
Downlo

View
Proceedings of IMECE2005 
2005 ASME International Mechanical Engineering Congress and Exposition 

November 5-11, 2005, Orlando, Florida USA 

                         IMECE2005-81318 

AERO ELASTIC FLUTTER AT THE FREE EDGES OF UNI-AXIALLY TENSIONED  
WEBS AND THIN FILMS  

 
Rahul A. Bidkar*** 
Graduate Student 

rbidkar@purdue.edu 
 

Arvind Raman 
Associate Professor 

raman@ecn.purdue.edu 

Anil K. Bajaj 
Professor 

bajaj@ecn.purdue.edu 

 
Dynamic Systems and Stability Laboratory 

School of Mechanical Engineering 
Purdue University 

West Lafayette, IN-47907 
*** corresponding author  

 

Proceedings of IMECE2005 
2005 ASME International Mechanical Engineering Congress and Exposition 

November 5-11, 2005, Orlando, Florida USA 
 
 

IMECE2005-81318 
 
 

brought to you by CORE metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
 
ABSTRACT 

 
Aero elastic flutter may play an important role in the 

breakage of thin membrane-like structures (a.k.a. webs) found 
in paper-handling, textile, sheet-metal and magnetic tapes 
industry. In this article, we examine the aero elastic stability of 
a web modeled as a uni-axially tensioned (along the machine 
direction) low aspect ratio Kirchhoff plate, which is subject to a 
fluid flow in the cross machine direction. Panel methods based 
on the distribution of singularity solutions (sources and 
doublets) on the surface of the web are used to numerically 
solve the problem of 3D unsteady potential flow surrounding 
the web. The equation of motion of the plate coupled to a fluid 
flow is discretized by using Galerkin’s method. The 
discretization is performed in the configuration space 
formulation of the gyroscopic eigenvalue problem. The linear 
stability of this reduced order system is investigated. The onset 
of flutter instability as a function of base fluid flow in the cross 
machine direction is studied. The effects of fluid coupling on 
the frequencies and modes of oscillations of the web are also 
studied.   

 
INTRODUCTION AND BACKGROUND 

 
Thin membrane-like structures found in the paper-handling 

industry, textiles, thin sheet metals and magnetic tapes, often 
undergo breakage during their manufacture and processing 
stages. These flexible membranes or webs, which are 
transported through a series of rollers while remaining 
unsupported at their free edges, undergo large amplitude 
vibrations characterized as aero elastic flutter. This undesirable 
large amplitude motion and the ensuing possibility of breakage 
lead to poor manufacturing quality and considerable financial 
losses. Understanding the dynamics of such flexible structures 
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with the intent of suppressing the undesirable motions is the 
primary goal of this work. 

Several characteristic parameters play an important role in 
the vibrations of these webs. One characteristic parameter is the 
extremely low ratio of bending stiffness of the webs to the 
applied tension. Another characteristic property of such webs is 
their low density. The low density of such structures causes the 
surrounding air to easily influence the web motion. The effects 
of the surrounding air on the motion of the webs cannot be 
neglected. It is suspected that the air flows around the webs are 
a major cause of the fluttering motion of the webs. There are 
several reasons for the generation of air flows around the webs. 
For example in a printing process, when the web passes through 
a dryer, air is blown across the free edges (cross-machine 
direction) of the web. Apart from this, fluid viscosity coupled 
with web transport motion can generate air flows around the 
web. The primary goal of this research is to understand the 
mechanisms and determine the conditions that lead to the 
undesirable fluttering motion of the webs. 

 In this article, the vibrations of a uni-axially tensioned 
stationary web coupled to a surrounding incompressible and 
inviscid fluid flowing in the cross-machine direction is 
investigated. The linear stability of this aero elastic system is 
studied. Such an investigation about the aero elastic stability 
helps in understanding the conditions under which the web 
starts exhibiting fluttering motion. Apart from the conditions 
for the onset of flutter, this work also sheds light on the natural 
frequencies and the mode shapes of these webs for the various 
values of system parameters.   

For a survey of the literature in the area of the transverse 
vibrations of axially moving structures without the fluid 
coupling, the reader is referred to the literature survey in the 
work of Vaughan [17]. A study regarding the effects of a 
surrounding incompressible and inviscid fluid on axially 
1 Copyright © 2005 by ASME 
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moving paper webs can be found in the work of Raman et al. 
[13]. In this work, the web is modeled as a moving Kirchhoff 
plate with a very low bending stiffness to tension ratio. The 
effects of fluid coupling on the frequencies of the coupled 
system, especially the phenomenon of frequency clustering in 
paper webs, have been reported in this work. 

The flutter phenomenon of stationary plates coupled to 
surrounding incompressible and inviscid fluid flows has been 
investigated by many researchers. Guo and Paidoussis [5] 
studied the linear stability of a rectangular plate immersed in a 
channel flow. This work assumes a two-dimensional beam 
model for the plate and does not capture the effects of the finite 
aspect ratio of the plate. Further, since their work does not 
model the trailing wake behind the plate, the system reported in 
Guo’s work is conservative. An important aspect of the work 
presented in the current article is that it includes the effects of a 
trailing wake and along with it the inherent non-conservative 
nature of such a system.  

The main motivation to study the problem on hand comes 
from experimentally observed flutter in webs when subjected to 
flows in cross-machine direction. Understanding the instability 
mechanisms could potentially lead to devising flutter 
suppression techniques for these important problems. The 
experimental results regarding the flutter observed in paper 
webs have been reported in the work of Hill [8] and Watanabe 
et al. [19]. Chang and Moretti [2] and Chang et al. [3] have 
presented several experiments on stationary and moving webs 
subjected to cross flow. Further, Chang and Moretti [4] also 
present a theoretical study by modeling the web as a tensioned 
infinitely wide Kirchhoff plate with base flow in the cross 
machine direction. Watanabe et al. [19] investigated the flutter 
of stationary paper sheets clamped only at the leading edge. 
Their work presents some interesting experimental observations 
along with theoretical modeling [20] to predict the onset of 
flutter.  

