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Effective field theory for proton halo nuclei

Emil Ryberg,1 Christian Forssén,1 H.-W. Hammer,2,3,4 and Lucas Platter1,5,*

1Department of Fundamental Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
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We use halo effective field theory to analyze the universal features of proton halo nuclei bound due to a
large S-wave scattering length. Our work provides a fully field-theoretical treatment of bound halo nuclei in the
presence of a repulsive Coulomb interaction. With a Lagrangian built from effective core and valence-proton
fields, we derive a leading-order expression for the charge form factor. Within the same framework we also
calculate the radiative proton capture cross section. We present general results at leading order that can be applied
to any one-proton halo system bound in a relative S wave. We illustrate the method by studying the excited 1/2+

state of fluorine 17, for which we give results for the charge radius and the astrophysical S factor.
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I. INTRODUCTION

Exotic isotopes along the neutron and proton drip lines are
important for our understanding of the formation of elements
and they constitute tests of our understanding of nuclear
structure. The proton- and neutron-rich regimes in the chart
of nuclei are therefore the focus of existing and forthcoming
experimental facilities around the world [1]. The emergence
of new degrees of freedom is one important feature of these
systems, exemplified, e.g., by the discovery of several nuclear
halo states along the drip lines [2–4]. Halo states in nuclei are
characterized by a tightly bound core with weakly attached
valence nucleon(s). Universal structures of such states can
be considered a consequence of quantum tunneling, where
tightly bound clusters of nucleons behave coherently at low
energies and the dynamics is dominated by relative motion
at distances beyond the region of the short-range interaction.
In the absence of the Coulomb interaction, it is known that
halo nuclei bound due to a large positive S-wave scattering
length will show universal features [5,6]. In the case of proton
halo nuclei, however, the Coulomb interaction introduces an
additional momentum scale kC, which is proportional to the
charge of the core and the reduced mass of the halo system.
The low-energy properties of proton halos strongly depend
on kC.

Halo effective field theory (EFT) is the ideal tool to
analyze the features of halo states with a minimal set of
assumptions. It describes these systems using their effective
degrees of freedom, i.e., core and valence nucleons, and
interactions that are dictated by low-energy constants [7,8]. For
S-wave proton halo systems there will be a single unknown
coupling constant at leading order (LO), and this parameter
can be determined from the experimental scattering length,
or the one-proton separation energy. Obviously, halo EFT
is not intended to compete with ab initio calculations that,
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if applicable, would aim to predict low-energy observables
from computations starting with a microscopic description of
the many-body system. Instead, halo EFT is complementary
to such approaches as it provides a low-energy description
of these systems in terms of effective degrees of freedom.
This reduces the complexity of the problem significantly.
By construction, it can also aid to elucidate the relationship
between different low-energy observables.

Furthermore, halo EFT is built on fields for clusters,
which makes it related to phenomenological few-body cluster
models [3]. The latter have often been used successfully for
confrontation with data for specific processes involving halo
nuclei. A relevant example in the current context is the study
of proton radiative capture into low-lying states states of
17F [9]. A general discussion of electromagnetic reactions of
proton halos in a cluster approach was given in Ref. [10]. The
emphasis of an EFT, however, is the systematic expansion of
the most general interactions and, as a consequence, the ability
to estimate errors and to improve predictions order by order.
The possibility to determine higher-order parameters in the
EFT is crucial to be competitive with traditional approaches
in terms of precision. A promising strategy is to combine halo
EFT with microscopic ab initio approaches. Certain quantities
that are computed in the latter can be used directly to fix EFT
parameters. In particular, low-energy scattering observables
and asymptotic normalization coefficients can be computed
microscopically [11–13], and there are a couple of recent
examples of how such results are employed as input for EFT
calculations [14,15]. The structure and reactions of one- and
two-neutron halos have been studied in halo EFT over the past
years (see, e.g., Refs. [16–22]). However, concerning charged
systems, only unbound states such as αα [23] and αp [24] have
been treated in halo EFT.

