considered.
By defining switching times as part of extended state, we get the necessary optimality conditions
for this problem. It is shown that the adjoint variables satisfy certain jump conditions and the
Hamiltonian are continuous at switching instants. In addition, necessary optimality conditions of
Fréchet subdifferential form are presented in this paper.

1. Introduction

In a broad sense, hybrid systems are control systems involving both continuous and discrete
variables. Much attention has been paid on the control of hybrid systems in recent years,
see [1–27] and references therein. Impulsive and switching systems are a particular class
of hybrid systems characterized by switches of states and abrupt changes at the switching
instants. Many real-world processes such as evolutionary processes, flying object motions,
signal processing systems, and so forth, can be modeled as impulsive and switching
systems. Therefore, it is important to study the properties of this kind of systems. In [1], by
using switched Lyapunov functions, Guan et al. gave some general criteria for exponential
stability and asymptotic stability of some impulsive and switching models. The robust
stability conditions for several types of impulsive switching systems were presented in [2–
5]. Sufficient conditions for exponential stability and input-to-state stability of nonlinear
impulsive switched systems were established in [6, 7]. All of these papers concentrated on
the stability of impulsive and switching systems.

Over the last few decades, there have been a large number of researches on optimal
control of hybrid systems. Different approaches have been proposed in this fields, such as
the viscosity solution technique [8], dynamic programming methods [9–11], the embedding
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approach [12], direct differentiation of the cost function [13–15], necessary optimality
conditions [16–24] and the method of smoothed approximation [25].

In [26], Gao et al. investigated optimal control problem for a class of impulsive
and switching systems, where the impulses and switches occurred at fixed instants.
Taking advantage of Ekeland’s variational principle, they obtained the necessary optimality
conditions for the continuous parts. In this paper, we consider similar problems with unfixed
impulsive and switching instants. By introducing a new time variable, we get necessary
optimality conditions for the continuous parts and the switching instants. Compared with
the continuous parts, the necessary conditions at the switching times is more challenging
and difficult to obtain. Furthermore, by applying Fréchet subdifferential, we give necessary
optimality conditions with nonsmooth cost functional. Usually, the advantage of hybrid
system lies in its nonsmooth trajectory. Therefore, the use of nonsmooth objective functional
can reflect this advantage better.

The rest of the paper is organized as follows. In Section 2, the problem is formulated.
In Section 3, necessary optimality conditions with smooth and nonsmooth cost functional are
presented. Section 4 concludes the work.

2. Problem Formulation

Consider the following controlled nonlinear systems in fixed time interval [t0, tN]:

ẋ(t) = Ax(t) + f(x(t), u(t)) + v(t, x), (2.1)

where x(t) ∈ R
n is the state, u(t) ∈ Ω is a piecewise continuous control input, Ω is a bounded

and convex set in R
m, f is twice continuous differentiable with their variables. v(t, x) is a

hybrid impulsive and switching control, which can be described as follows:

v(t, x) = v1(t, x) + v2(t, x)

=
N−1∑

i=1

B1ix(t)li(t) +
N−1∑

i=1

B2ix(t)δ(t − ti),
(2.2)

where B1i, B2i are n × n constant matrices, δ(·) is the Dirac impulse and

li(t) =

{
1, t ∈ (ti−1, ti], i = 1, . . . ,N
0, others.

(2.3)

Here we suppose t1 < t2 < · · · < tN−1 are unfixed points.
Let the state of (2.1) is left continuous, x(ti) = x(t−i ) = limt→ t−i x(t). Denote x(t+i ) =

limt→ t+i
x(t), Ai = A + B1i and Bi = B2i, then under the control of (2.2), the nonlinear system

(2.1) can be expressed as follows:

ẋ(t) = Aix(t) + f(x(t), u(t)), t ∈ (ti−1, ti], i = 1, . . . ,N,

x
(
t+i
)
= (In + Bi)x(ti), i = 1, . . . ,N − 1.

(2.4)

In addition, we suppose that the system (2.4) satisfies x(t+0 ) = x0 and g(x(tN)) = 0.
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Now we give the following optimal control problem (P): for impulsive switching
systems (2.4), find impulsive switching instants ti, i = 1, . . . ,N−1, and a piecewise continuous
input u(t), such that the cost functional

J =
N∑

i=1

ϕi(x(ti)) +
∫ tN

t0

L(x(t), u(t))dt (2.5)

is minimized, where ϕi denote the switching cost, i = 1, . . . ,N − 1, L describes the operating
cost of the continuous parts and ϕN denotes the cost relative to the terminal state. All of these
functions are twice continuous differentiable with their variables.