Finally, the work presented by Vaughan [17] closely 
matches with the study presented in the present article. 
However, the fluid flow model presented in the former work 
did not include the effects of a trailing wake. These important 
effects have been included in the current article. A critical 
comparison between the fluid flow model in [17] and the one in 
the current work is discussed in later portions of this article.   

The present article is organized in the following fashion. In 
the next section, the details of the model used for the web 
motion and the motion of the surrounding fluid have been 
presented. After that, the equations of motion are discretized by 
using Galerkin’s method. Details on how to obtain the solution 
of the fluid flow problem by using the doublet-lattice method 
are presented next. The next section describes the effects of the 
trailing wake on the fluid-structure interaction. After this, a 
discussion on the computational issues pertaining to the 
problem on hand is given. Finally, we present the numerical 
results in the form of the eigenvalues of the coupled system. 
The effects of the base flow velocity on the frequencies and the 
mode shapes of the system along with the critical velocity for 
the onset of flutter are provided. 

MODELING 
 
The rectangular web is modeled as a flat, isotropic, linearly 

elastic and uni-axially tensioned Kirchhoff plate. The plate is 
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located such that the right-handed Cartesian co-ordinate system 
{ }, ,X Y Z  has its origin at the center of the plate. The out-of-
plane displacement ( , , )w x y t  of the plate from its equilibrium 
state is governed by the following equation of motion 

 
             4, ,tt xx xxw D w N w fρ + ∇ − =                        (1) 
 

where ( ) ( )( ),  and  ( ),  stand for  and t x t x
∂ ∂
∂ ∂

, respectively. 

ρ is the mass per unit area of the web and
3

212(1 )
EhD

μ
=

−
 is the 

bending stiffness of the plate. E is the Young’s modulus of 
elasticity, h is the thickness of the web and μ  is the Poisson’s 
ratio. xxN is the axial tension per unit width of the web applied 
along the X-direction. 4∇  is the bi-harmonic operator and 
f represents the pressure force (due to the surrounding air) on 

the plate. 
 Figure 1 shows the plate, which has a length a  along the 

X-axis and a width b along the Y-axis. The plate is supported 
by two roller supports as shown in Figure 1. Turnbull et al. [16] 
have shown that for small amplitude oscillations of tensioned 
beams with small bending stiffness to tension ratio, the roller 
supports can be suitably modeled as simple supports. 
Accordingly, the boundary conditions for the equation of 
motion are: simply-supported at the edges 

/ 2 and / 2x a x a= = −  and free at the edges 
/ 2 and / 2y b y b= = − . 

The unsteady fluid flow in the 3D infinite domain 
surrounding the web is assumed to be incompressible. The 
existence of a thin wake (of negligible thickness) emanating 
from the trailing edge of the plate is also assumed. For small 
amplitude motion of the web, it is justified to restrict the wake 
to the X-Y plane. Such an assumption is popularly known in 
the literature as the linearized wake analysis [1]. The width of 
the wake is the same as that of the plate and it extends from the 
trailing edge of the plate to infinity downstream.  The flow is 
assumed to be inviscid except in the thin layer comprising of 
the trailing wake. The continuity equation for the unsteady flow 
of an incompressible fluid is 
  
   0u∇⋅ =                            (2)
    
where ∇  is the gradient operator and ( , , , )u x y z t  is the 
velocity of the fluid. Since the flow field is irrotational (except 
in the thin wake where all the vorticity is concentrated), a scalar 
aerodynamic potential ( , , , ),x y z tΦ  such that u = −∇Φ , can be 
defined. The governing equation for the fluid flow then 
becomes  
 
                        2 0.∇ Φ =                                    (3)  
 

It is assumed that the fluid flow comprises of a steady base 
flow and small perturbations to this base flow caused by the 
web motion. The steady base flow has a velocity V along the 
Y-direction. The aerodynamic potential Φ  can then be 
2 Copyright © 2005 by ASME 
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conveniently divided into two parts *  and ,φ φ where * Vyφ = −  
is the aerodynamic potential that corresponds to the steady base 
flow and 1φ <<  is the perturbation aerodynamic potential 
caused by the plate motion. The perturbation potential φ  must 
satisfy the continuity equation 
   

2 0.φ∇ =              (4) 
 

The boundary conditions for the fluid flow equations are 
derived by matching the normal velocity of the plate with the 
velocity of the fluid particle at that location. The velocity of a 
fluid particle in contact with the plate at location ( ),x y  is 
given by the material derivative of the plate displacement at the 
same location. Thus, on the plate surface, the following must be 
true 
    

on the plate
, ,  , .z t yw Vwφ− = +           (5a) 

 
Additionally, it is required that the far field conditions be 
satisfied 

 
   

as r
, 0nφ

→∞
=            (5b)  

 
where 2 2 2r x y z= + +  and n  denotes any radial normal 
direction. The requirements in equations (5a) and (5b) become 
the boundary conditions for the perturbation potentialφ . 

The boundary conditions specified in equations (5a) and 
(5b) are purely kinematical in nature. The solution of the fluid 
flow problem obtained under these boundary conditions is in 
general not unique. The non-uniqueness of the solution is 
caused due to the yet undetermined value of the trailing edge 
vorticity that is shed into the wake [1]. An additional constraint 
popularly known in the literature as the “Kutta condition” is 
needed to find the value of the vorticity that is shed into the 
trailing wake. Once the trailing edge vorticity is known, the 
solution to the problem becomes unique. In the case of flow 
behind an oscillating plate, the Kutta condition can be 
interpreted [9] as requiring the pressure jump at the trailing 
edge of the plate to be zero, i.e. 