In this work, we apply halo EFT for the first time to one-
proton halo nuclei. We use a fully field-theoretical approach
based on the irreducible self-energy. A distinct advantage
of this approach for bound-state calculations is that the
calculation of the self-energy at the bound-state pole allows a
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direct determination of the wave function renormalization. We
restrict ourselves to LO calculations of systems that are bound
due to a large S-wave scattering length between the core and
the proton. Observables are calculated with a minimal set of
assumptions, and we are able to derive universal formulas that
describe (to a certain accuracy) any S-wave, one-proton halo
system as function of the charge of the core, the mass ratio, and
the proton separation energy. However, for applications where
the expansion parameter is not very small, high-precision
calculations will require the inclusion of higher orders in the
EFT expansion.

The manuscript is organized as follows: In Sec. II, we
introduce the halo EFT and discuss how Coulomb interactions
are treated within this framework. In the following section,
we present our results and calculate, in particular, the charge
form factor and charge radius at LO. Furthermore, we derive
expressions for the radiative capture cross section. We apply
our general formulas to the excited 1/2+ state of 17F and
compare our numerical results with existing data for this
system. The expansion parameter of our EFT is estimated
based on the separation of scales for typical energies involved.
We conclude with an outlook and a discussion on the
importance of higher-order corrections.

II. THEORY

In halo EFT, the core and the valence nucleons are taken as
the degrees of freedom. For a one-proton halo system, with a
spin-zero core, the Lagrangian is given by

L =
∑
k=0,1

ψ
†
k

(
iD0 + D2

2mk

)
ψk − C0ψ

†
0ψ

†
1ψ1ψ0 + · · · . (1)

Here ψ0 denotes the proton field with mass m0, ψ1 denotes
the core field with mass m1, C0 denotes the LO coupling
constant, and the dots denote derivative operators that facilitate
the calculation of higher-order corrections. The covariant
derivative is defined as Dμ := ∂μ + ieQ̂Aμ, where Q̂ is the
charge operator. The resulting one-particle propagator is
given by

iSk(p0,p) = i

[
p0 − p2

2mk

+ iε

]−1

. (2)

For convenience, we also define the proton-core two-particle
propagator

iStot(p0,p) = i

[
p0 − p2

2mR
+ iε

]−1

, (3)

where mR denotes the reduced mass of the proton-core system.
We include the Coulomb interaction through the full Coulomb
Green’s function

〈k|GC(E)|p〉 = −Stot(E,k)χ (k,p; E)Stot(E,p), (4)

where χ is the Coulomb four-point function defined re-
cursively in Fig. 1. To distinguish coordinate-space from
momentum-space states, we denote the former with round
brackets, i.e., (r|. In coordinate space, the Coulomb Green’s

= +

FIG. 1. The integral equation for the four-point function
χ (k1,k2). The dashed line denotes a core propagator, the solid line
denotes a proton propagator, and the wavy line denotes the exchange
of a Coulomb photon.

function can be expressed via its spectral representation

(r|GC(E)|r′) =
∫

d3p

(2π )3

ψp(r)ψ∗
p (r′)

E − p2/(2mR) + iε
, (5)

where we define the Coulomb wave function through its partial
wave expansion

ψp(r) =
∞∑
l=0

(2l + 1)il exp (iσl)
Fl(η,ρ)

ρ
Pl(p̂ · r̂). (6)

Here we have defined ρ = pr and η = kC/p, with the
Coulomb momentum kC = ZcαmR, and also the pure
Coulomb phase shift σl = arg �(l + 1 + iη). For the Coulomb
functions Fl and Gl , we use the conventions of Ref. [25]. The
regular Coulomb function Fl can be expressed in terms of the
Whittaker M function according to

Fl(η,ρ) = Al(η)Miη,l+1/2(2iρ), (7)

with the Al defined as

Al(η) = |�(l + 1 + iη)| exp [−πη/2 − i(l + 1)π/2]

2(2l + 1)!
. (8)

We also need the irregular Coulomb wave function, Gl , which
is given by

Gl(η,ρ) = iFl(η,ρ) + Bl(η)Wiη,l+1/2(2iρ), (9)

where W is the Whittaker W function and the coefficient Bl is
defined as

Bl(η) = exp (πη/2 + ilπ/2)

arg �(l + 1 + iη)
. (10)