Optimal control problem for (2.4)was considered in [26], where the switching instants
were fixed. In this paper, we consider such a problem with unfixed switching times, which is
more flexible in practical applications.

To this end, let (x0, u0) be a solution of problem (P) with a piecewise continuous con-
trol function u0.

3. Necessary Conditions of Optimality with Smooth Cost Functional

Now we give a necessary condition for problem (P).

Theorem 3.1. There exist a piecewise continuously differential variable λ(t) : [t0, tN] → R
n,

multipliers μ ∈ R and λ0 ∈ R, such that (x0, u0) satisfies

λ̇(t) = −λ0 ∂L
∂x

−
(
Ai +

∂f

∂x

)T

λ(t), t ∈ [t0, tN], (3.1)

λ(tN) = λ0
∂ϕN

∂x(tN)
+ μ

∂g

∂x(tN)
, (3.2)

u0(t) = argmin
{
H
(
x0(t), u, λ0, λ(t)

)
| u ∈ Ω

}
, t ∈ [t0, tN], (3.3)

H
[
t0+i

]
= H

[
t0−i
]
, (3.4)

λ
(
t0−i
)
= λ0

∂
[
ϕi

(
x0(t0i

)) ]

∂x(ti)
+ (In + Bi)Tλ

(
t0+i

)
, i = 1, . . . ,N − 1, (3.5)

whereH(x, u, λ) = λ0L(x, u) + λT [Aix + f(x, u)].

Proof. For i = 1, . . . ,N, define

xi(s) = x(ti−1 + s(ti − ti−1)),

ui(s) = u(ti−1 + s(ti − ti−1)),
(3.6)
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with a new time variables s ∈ [0, 1], then problem (P) can be reformulated as the following
classical problem (Q): minimize

N∑

i=1

ϕi(xi(1)) +
N∑

i=1

∫1

0
[(ti(s) − ti−1(s))L(xi(s), ui(s))]ds, (3.7)

subject to

ẋi(s) = (ti(s) − ti−1(s))
[
Aix(s) + f(xi(s), ui(s))

]
, s ∈ [0, 1], i = 1, . . . ,N,

ṫi(s) = 0, s ∈ [0, 1], i = 1, . . . ,N − 1,

xi+1(0) = (In + Bi)xi(1), s ∈ [0, 1], i = 1, . . . ,N − 1,

x1(0) = x0,

g(xN(1)) = 0.

(3.8)

The Hamiltonian of problem (Q) is denoted by Ĥ(x, u, λ) =
∑N

i=1{(ti−ti−1)[λ0L(xi, ui)+
λTi (Aixi + f(xi, ui))]}.

Applying classical necessary optimality conditions to problem (R), there exist λi(s) ∈
R

n, i = 1, . . . ,N, λ∗i (s) ∈ R, i = 1, . . . ,N − 1, ξi ∈ R and ωi ∈ R
n, i = 1, . . . ,N − 1, such that for

φ(x, u) = λ0

[
N∑

i=1

ϕi(xi(1))

]
+

N−1∑

i=1

ωT
i [xi+1(0) − (In + Bi)xi(1)] + μg(xN(1)), (3.9)

we have

λ̇i(s) = −∂Ĥ
(
x0, u0, λi

)

∂xi
= −(ti − ti−1)

[
λ0

∂L

∂xi
−
(
Ai +

∂f

∂xi

)T

λi(t)

]
, i = 1, . . . ,N, (3.10)

λ̇∗i (s) = −∂Ĥ
(
x0, u0, λi

)

∂ti
= −Hi

(
x0
i , u

0
i , λi
)
, i = 1, . . . ,N − 1, (3.11)

λi+1(0) = −∂φ
(
x0, u0)

∂xi+1(0)
= −ωi, i = 1, . . . ,N − 1, (3.12)

λi(1) =
∂φ
(
x0, u0)

∂xi(1)
= λ0

∂φi(xi(1))
∂xi(1)

− (In + Bi)Tωi, i = 1, . . . ,N − 1, (3.13)