 

at the trailing edge
 = 0pΔ                                (6) 

 
where ( , , , )p x y z t the pressure in the flow field and the symbol 

pΔ  refers to the difference between the values of pressure 
above and below the plate. Note that it is debatable as to 
whether the Kutta condition (which originally was formulated 
for the steady flow problems) can directly be extended to 
unsteady flow problems. However, there is some experimental 
evidence [9] to support such an assumption. Nevertheless, such 
an assumption about the validity of the Kutta condition has 
been made in this work and the results there of are analyzed. 

Further, the perturbation aerodynamic potential is related 
to the pressure ( , , , )p x y z t  in the flow field by Bernoulli’s 
equation for unsteady flow 
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                     ( )( , , , ) , , .fluid t yp x y z t Vρ= Φ + Φ               (7) 

 
The aerodynamic potential Φ  can be divided into two 

parts; one which is symmetric about the plane Z=0 and the 
other which is anti-symmetric about the plane Z=0. The base 
flow potential *φ  is symmetric about the Z=0 plane and 
consequently does not cause any pressure differential on the 
plate. Only the anti-symmetric component of the perturbation 
aerodynamic potential φ  will cause a pressure differential on 
the plate. Then, the pressure force ( , , )f x y t  acting on the web 
is given by the difference in pressure acting on the lower and 
upper surfaces of the web 
 

( , , ) 2 , ( , ,0 , )  , ( , ,0 , )fluid t yf x y t x y t V x y tρ φ φ+ +⎡ ⎤= +⎣ ⎦
                     

           (8) 
 
where φ  henceforth refers to only the anti-symmetric 
component of the perturbation potential. 

Finally, following the work in [13], the equations of 
motion are non-dimensionalized in the following manner: 

 

3

2 2

' / ,  ' / ,  ' / ,  ' /

1,  ,  ' ,  ' ,
12(1 )

a
, = ,  ' ,

/
1 '( ', ', ', ') ( , , , ) .

/

xx xx
xx

xxxx

fluid

xx

xx

w w a x x a y y a z z a

N NEh DD t t N
a Na N

b VV
a N

x y z t x y z t
a N

ε
ρμ

ρ
κ

ρ ρ

φ φ
ρ

= = = =

= = = =
−

= Λ =

=

 

 
Note that ε is the bending stiffness to tension ratio, Λ is 

the web density parameter and κ is the web aspect ratio. The 
primes denote the dimensionless quantities and are dropped in 
the subsequent analysis. The above non-dimensionalization 
results in the following set of equations for the fluid-structure 
interaction problem: 

 
4, , 2 , ( , ,0 , ) , ( , ,0 , )tt xx t yw w w x y t V x y tε φ φ+ +⎡ ⎤+ ∇ − = Λ +⎣ ⎦

   
2 0.φ∇ =     

               (9) 
 

Accordingly, the non-dimensionalized boundary conditions are: 
 
Plate Boundary Conditions: 
  a.) Simply supported at 1/ 2, 1/ 2x = −  
  

   ( 1/ 2, , ) (1/ 2, , ) 0,
, ( 1/ 2, , ) , (1/ 2, , ) 0;xx xx

w y t w y t
w y t w y t

− = =
− = =

 

            (10 a) 
   
3 Copyright © 2005 by ASME 
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Down
  b.) Free edges at / 2, / 2y κ κ= −  
 

          

, ( , / 2, )  , ( , / 2, ) 0,

, ( , / 2, )  , ( , / 2, ) 0,

, ( , / 2, ) (2 ) , ( , / 2, ) 0,

, ( , / 2, ) (2 ) , ( , / 2, ) 0;

yy xx

yy xx

yyy yxx

yyy yxx

w x t w x t

w x t w x t

w x t w x t

w x t w x t

κ μ κ

κ μ κ

κ μ κ

κ μ κ

− + − =

+ =

− + − − =

+ − =

 

             
      (10 b) 

Fluid Flow Boundary Conditions: 
   a.) Normal velocity matching  
 

       
on the web

, , , ;z t yw Vwφ− = +                         (10 c) 
 
    b.) Far-field condition 

      
     

as r
, 0;nφ

→∞
=                     (10 d) 

  
     c.) Kutta condition 
 
  

at the trailing edge
 = 0.pΔ                       (10 e) 

 

DISCRETIZED MODEL 
 
The equations of motion in (9) are discretized using the 

Galerkin’s method. The basis functions used for the 
discretization are the mass normalized in-vacuo (i.e. 0Λ = ) 
eigenfunctions of a uni-axially and uniformly tensioned 
Kirchhoff plate. Thus we can write the web displacement as 
 

0 0
( , , ) ( ) ( , ).mn mn

m n
w x y t q t x y

∞ ∞

= =

= Ψ∑∑               (11a) 

 
The discretization is performed in the configuration space 
formulation of the gyroscopic eigenvalue problem. Note that in 
equation (11a) ( )mnq t represents the generalized coordinate of a 
basis function and the basis function ( , )mn x yΨ  is given by 
 

[ ]( , ) sin ( 1) ( 1/ 2) ( ) 
                                                     
                                                      0,1,2...

mn mn mnx y C m x Y y

m

πΨ = + +

=

 

where  
 

1 2

1 2

( ) cosh( ) cosh( )      0,2,4..
( ) sinh( ) sinh( )       1,3,5..

mn mn mn mn

mn mn mn mn

Y y y y n
Y y y y n

α γ α
α γ α

= + =
= + =

 

             (11b) 
 
The values of 1 2,  and mn mn mnα α γ  depend on the eigenvalues of 
the boundary-value problem defined by the first equation in (9) 
and its corresponding boundary conditions, 
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with 0 and 1xxNΛ = = . Also note that mnC is the mass 
normalized amplitude of the corresponding eigenfunctions. 