To obtain the fully dressed two-particle propagator, that
includes strong and Coulomb interactions, we calculate the
irreducible self-energy shown in Fig. 2:

i�(E) = −i

∫
d3k1d

3k2

(2π )6
Stot(E,k1)χ (k1,k2)Stot(E,k2)

= i(0|GC(E)|0). (11)

FIG. 2. The irreducible self energy at LO. The solid (dashed) line
denotes the proton (core) propagator. The shaded blob denotes the
Coulomb Green’s function.
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The expression above is known and is given by

(0|GC(E)|0) = −2mR

∫
d3q

(2π )3

ψq(0)ψ∗
q (0)

q2 − 2mRE − iε
. (12)

This integral was solved in Ref. [26], using dimensional
regularization in the power divergence subtraction (PDS)
scheme, as

�(E) = −kCmR

π
H (η) + �div, (13)

with a divergent part �div

�div = kCmR

π

[
1

3 − d
+ log

(√
πμ

2kC

)
+ 1 − 3CE

2

]
− mRμ

2π
,

(14)

where d is the space dimension, CE is the Euler constant, and
μ is the PDS regulator. The function H is defined as

H (η) = ψ(iη) + 1

2iη
− log (iη), (15)

with ψ being the polygamma function. Note that the divergent
part in Eq. (14) is energy independent. This will become
important later when the derivative of �, with respect to the
energy, will be required.

The coupling constant C0 can be determined by matching to
a two-body observable, such as the Coulomb corrected proton-
core scattering length [26]:

1

aC
= 2π

mR

(
1

C0
− �div

)
. (16)

Since we stay at LO, however, an explicit expression for C0

will not be required for the calculation of electromagnetic
observables in the next section.

III. RESULTS

A. Charge form factor

In our calculation of the charge form factor, we follow the
derivation of the deuteron form factor presented in Ref. [27].
The form factor is obtained by calculating the matrix element

〈p′|J 0
EM|p〉 = e(Zc + 1)FC(Q2), (17)

for momentum transfer Q = p′ − p in the Breit frame, where
no energy is transferred by the photon. It was shown in
Ref. [27] that this matrix element can be expressed as [28]

〈p′|J 0
EM|p〉 = �0(Q)

�′(−B)
, (18)

where �0 denotes the irreducible three-point function shown
in Fig. 3, and �′(−B) is the derivative of the self energy with
respect to the total energy evaluated at the energy E = −B,
where B is the proton separation energy or core-proton binding
energy.

With the proton-core mass ratio f = m0/m1, the three-
point function �0 is given by

�0(Q) = −eZc

∫
d3r exp (if Q · r)|(0|GC(−B)|r)|2

+ [(f → 1 − f ),(Zc → 1)], (19)

+

FIG. 3. The irreducible three-point function �0.

and the derivative of the self-energy can be written as

�′(−B) = −
∫

d3q

(2π )3

ψq(0)ψ∗
q (0)

[B + q2/(2mR)]2
. (20)

Evaluating �0 at zero momentum transfer, by using Eq. (5)
and orthonormality of the wave functions, and comparing it
with Eq. (20) shows that the charge form factor is properly
normalized to one in this limit.

We find that Eq. (19) can be simplified by writing the
Coulomb Green’s function for negative energy using the
Whittaker W function. This is achieved by demanding proper
asymptotics and using that only the S-wave part can contribute
to propagation to zero separation, that is,

(0|GC(−B)|r)

= lim
ρ ′→0

(
− i

mRγ0

2π

F0(η,ρ ′)[iF0(η,ρ) + G0(η,ρ)]

ρ ′ρ

)

= i
mR�(1 + kC/γ0)

2π

W−kC/γ0,1/2(2γ0r)

r
, (21)

where we have introduced the binding momentum γ0 =√
2mRB. The resulting integral is then

�0(Q) = −em2
R�(1 + kC/γ0)2

π

∫
drW−kC/γ0,1/2(2γ0r)2

×{Zcj0(f Qr) + j0[(1 − f )Qr]}, (22)

where jl are the spherical Bessel functions. Once the parame-
ters of the proton halo system are fixed, the equation

FC(Q2) = �0(Q)

e(Zc + 1)�′(−B)
(23)

is used to calculate the charge form factor and the corre-
sponding charge radius numerically. We have calculated these
quantities for the excited 1/2+ state of 17F, which has a proton
separation energy of B = 104.94(35) keV [29]. Note that the
proton separation energy is the only nontrivial experimental
input at LO.