λN(1) =
∂φ
(
x0, u0)

∂xN(1)
= λ0

∂φN

∂xN(1)
+ μ

∂g

∂xN(1)
, (3.14)
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λ∗i (0) = −∂φ
(
x0, u0)

∂ti(0)
= 0, i = 1, . . . ,N − 1, (3.15)

λ∗i (1) =
∂φ
(
x0, u0)

∂ti(1)
= 0, i = 1, . . . ,N − 1. (3.16)

u0(s) = argmin
{
Ĥ
(
x0(s), u(s), λ0, λ(s)

)
| u ∈ Ω

}
. (3.17)

For autonomous system, the Hamiltonian is constant along the optimal trajectory, so
the right hand of (3.11) is constant on [0, 1]. Combining (3.11) with the boundary conditions
(3.15) and (3.16), We get the continuity condition (3.4).

Recombine the adjoint variable

λ(t) = λi

(
t − t0i−1
t0i − t0i−1

)
, t ∈

[
t0i−1, t

0
i

]
, i = 1, . . . ,N, (3.18)

we get (3.1) from (3.10). (3.2) and (3.3) come from (3.14) and (3.20), respectively. (3.12)
and (3.13) result in the jump condition (3.5) by eliminating ωi. The proof of the theorem
is completed.

Remark 3.2. Besides the necessary optimality conditions for the continuous parts and the
terminal costate, which were derived in [26], Theorem 3.1 also give the necessary optimality
conditions for the switching instants. Therefore, Theorem 3.1 is an important improvement
and generalization of the main results in [26].

Example 3.3. Minimize the cost functional

J = x2(t1) +
∫2

0
(x(t) − 2u(t))dt, (3.19)

subject to

ẋ(t) = −x(t) + u(t), t ∈ [0, t1],

x
(
t+1
)
= 2x

(
t−1
)
,

ẋ(t) = x(t) + u(t), t ∈ (t1, 2],

x(0) = 2,

x(2) = 6,

(3.20)

where 0 ≤ u ≤ 1.
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For t ∈ [0, t1], we deduce that λ(t) = c1e
t + 1 by (3.1). Denote H = x(t) − 2u(t) +

λ(t)(−x(t) + u(t)), taking advantage of (3.3), we get that

u(t) =

{
0, λ − 2 > 0
1, λ − 2 > 0

=

{
0, c1e

t > 1,
1, c1e

t < 1,
(3.21)

where c1 is a constant in R.
In addition, by ẋ(t) = −x(t) + u(t) and x(0) = 2, we obtain that

x(t) =

{
e−t + 1, t ∈ [0, ts],(
et1 + 1

)
e−t, t ∈ (ts, t1],

(3.22)

where ts is the root of c1et = 1.
Similarly, we can get the equations for the control, adjoint and state variable for t ∈

(t1, 2]. By (3.4), we get that

λ
(
t−1
)
= 2x(t1) + λ

(
t+1
)
. (3.23)

After some calculation, we obtain four equations by (3.5), (3.23), c1ets = 1, and x(t+1 ) =
2x(t−1 ). By MatLab procedure and Newton methods of solving nonlinear equations, we get
that the impulsive and switching time is t1 = 1.1595 and the control variables is

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1, t ∈ [0, 0.8041],

0, t ∈ (0.8041, 1.1595],

1, t ∈ (1.1595, 2].

(3.24)

The behavior of control, adjoint and state variable is shown in Figure 1.

4. Necessary Optimality Conditions with Nonsmooth Cost Functional

To establish superdifferential form of necessary optimality conditions, we shall introduce
some basic knowledge of nonsmooth analysis. For more knowledge, the reader can refer to
[18, 28].

Given a nonempty set Ω ∈ R
n and x ∈ Ω, the prenormal cone to Ω at x is defined by

the following:

N̂(x;Ω) :=

{
x∗ ∈ R

n | lim sup
x→x

〈x∗, x − x〉
‖x − x‖ ≤ 0

}
. (4.1)

If x /∈ Ω, put N̂(x;Ω) := ∅.
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Figure 1: Control, adjoint, and state variable in the Example 3.3.