Substituting the expansion in equation (11a) into the right-
hand side of equation (10c) and assuming the time dependence 
of the perturbation potentials to be the same as that of the plate 
velocities, two boundary-value problems corresponding to the 
perturbation potentials 1 2(x,y,z) and (x,y,z) mn mnφ φ are obtained. 
The rationale is that each of the structural basis functions in 
equations (11) will drive the fluid flow and in turn give rise to 
two perturbation potentials: the first caused by matching the 
temporal part of fluid velocity (i.e. ,tw ) and the second by 
matching the convective part of the fluid velocity (i.e. , yVw ). 
Specifically, the two boundary-value problems arising from 
each basis function ( , )mn x yΨ  are  

 
2 0;  1,2,mni iφ∇ = =                         (12) 

 
 subject to the boundary conditions  
 

            
1

2

, ( , ,0) ( , ),
, ( , ,0) , ( , ).

mn z mn

mn z mn y

x y x y
x y x y

φ
φ

= Ψ
= Ψ

                     (13) 

 
Note that the velocity matching in equation (13) is 

enforced on the Z=0 plane as against on the deformed web 
surface. This assumption can be shown to hold for small 
vibrations. Furthermore, under the assumption of small 
amplitude motion of the web, solutions of equations (12) and 
(13) for all the values of  and m n  can be added to obtain the 
total aerodynamic potential as 

 

    

, 1

0 0
2

( ) ( , , )
( , , , ) .

( ) ( , , )

mn t mn

m n
mn mn

q t x y z
x y z t Vy

Vq t x y z

φ

φ

∞ ∞

= =

⎧ ⎫
⎪ ⎪Φ = −⎨ ⎬
⎪ ⎪+⎩ ⎭

∑∑

               (14) 
 

While discretizing the equations by Galerkin’s method, the 
expansion in equation (11a) is truncated to x N N terms and 
substituted in the left-hand side of the first equation in (9). 
Similarly, the expansion in equation (14) is truncated to 

x N N terms and substituted in the right-hand side of the first 
equation in (9). The resulting residual terms are weighted by 
using the basis functions ( , )mn x yΨ  of equation (11a). After 
performing the integrations over the domain, the following 
discretized system of equations consisting of x N N equations 
is obtained: 

 

2
1 2

{[ ]  2 [ ]} [ ]  2 [ ] [ ] 

            {[ ]  [ ]  2  [ ]} [ ]  0
air air

air

I M q V C q

K K V K qε

+ Λ + Λ

+ + Λ =
 

         (15) 
 
where the matrices [ ] [ ] [ ] ,  and air air airM C K  represent the 
aerodynamic pressure forces in the form of added mass, 
4 Copyright © 2005 by ASME 
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damping and added stiffness respectively. The matrices 
[ ] [ ]1 2 and K K represent the membrane stiffness and bending 
stiffness forces contributed by the structure. 

It should be noted that the three matrices 
[ ] [ ] [ ] ,  and air air airM C K  corresponding to the aerodynamic 
loads are non-symmetric in nature. This is a direct consequence 
of the inclusion of the trailing wake in the fluid flow model. As 
a result, the coupled fluid-structure system is non-conservative 
in nature. The definitions of the various matrices in equation 
(15) are given in the appendix. 

FLUID FLOW SOLUTION: THE DOUBLET-LATTICE 
METHOD 

 
When evaluating the perturbation aerodynamic potential, a 

solution of the Laplace equation (i.e. equation 12) in a 3D 
infinite domain is sought. Vaughan [17] solved a similar 
problem using a numerical procedure in ANSYS. The solution 
methodology in that work is suited for problems with initially 
quiescent fluid flows. However, for base air flows, especially 
air flows in the cross-machine direction; it becomes necessary 
to include a trailing wake that ensures the uniqueness of the 
fluid flow solution. A numerical procedure best suited for 
handling such fluid flow problems should then be some variant 
of the vortex-lattice or the doublet-lattice method [9]. 

 The doublet-lattice method used here is based on the use 
of Green’s theorem [10]. The theorem states that the velocity 
potential at any point in the flow field can be expressed as an 
effect of sources and doublets distributed on the structure’s 
surface. The solution methodology essentially consists of 
distributing singularity solutions of the Laplace equation on the 
surface of the web such that the boundary conditions in 
equations (13) are met. These methods of solving potential flow 
problems come under the category of boundary element 
methods.  

Sources and doublets are elementary solutions of the 
Laplace equation. In order to evaluate the perturbation 
aerodynamic potential, doublet panels are distributed on the 
web as shown in Figure 2. The web is divided into R = P x Q 
doublet panels with P and Q panels along the X and Y 
direction, respectively. These doublet panels are located in the 
X-Y plane. At the geometric center of each panel, a control 
point is present. Apart from this, doublet wake panels are 
located on the downstream side as shown in Figure 2.  

Denoting the unknown doublet strength of the 
 ( 1,2,.... )thi i R=  panel by iΓ , a system of linear equations can 

be written as follows: 
 

11 1 1 1

1

R

R RR R R

β β υ

β β υ

Γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                   (16) 

 
where  ( , 1,2,..., )ij i j Rβ =  represents the velocity induced at 

the control point of the thi  panel by the thj unit strength 
doublet panel.  ( 1,2,..., ),i i Rυ =  which forms the right-hand 
side of equation (16) represents velocity that the fluid must 
have at the thi control point. For example, when solving 
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equation (12) subject to the first boundary condition in equation 
(13), the vector  ( 1, 2,... )i i Rυ = would consist of 

( , )mn x yΨ evaluated at the i control points.  
An important aspect of obtaining the fluid flow solution is 

modeling the doublet strength in the Z=0 plane off the web, 
especially in the trailing wake. As discussed earlier, since our 
interest lies only in finding the anti-symmetric component of 
the perturbation potential, the perturbation potential (and hence 
the doublet strength) is set to zero in the Z=0 plane everywhere 
except on the web and the trailing wake. On the surface of the 
web, the doublet strength is unknown and must be solved for as 
shown in equation (16). For modeling the doublet distribution 
in the wake, we follow the work of Von Kármán and Sears 
[18]. Assuming that the web is performing oscillatory motion 
with a circular frequency ofω , the vorticity generated on the 
web surface will be shed harmonically into the wake. This 
vorticity will be convected downstream with a steady base flow 
velocity .V  Conventionally in steady flow problems, the Kutta 
condition is satisfied by matching the doublet strength of the 
last row of the structure panels with the first row of wake 
panels (See Figure 2). In doing so, the requirement in equation 
(10e) is automatically satisfied. However, for an unsteady flow 
problem like the present one, it is assumed that such a matching 
of doublet strengths takes place at every instant. Simply put, it 
is assumed that the Kutta condition is satisfied at every instant. 