The charge form factor is related to the charge radius via
the expansion

FC(Q2) = 1 −
〈
r2

C

〉
rel

6
Q2 + · · · , (24)

and we find for the charge radius squared〈
r2

C

〉
rel = (0.59 fm)2. (25)

Since the proton and core are treated as structureless fields
in halo EFT, this quantity corresponds to the charge radius
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RYBERG, FORSSÉN, HAMMER, AND PLATTER PHYSICAL REVIEW C 89, 014325 (2014)

+

FIG. 4. The radiative proton capture diagrams.

difference according to

〈
r2

C

〉
17F∗ = Zc

Zc + 1

〈
r2

C

〉
16O + 1

Zc + 1

〈
r2

C

〉
p + 〈

r2
C

〉
rel, (26)

where 〈r2
C〉X is the charge radius squared corresponding to

the particle X = 17F∗, 16O, p. Analog to the deuteron case,
the charge radii of proton and 16O enter at higher orders in
the calculation via counterterms.

The error of the EFT can be estimated by comparing the
momentum scale klo ∼ γ0 of the halo with the breakdown
scale khi of the EFT. The latter is given by the closest
interfering state. For the 17F halo system the breakdown
scale is given by the bound state, E0 = 495.33(10) keV
below the 1/2+ state [29]. Thus, the expected LO error
is γ0/

√
2mRE0 ≈ 50% for the halo state in 17F∗, which is

comparable to the LO error of a pionless EFT calculation
for the two-nucleon system. Higher orders in the EFT are
required, however, for high-precision calculations. Performing
a next-to-leading-order (NLO) calculation is beyond the scope
of this paper but will be the topic of future work.

B. Radiative capture

Our approach can easily be applied to low-energy radiative
capture. The differential cross section for this reaction is

dσ

d�
= mRω

8π2p

2∑
i=1

∣∣∣∣εi · A√
�′(−B)

∣∣∣∣
2

, (27)

where A is the vector amplitude for the sum of the diagrams
shown in Fig. 4, where a proton is captured by a core
while a real photon is emitted. The relative momentum of
the proton-core system is p and the four-momentum of the
photon is (ω,ωẑ), with associated polarization vectors ε1 = x̂
and ε2 = ŷ. The factor 1/

√
�′(−B) is the wave function

renormalization, or LSZ reduction factor.
The vector amplitude A can be expressed as the integral

A = eZcf

mR

∫
d3r[(0|GC(−B)|r) exp (−if ωr cos θ )

×(∇ψp(r))] + [(f → 1 − f ),(Zc → 1)], (28)

where the ∇ has emerged from the Feynman rule of the vector
photon coupling and acts on the Coulomb wave function due
to a partial integration. By evaluating the angular integrals
and multiplying with the polarization vector, the integral is

0 500 1000 1500 2000
Ec.m.[keV]
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8

S
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Morlock et al.
Chow et al.
HEFT (LO)
Bennaceur et al.

FIG. 5. (Color online) The LO halo EFT result for the astrophys-
ical S factor for 16O(p,γ )17F∗(1/2+) is presented by the solid black
line. The theoretical result is compared with the data by Chow et al.
[30] and Morlock et al. [31,32] shown by blue (gray) triangles and
green (gray) dots, respectively. The calculation by Bennaceur et al.
[33] is shown by the dashed curve.

simplified to

2∑
i=1

|εi · A|2 =
∣∣∣∣ − i sin θ (cos φ + sin φ)

4πeZcf exp (iσ1)

mRp

×
∫

dr(0|GC(−B)|r)j0(f ωr)

× ∂

∂r
[rF1(kC/p,pr)]

+ [(f → 1 − f ),(Zc → 1)]

∣∣∣∣
2

, (29)

where the angles θ and φ will be integrated over to give the
total cross section. For a given physical system, we can solve
the integral in Eq. (29) numerically using Eq. (21) for the
Coulomb Green’s function.