Let epiϕ = {(x, α) ∈ R
n+1 | α ≥ ϕ(x)}, if ϕ is lower semicontinuous, the Fréchet

subdifferential of ϕ at x is expressed in geometric form

∂̂ϕ(x) :=
{
x∗ ∈ R

n | (x∗,−1) ∈ N̂
((
x, ϕ(x)

)
; epiϕ

)}
. (4.2)

Similarly, if ϕ is supper semicontinuous, we can define the Fréchet supperdifferential
of ϕ at x by ∂̂+ϕ(x) := −∂̂(−ϕ)(x). For example, let ϕ(x) = |x|, then ∂̂ϕ(0) = [−1, 1] and
∂̂ϕ+(0) = ∅.

If ϕ is continuous, the Fréchet differential of ϕ at x is defined by

∇ϕ(x) :=
{
x∗ ∈ R

n | lim
x→x

ϕ(x) − ϕ(x) − 〈x∗, x − x〉
‖x − x‖ = 0

}
. (4.3)

Lemma 4.1 (see [18, 28]). Let ϕ : X → R, |ϕ(x)| < ∞. Then for any x∗ ∈ ∂̂ϕ(x), there exists a
function s : X → R with s(x) = ϕ(x) and s(x) ≤ ϕ(x) whenever x ∈ X, such that s(·) is Fréchet
differentiable at x with ∇s(x) = x∗.
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Theorem 4.2. Let (x0, u0) be a weak local minimum of problem (P), ϕi is Fréchet subdifferentiable at
x0(ti), then for every x∗(ti) ∈ ∂̂ϕi(x0(ti)), i = 1, 2, . . . ,N, the results of Theorem 3.1 hold except that
(3.1) and (3.4) are replaced by the following:

λ(tN) = λ0x
∗(b) + μ

∂g

∂x(tN)
, (4.4)

λ
(
t0−i
)
= λ0x

∗
(
t0i

)
+ (In + Bi)Tλ

(
t0+i

)
, i = 1, . . . ,N − 1. (4.5)

Proof. For any x∗(t0i ) ∈ ∂̂ϕi(x0(ti)), taking advantage of Lemma 4.1, there exist functions si,
such that they are Fréchet differentiable at x0(t0i ) and the following conditions are satisfied:
si(x0(t0i )) = ϕi(x0(t0i )), ∇si(x0(t0i )) = x∗(t0i ), and si(x(ti)) = ϕi(x(ti)) in some neighborhood
of si(x0(t0i )), i = 1, . . . ,N. Therefore (τ0, x0, u0) is a weak local minimum of problem (P3):
Minimize the functional

J =
N∑

i=1

si(x(ti)) +
∫b

a

L(x(t), u(t))dt, (4.6)

subject to (2.4). Combining the results of Lemma 4.1 and Theorem 3.1, we complete the proof
of the theorem.

Example 4.3. Minimize the cost functional

J = |x(t1)| +
∫2

0
(x(t) − u(t))dt, (4.7)

subject to

ẋ(t) = u(t), t ∈ [0, t1],

x
(
t+1
)
=

1
2
x
(
t−1
)
,

ẋ(t) = −x(t) + u(t), t ∈ (t1, 2],

x(0) = 1,

x(2) = 0,

(4.8)

where −1 ≤ u ≤ 1.

By (4.5), we have

λ
(
t−1
)
= d + λ

(
t+1
)
, (4.9)

where d ∈ [−1, 1] is Fréchet subdifferential at the switching point.
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Figure 2: Control, adjoint, and state variable in the Example 4.3.

Taking advantage of similar method in Example 3.3, we get that the optimal impulsive
switching time is 1.4169 and the control variables is

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

−1, t ∈ [0, 0.4169],

1, t ∈ (0.4169, 1.4169],

−1, t ∈ (1.4169, 2].

(4.10)

The behavior of control, adjoint and state variable is shown in Figure 2.

Remark 4.4. As shown in Example 4.3, the necessary optimality condition of Fréchet subdif-
ferential form allows us to get the optimal switching point for the problem with nonsmooth
cost functional, but the usual necessary optimality conditions fails to do this.
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5. Conclusions

In this paper, we have investigated optimal control problems for a class of impulsive and
switching systems, where the switching transitions are unfixed. By defining the switching
instants as part of extended state and taking advantage of the knowledge of nonsmooth anal-
ysis, the necessary optimality conditions with both smooth cost functional and nonsmooth
cost functional are derived, which are the substantial extension and generalization of some
known results in the literature.
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