 Now, if the web surface has velocities that perform an 
oscillatory motion of the type j te ω , then the doublet distribution 
on the web surface would also have a similar harmonic 
behavior. Consequently, the distribution of doublet strength 

( , , )x y tΓ  in the wake would take the form 
 

 ( )

 

 

          ( , , ) ( , ) ,

where

                      j= -1,      / 2,  

                     -1/ 2 1/ 2,  /2 y .

trailing edgej y y j tV
trailing edge

trailing edge

x y t x y e e

y

x

ω
ω

κ

κ

− −
Γ = Γ

=

≤ ≤ < < ∞

    

               (17) 
 
Such a distribution of doublet strength in the trailing wake was 
first suggested by Von Kármán and Sears. [18]. The work in 
reference [18] demonstrated the effect of the unsteadiness of 
airfoil motion on the trailing wake and in turn its effect on the 
fluid pressures exerted on the structure. However, these 
calculations were for a 2D unsteady flow and the ones 
described below in the current work correspond to a 3D 
unsteady flow. 

 The expression in (17) suggests that the distribution of 
doublet strength in the wake has two components with one 
leading the other by a phase of 90o in time. Specifically, let us 
assume that the web surface velocity varies with time 
as cos( )tω and that we are interested in the fluid flow solution 
caused by this web surface velocity. Then the first component 
of the doublet wake distribution in phase with the web surface 
velocity would be ( , / 2) cos( ( / 2) )cos( )x y V tκ ω κ ωΓ −  and 
the second one lagging behind by a 90o phase would 
be ( , / 2) sin( ( / 2) )sin( )x y V tκ ω κ ωΓ − . Now, these two wake 
5 Copyright © 2005 by ASME 
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distributions are responsible for two fluid flow solutions, one 
lagging the other by a phase of 90o. Keeping this in mind, the 
fluid flow problem is solved in the following fashion. 

Using the ( , / 2) cos( ( / 2) )cos( )x y V tκ ω κ ωΓ −  
distribution in the wake, with ( , / 2)x κΓ  unknown at this stage, 
the left-hand side of equation (16) is modified. For a theoretical 
background on how the presence of a wake modifies the left-
hand side of the set of linear equations in (16), the reader is 
referred to the monograph by Katz and Plotkin [9]. Returning to 
the fluid flow solution, the velocity of the web (and hence the 
velocity of the fluid particles in contact with the web) is 
evaluated at the i control points and this gives us the right-hand 
side of equation (16). The solution of equation (16) gives us the 
doublet strength ( , )x yΓ  on the web, where  and x y are such 
that 1/ 2 1/ 2 and - / 2 / 2.x yκ κ− ≤ ≤ ≤ ≤ This doublet 
distribution, which is based on a cosine distribution in the 
wake, is called cos ( , )ine x yΓ . In other words, with this doublet 
distribution, the fluid flow solution in phase with the web 
surface velocity is obtained. In doing so, the trailing edge 
vorticity ( , / 2)x κΓ gets determined. 

 Now, since ( , / 2)x κΓ is known, we can find the influence 
of the second component of the wake. The distribution of 

( , / 2) sin( ( / 2) )sin( )x y V tκ ω κ ωΓ − in the wake will cause 
some fluid flow at the i control points. This downwash caused 
by the second component of the wake must be nullified so that 
the no-penetration boundary condition on the web surface is 
always satisfied. Thus, a doublet distribution on the web that 
nullifies the influence of the second wake component is 
determined. This doublet distribution called sin ( , )e x yΓ  (which 
lags the velocity of the web surface by a 90o phase) corresponds 
to the fluid flow lagging the web surface velocity by a 90o 
phase. 

The two doublet distributions cos ( , )ine x yΓ  and 

sin ( , )e x yΓ will give rise to two perturbation potentials  

cos ( , , )ine x y zφ  and sin ( , , )e x y zφ . These two perturbation 
potentials can be combined to obtain a single response 
perturbation potential ( , , )x y zφ  that lags the velocity causing it 
by the corresponding phase angle. In summary, in the absence 
of a trailing wake, the response aerodynamic perturbation 
potential ( , , )x y zφ  and the web surface velocity causing it 
would have been in phase with one another. The presence of a 
trailing wake makes the response perturbation potential 

( , , )x y zφ  to lag the velocity of the web surface by some phase 
angle.   
    Tang et al. [14] have performed calculations for a 3D flow 
around a cantilevered plate using a time-stepping unsteady 
vortex-lattice method along with some reduced order modeling 
techniques. The difference between the fluid flow solution in 
the work of Tang et al. [14] and the current work is that the 
former is applicable to a more general class of problems 
including those with the non-linear aerodynamic effects. 
Essentially, unlike the fluid model in the current work, Tang et 
al. [14] do not make any restricting assumptions about the 
small amplitude motion of the fluid caused by a small 
amplitude web motion. The large amplitude motion of the fluid 
can capture the non-linear aerodynamics. An assumption that 
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the response perturbation potential follows the web motion 
harmonically is possible only for small amplitude web motions. 
Such an assumption allows the fluid flow solution by the 
frequency-domain methods which take smaller computational 
effort by orders of magnitude when compared to a time-
stepping vortex-lattice method [6]. 