Radiative capture into low-lying states of 17F has been
measured by Rolfs et al. [9], Chow et al. [30], and Morlock
et al. [31,32]. In Fig. 5 we show the astrophysical S factor,
defined as

S(E) = E exp (2πη)σtot. (30)

The figure shows the halo EFT results of our LO calculation
compared to experimental data for capture into the 1/2+
excited state and a phenomenological calculation using the
shell model embedded in the continuum. At threshold, we
find that S(0) ≈ 7 keVb. Our LO results are slightly low but
consistent with the experimental data, within the expected 50%
error. To improve the precision in higher-order calculations,
the corresponding low-energy constants must be determined.
Ideally this can be done from other experiments. In the case of
the S factor for 16O(p,γ )17F∗(1/2+), there will be contribution
from the effective range in elastic 16O-p scattering at NLO.
At higher orders the shape parameter and electromagnetic
low-energy constants will contribute as well. The effective-
range parameters in elastic 16O-p scattering can in principle
be determined by fitting an appropriate EFT expression to
a phase-shift analysis such as in Ref. [34]. The EFT might
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have to include the 17F ground state explicitly in order to be
applicable at energies of order 2 MeV. One can also imagine
that new experimental data should become available from,
e.g., ion storage rings [35]. The use of stripped ion beams
in combination with windowless gas-jet targets could offer an
opportunity to extract high-quality, low-energy scattering data.
Alternatively, the effective range could be determined from
an experimental extraction of the asymptotic normalization
constant of the 17F∗(1/2+) excited state. (See, e.g., Ref. [36]
for an extraction from transfer reactions.) Electromagnetic
two-body currents, which will contribute at higher orders, may
be determined from the inverse reaction and from ab initio
input. A detailed analysis of higher order contributions is left
for a future publication. However, we anticipate that the NLO
correction will increase the radiative capture cross section
through the appearance of a finite effective range at this order.
It can also be noted that the results agree qualitatively with the
predictions obtained in the shell model embedded in the con-
tinuum [33]. While the shell-model approach is clearly more
sophisticated, our approach starts from a very different outset.
Observables are calculated with a minimal set of assumptions
and the LO result represents a prediction based on universality.

IV. CONCLUSIONS

In this work, we have shown that Coulomb effects can be
included in halo EFT and that thereby static and dynamical
observables of proton halo nuclei become accessible. We have
calculated the charge radius and the radiative proton capture
cross section of S-wave proton halo nuclei at LO in halo EFT.
Our results can be applied to any one-proton halo system whose
interaction is dominated by S waves. In particular, the excited
1/2+ state in 17F is known to have a large S-wave component.
We have calculated the charge radius for this system. While
this observable is not yet experimentally accessible, this result
provides a prediction for ab initio calculations using modern
nucleon-nucleon interactions.

In addition, we have compared our results for radiative
capture into the excited 1/2+ state of 17F with experimental
data and found good agreement within the expected error. Fur-
thermore, we found that halo EFT gives the same qualitative
behavior for this observable as previous calculations that have
employed phenomenological models.

For a quantitative description of the experimental data,
higher order corrections are required. In a future publication,
we will address how these corrections are included within
halo EFT in the presence of Coulomb interactions. The size
of these contributions will strongly be affected by the relative
size of the effective range and the Coulomb momentum kC,
which provides an additional scale in systems with Coulomb
interactions. Our calculation is also a first step towards a
calculation of properties of 8B within halo EFT. This system
requires the inclusion of two low-energy constants at LO since
it interacts dominantly in the P wave [7].

Finally, our approach might prove useful for heavier
systems whose static observables can be calculated using ab
initio approaches but for which continuum properties are not
accessible within the same framework due to the computa-
tional complexity. In this scenario, ab initio predictions of,
e.g., the one-proton separation energy could be used to fix the
halo EFT parameters, which in turn could be used to predict
continuum observables such as the radiative capture cross
section. In the case of neutron halos, such an approach was
recently carried out to predict novel features in the Calcium
isotope chain using halo EFT [14]. More recently, asymptotic
normalization coefficients from variational Monte Carlo have
been used to fix the LO parameters of an EFT calculation
of radiative 7Li neutron capture [15]. Continued work along
these lines is expected as higher order EFT calculations
become available and demand the determination of additional
low-energy parameters.
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