Returning to the harmonic wake distribution, we now 
examine the effects of such a wake distribution on the pressure 
loading on the plate. In the work of Vaughan [17], the trailing 
wake was absent and the flow calculations corresponded to a 
zero circulation solution. The perturbation potential solution 

( , , )x y zφ was in phase with the web surface velocity. On 
substitution into the right-hand side of equation (7), this gave 
rise to an added mass pressure force, two gyroscopic pressure 
forces and one added stiffness force. These forces lead the web 
displacement by 1800, 90o and 0o respectively. With the 
additional trailing wake, the perturbation potential solution 

( , , )x y zφ would lag behind the web surface velocity which 
caused it. Due to this extra phase lag, the magnitudes of the 
added mass, gyroscopic and stiffness forces would change. 
Furthermore, the aerodynamic forces proportional to the web 
surface velocity, which were conservative gyroscopic in nature, 
become non-conservative. For a detailed discussion on how the 
magnitude and the phase of pressure forces change with the 
inclusion of a trailing harmonic wake, the reader is referred to 
the work of Von Kármán and Sears.[18]. 

EFFECTS OF THE WAKE AND THE P-K METHOD 
 
In a 3D potential flow calculation around a structure with a 

sharp edge, the presence of a trailing wake renders the fluid 
flow solution unique. But including a harmonically varying 
trailing wake makes the linear stability analysis even more 
involved. The natural frequencies, the mode shapes and the 
linear stability of the coupled fluid-structure system can only be 
ascertained if the pressures forces acting on the web can be 
calculated. For calculating the fluid pressure forces, one needs 
to solve the fluid flow problem. However, as is clear from the 
expression in equation (17), the fluid flow solution depends on 
the doublet strength distribution in the trailing wake and the 
ω involved there in is a priori not known. In other words, the 
matrices [ ] [ ] [ ] ,  and air air airM C K  (representing the 
aerodynamics in the form of the added mass, damping and 
stiffness forces), which will be used in calculating the natural 
frequencies ω  of the coupled system, themselves depend on 

.ω Such a system where the aerodynamic forces depend on as 
well as decide the value of ,ω  calls for the implementation of 
an iterative procedure, which starts with an initial guess for ,ω  
computes the aerodynamic forces and in turn uses them to 
better estimate the value of ω  until a converged answer is 
achieved.  

 Moreover, due to the inclusion of a trailing wake, the 
system becomes non-conservative, i.e. the 
[ ] [ ] [ ] ,  and air air airM C K  matrices in equation (15) become 
non-symmetric. Also, unlike a conservative gyroscopic system, 
the [ ]airC matrix has non-zero entries on the diagonal. Due to 
the non-conservative nature of the system, the motion of the 
web will in general be either decaying or growing in time. This 
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Dow
further aggravates the problem because if the motion of the web 
is decaying or growing, then the assumption of a harmonically 
varying wake (refer to equation (17)) and the aerodynamic 
pressures predicted by it might not be correct. Then, for 
calculating the frequencies and the associated rate of 
decay/growth for such a non-conservative system, we need to 
use the “p-k method” presented by Hassig [7]. 

 In the current work, the p-k method has been used. First, 
following the work of Theodorson [15], a reduced frequency 
k Vω= is defined. Then, assuming the web motion to be in the 
form of a particular basis function mnΨ , the fluid flow solution 
is computed over a range of values for the reduced 
frequency .k Notice that a change in the value of k changes the 
trailing wake influence and hence leads to a different fluid flow 
solution.  This procedure is repeated for all the basis functions 
used in the Galerkin expansion. Thus, over a range of the 
values of k Vω= , we have the solutions for the perturbation 
potentials arising due to the entire set of basis functions. 
Further, using the equations in the appendix, the aerodynamic 
matrices [ ] [ ] [ ] ,  and air air airM C K  are computed. At the end of 
this step, we would have the aerodynamic pressure forces 
[ ] [ ] [ ] ,  and air air airM C K  as a function of the reduced 
frequency k . Having computed the aerodynamic forces over a 
range of reduced frequencies, we need to use these to find the 
natural frequencies of the coupled system. The iterative 
procedure for doing the same is briefly described below. 

For a given base flow velocity ,V the iteration starts by 
guessing the value of ω  followed by a computation of the 
reduced frequency k Vω=  and the corresponding 
aerodynamic matrices.  Using these matrices in equation (15), 
we solve the determinant for the values ofω . The roots of the 
determinant are complex numbers with the real part 
representing the oscillation frequency and the imaginary part 
representing the rate of growth. At the end of first iteration, the 
frequencies of the system can be obtained 
as 1 R eal1 Im ag1jω ω ω= − . Neglecting the imaginary part, the 
aerodynamic matrices can be recalculated using the value 

R eal1ω  only to obtain a better approximation 

2 Real2 Imag2jω ω ω= − . During every such iteration, the 
imaginary part Imagω of the frequency, which represents the rate 
of growth, is neglected. Note that such an approach will only 
work if the value of Imagω is small compared to Realω . The 
argument behind using this method is that if Imag Realω ω<< , 
then the web motion is decaying or growing very slowly when 
compared to its oscillations. In that case, the aerodynamic loads 
based on a constant amplitude harmonic motion should be able 
to predict aerodynamics for slowly increasing or slowly 
decaying web motions [7]. 

COMPUTATIONAL ISSUES  
 

For the numerical results presented in this paper, a web 
aspect ratio 1κ = is chosen. The calculations were performed 
for a web with the following numerical values for the various 
constants:                            
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61.372 m , 25.4 x 10  m, 6.8 a b h E GPa−= = = =  
2 30.3 , 100 N/m , 40 g/m  and 1.225 kg/mxx fluidNμ ρ ρ= = = = . 

 
Also since the web motion is symmetric about the Y-axis, the 
fluid flow computations are performed for only one-half of the 
plate. Thus, there are 50 doublet panels along the positive X-
axis and 100 doublet panels along the Y-axis. In all there are 
5000 control points over one-half of the plate. At each of these 
control points the velocity of the web and the fluid are matched. 
A convergence study with respect to the number of required 
control points was performed and the results are shown in 
Figure 3. The results in Figure 3 demonstrate how the Galerkin 
projection of the added mass pressure force on the 1st and the 
6th basis function changes with the number of control points. 
Obviously, if one desires to use a large number of basis 
functions, then the basis functions corresponding to the higher 
frequencies would have rapidly changing spatial behavior. In 
that case, more control points are needed for capturing the 
spatial gradients of the higher basis functions. For the purpose 
of the present problem, a moderate number of basis functions 
were chosen. For the first 12 basis functions, a choice of 5000 
control points seems satisfactory. From Figure 3 it is clear that 
inclusion of a larger number of control points is not necessary 
and would increase the computational time by an order of 
magnitude to achieve a marginal gain in accuracy.  

Another important computational issue is about the number 
of wake panels used in the computation. Although theoretically, 
the wake extends downstream from the trailing edge of the 
plate till infinity, in a numerical scheme it needs to be 
terminated at a finite distance from the trialing edge. As a 
result, the wake panels are arranged starting from the trailing 
edge of the plate till a distance equal to 3 times the plate length. 
After this length, the wake is represented by straight lines 
parallel to the steady base flow. Care must also be exercised in 
deciding the wake panel density i.e. the number of wake panels 
present per unit wake length along the downstream direction. 
Considering the wake panel density is especially important for 
higher values of the reduced frequency k  because at these 
values of ,k the wake strength is changing rapidly.  

The convergence properties of the frequencies predicted by 
the Galerkin method are also studied and presented in Figure 4. 
The top portion of Figure 4 shows the convergence of the rate-
of-growth as the number of basis functions is changed. Note 
that these calculations were performed for the first mode for a 
cross-flow non-dimensional velocity of 0.03. Likewise, the 
lower portion of Figure 4 shows the convergence characteristics 
of the frequency of the first mode as more and more basis 
functions are added. 

Finally, before presenting numerical results corresponding 
to the stability of the coupled system, the results given by the 
doublet-lattice method need to be benchmarked. Towards this 
end, the added mass pressure force for a rigid plate oscillating 
in a stationary fluid was calculated. Meyerhoff [11] calculates 
the non-lifting potential around a rigid plate oscillating in a 
fluid by distributing point doublets of unknown strength on the 
plate. The added mass forces predicted by Meyerhoff and the 
ones given by the constant strength doublet-lattice method are 
in excellent agreement with one another. 
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NUMERICAL RESULTS AND ANALYSIS  
 
The numerical values for various constants are given in the 

previous section. Note that these values of tension and bending 
stiffness lead to an ε  value that is of the order of 810− . 
However, for such low values of ε , the basis functions with 
very high value of n  lose stability before those with lower 
nodal lines along the X-direction. From the point of view of 
convergence, in order to accurately predict the frequencies for 
such high modes, it would be required to use a very large 
number of basis functions. Instead, following the work of 
Vaughan [17], calculations were performed at an artificially 
high ε  value of 65 x 10− . 

In these calculations, the basis functions used correspond 
to the values of 0 and n=0,1,2,...,12.m = Using the p-k method 
described in the previous section, the frequencies of the 
coupled system as a function of non-dimensionalzed cross-flow 
velocity are found and shown in Figure 5. Note that the 
frequencies corresponding to the first five modes have been 
shown. The corresponding rates-of-growth are shown in Figure 
6. A remarkable feature of the frequency plots is the occurrence 
of the curve veering phenomenon. The veering effect can be 
verified by performing a convergence study (by including more 
and more basis functions) of the coupling factors between two 
veering modes in the neighborhood of suspected veering [12]. 

As the flow velocity is increased, the frequency of 
oscillation for all the modes decreases. An important feature of 
this coupled fluid-structure problem is its non-conservative 
nature. Even in the absence of structural damping, the system 
displays decaying motion when the base flow velocity is below 
the critical velocity. As a result, the rate-of growth plot is 
negative for all the modes. 

 Note that the natural frequencies of the web when 
0V = are known and the lowest five are shown in Figure 5. The 

corresponding rate-of-growth is zero, which indicates a 
conservative system. The natural frequencies of the web 
corresponding to the base velocity range of 0-0.02 have not 
been calculated. The reason for this is that for such low values 
of ,V the reduced frequency /k Vω= assumes very large 
values and the aerodynamic matrices corresponding to these 
values of k were not computed. In the section on p-k method, it 
was mentioned that the [ ] [ ] [ ] ,  and air air airM C K aerodynamic 
matrices were computed for all the basis functions over a range 
of the reduced frequency k . The range of values of k used was 
0-100. This choice of the range of reduced frequency was 
dictated purely by the computational time involved. It seems 
unnecessary to calculate aerodynamic loads for very high 
values of .k The rationale behind this is that doing so would 
only help in accurately predicting the natural frequencies at 
very low base velocities where the chances of flutter are small.  

 The rates-of-growth in Figure 6 are very close to one 
another. An enlarged version of the same plot is shown in the 
upper portion of Figure 6. It can be seen that till the non-
dimensional velocity of V=0.0471, all the modes have a 
negative rate-of-growth indicating a stable system. At the non-
dimensional velocity of V=0.0471 (this corresponds to an 
actual velocity of V=0.2453 m/s), the rate-of-growth of the 
second mode becomes positive, which indicates a flutter 
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instability. Following this, at velocities V=0.052 (V=0.2707 
m/s) and V=0.054 (V=0.2811 m/s), the third and the first mode 
lose stability respectively and start fluttering. Further at non-
dimensional velocity V=0.074 (V=0.3853 m/s), the first mode 
loses stability by divergence. When the divergence instability 
occurs, the rate-of-growth for the first mode splits into two 
different solutions as shown in Figure 6.  

A closer observation of Figure 5 and 6 reveals that mode 2, 
which starts fluttering first, does so when the frequencies of 
mode 2 and mode 3 come very close to one another. Also as 
seen in Figure 6, just when the rate-of-growth of mode 2 
crosses to the positive side, the rate-of-growth of mode 3 turns 
downwards and starts decreasing. It is unclear at this stage as to 
whether these frequencies would come even closer on inclusion 
of more basis functions in the Galerkin expansion. Such a study 
as to whether or not the two modes coalesce when more basis 
functions are included is beyond the scope of this article and 
remains as future work. 

At this stage, it is appropriate to reexamine the validity of 
the assumptions made while using the p-k method. For 
example, for the first mode, the frequency of oscillation at non-
dimensional velocity V=0.04 is 0.58256 rad/s and the 
corresponding rate of growth is -0.00289. This means that the 
rate at which the web motion is decaying is an order of 
magnitude less when compared to the oscillatory motion of the 
web. Since the web motion is decaying slowly, the assumptions 
made about the p-k method are valid. 

Another important observation that needs to be made is 
that about the effects of including the trailing wake in the 
model. The model used in the work of Vaughan [17] does not 
include the trailing wake and this results in a conservative 
gyroscopic system which first loses stability at non-dimensional 
velocity V=0.0689 by divergence. At higher velocities, flutter 
instabilities are found to occur through the phenomenon of 
mode coalescence. However, inclusion of the trailing wake 
makes the system non-conservative. Furthermore, the flutter 
instability is seen to occur first at a lower non-dimensional 
velocity of V=0.0471 even before the divergence instability 
happens.  

The web starts fluttering at the critical velocity of 
V=0.0471. Shown in Figure 7 are nine different instants of the 
motion of the web (V=0.0471) as it completes one cycle of 
oscillation. Figure 8 shows the shape of the web (along the line 

0x = ) for nine different instants as it completes one cycle of 
oscillation. It can be seen that compared to the trailing edge, the 
amplitude of motion of the leading edge is almost twice as large 
as the trailing edge. Furthermore, the large amplitude motion of 
the leading edge travels downstream like a wave though the 
web structure.  

FUTURE WORK AND CONCLUSION  
 
In this work, the linear stability of a stationary web 

coupled to base air flow in the cross-machine direction was 
investigated. The analysis revealed some interesting dynamical 
characteristics such as occurrence of flutter instability before 
the divergence instability. This work shows that the flutter 
mode of these webs is characterized by significant motion of 
the leading edge. This work demonstrated that including a wake 
emanating from the trailing edge of the plate makes the system 
non-conservative. 
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Down
 One of the immediate goals for this problem is to perform 
a rigorous convergence analysis with regards to the number of 
basis functions used. Such a convergence study would help in 
resolving the veering phenomenon along with answers to 
questions such as: whether the modes coalesce before fluttering 
etc. It should be noted that the current work does not include a 
wake vortex sheet emanating from the leading edge of the plate. 
As a result, the fluid flow solution is singular at the leading 
edge. An important problem is to study the effect of a vortex 
wake sheet emanating from the leading edge of the plate. After 
this the linear stability problem can be analyzed for different 
aspect ratios and different values of the numberε . Another 
long-term goal of this research is to investigate the post-flutter 
dynamics of this system by using non-linear structural 
equations with suitable non-linear behavior included in the 
fluid flow model as well. The doublet-lattice method used in 
this work would then be modified to a panel method that can 
capture the non-linear fluid-structure interaction. Towards that 
end, the tools developed in the current work certainly hold a 
promise for solving the non-linear fluid-structure interaction 
problem.  
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Figure 1 A Schematic for the uni-axially tensioned 
stationary web coupled to cross-machine base flow   
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igure 2 A schematic representation of the 
 doublet-lattice method showing the 

 arrangement of doublet panels on the 
 plate and in the wake  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

Figure 3 Convergence of the Pressure Force 
 as the Control Points in the Doublet-Lattice 

 method are increased. 
 
 
 
 

10 Copyright © 2005 by ASME 

 
 
 
 

 
 
 
 

https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

 
 
 
 

 
 
 
 

Downloaded 
 
 
 
 

 
 
 
 
 
 

     
 

Figure 4 Convergence of the Frequency and 
 the Rate of Growth as the number of 

 Basis Functions is increased. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
         Figure 5 Variation of the natural frequencies 
             of  the first five modes with change in the 
                                 base flow velocity. 

 
 
 
 
 

 
 

Figure 6 Variation of the rate of growth of the 
 first five modes with the change in the 

 base flow velocity. 
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(a) 2 / 9t π ω=  
 
 
 
 
 

 
 

(b) 4 / 9t π ω=  
 
 
 
 

 
 

(c) 2 / 3t π ω=  
 

 
 
 
 

 
 

(d) 8 / 9t π ω=  
 
 
 
 
 

 
 

(e) 10 / 9t π ω=  
 
 
 
 

 

 
 

(f) 4 / 3t π ω=  
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(g) 14 / 9t π ω=  
 
 
 
 

 
 

(h) 16 / 9t π ω=  
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Figure 7 The shape of the web at nine different 
instants during one cycle of oscillation at the onset of 

flutter. 

 
 
 
 

 
 

Figure 8 The shape of the web along the line x=0 for 
nine different instants during one cycle of oscillation 

at the onset of flutter.  
 

APPENDIX 
 
The definitions of the various matrices in equation (15) are 

as follows: 
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