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Does population ecology have general laws?
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There is a widespread opinion among ecologists that ecology lacks general laws. In
this paper I argue that this opinion is mistaken. Taking the case of population
dynamics, I point out that there are several very general law-like propositions that
provide the theoretical basis for most population dynamics models that were devel-
oped to address specific issues. Some of these foundational principles, like the law of
exponential growth, are logically very similar to certain laws of physics (Newton’s
law of inertia, for example, is almost a direct analogue of exponential growth). I
discuss two other principles (population self-limitation and resource-consumer oscil-
lations), as well as the more elementary postulates that underlie them. None of the
‘‘laws’’ that I propose for population ecology are new. Collectively ecologists have
been using these general principles in guiding development of their models and
experiments since the days of Lotka, Volterra, and Gause.

P. Turchin, Dept of Ecology and E�olutionary Biology, Uni�. of Connecticut, Storrs,
CT 06269-3043, USA (peter.turchin@uconn.edu).

Like many scientists who are not physicists, ecologists
have been unable to resist unfavorable comparisons
between their science and physics. Some argue that
ecologists do not think like physicists, and that is why
there is little progress in ecology (Murray 1992). Others
reply that biologists should not think like physicists
because of the nature of biological science (Quenette
and Gerard 1993, Aarssen 1997). On both sides of the
debate, there is a widespread belief that ecology is
different from physics because (1) it lacks general laws,
and (2) it is not a predictive (and, therefore, not a
‘‘hard’’) science. For example, Cherrett (1988) com-
mented that ‘‘there is unease that we still do not have
an equivalent to the Newtonian Laws of Physics, or
even a generally accepted classificatory framework’’ (see
Kingsland 1995: 222–223 for a commentary). ‘‘Parts of
science, areas of physics in particular, have deep univer-
sal laws, and ecology is deeply envious because it does
not’’ (Lawton 1999). Even eminent theoretical ecolo-
gists appear to subscribe to this view: ecology, appar-
ently, is different from physics because one of its
distinguishing features is the near absence of universal
facts and theories (Roughgarden 1998: xi). As to ecolo-
gy’s ability to generate testable theories, Aarssen (1997:

177) thinks that ‘‘On this scale, ecology admittedly has
a weak record’’ (see also Weiner 1995). ‘‘Ecology was
not and is not a predictive science’’ (McIntosh 1985).

Much can be said to counter these arguments. First,
physics is not a monolithic science. In certain highly
respectable subfields, like astrophysics, it is not possible
to test theoretical predictions with manipulative experi-
ments. Does it mean that there is no progress in astro-
physics? No, because astrophysicists can still make
predictions about yet unobserved phenomena. A true
experiment can be conducted without actively messing
with nature. Second, it is a gross exaggeration to claim
that physics is a predictive science in all its aspects.
Physicists assure us, on one hand, that they have a
complete understanding of the laws of fluid dynamics
that govern atmospheric movements. On the other
hand, neither they nor anybody else can accurately
predict weather more than 5–7 days in advance. I could
go on, but I do not think that trying to counter each
charge of the critics is what is needed. A more produc-
tive approach is to simply do ecology and eventually
show that it is a vigorous, theoretical, and, yes, predic-
tive science. In fact, we may not need to wait very long
to demonstrate this, because, in my opinion, at least the
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population dynamics branch of ecology is on the verge
of a major synthesis (Turchin unpubl.).

Furthermore, I think that population ecology has
general laws resembling laws characterizing certain
fields of physics (e.g., classical mechanics, or thermody-
namics). In particular, population dynamics appears to
have a set of foundational principles which are very
similar, in spirit and in logic, to Newton’s laws
(Ginzburg 1972, 1986). In the rest of this paper, I will
sketch out what I think these foundational principles
are, and discuss the similarities between the logical
foundations of population dynamics and Newtonian
mechanics. I should warn you right away, however, not
to expect any deep and novel insights. My main argu-
ment will essentially be that we had, and used these
principles all along (at least since the 1920s), but simply
did not call them ‘‘laws’’.

Exponential growth – the first law of
population dynamics

Practically all ecological textbooks start exposition of
population ecology with the exponential law of popula-
tion growth (Malthus 1798). There is a reasonable
consensus among ecologists that the exponential law is
a good candidate for the first principle of population
dynamics (e.g., Ginzburg 1986, Brown 1997, Berryman
1999). My formulation of this principle is as follows: ‘‘a
population will grow (or decline) exponentially as long
as the environment experienced by all individuals in the
population remains constant’’. Environment here refers
to all environmental influences affecting vital rates of
individuals, including abiotic factors, the degree of
intraspecific crowding, and density of all species in the
community that could interact with the focal species.

Most elementary textbooks give the derivation of the
exponential law for the case when all individuals in the
population are absolutely identical (in particular, there
is no age, sex, size, or genetic structure) and reproduce
continuously. We start by writing the law of conserva-
tion (the number of individuals can only change as a
result of birth, death, emigration, and immigration),
and then change to per capita rates:

dN

dt
=B−D=bN−dN= (b−d)N=rN (1)

where B and D are the total birth and death rates, b
and d are the per capita rates, N is the total number of
individuals in the population, and r is the per capita
rate of population change. There are no immigration/
emigration terms because I assumed that the popula-
tion is closed. This elementary derivation readily
generalizes to more realistic settings:

� For semelparous organisms (such as annual grasses
or insects) we obtain the discrete form of the expo-
nential law: Nt+1=�Nt

� Adding age or stage structure is also relatively
straightforward. However, we now have to wait for
the population to achieve a stable age distribution,
after which all age classes (as well as total number of
individuals) begin to grow according to the exponen-
tial law.

� The general pattern of growth is still exponential
when we consider finite populations and add demo-
graphic stochasticity. For example, Bartlett (1966)
shows that the expected population size in a stochas-
tic birth process is the same as in the deterministic
model.

� The environment does not have to be constant. If the
environment varies in such a way that the per capita
rates b and d have stationary probability distribu-
tions, then we obtain a model of stochastic exponen-
tial growth/decline (Maynard Smith 1974: 14–15).
The expected population density is again described
by the exponential equation (but see e.g. Lande 1998
for a caveat).

� Finally, adding space and diffusive movements leads
to a simple partial differential equation model, ana-
lyzed by Fisher (1937) and Skellam (1951). In this
model, the total number of individuals continues to
grow exponentially, even as they diffuse out from the
initial center.

In short, as long as the environmental influences do not
change in a systematic manner, we end up with one or
another version of the exponential law. In fact, we can
formulate it even more generally by substituting ‘‘con-
stant environment’’ with ‘‘stationary environment’’ (en-
vironmental influences on vital rates fluctuate with a
constant mean and variance) in the definition given
above. The exponential law is a very robust statement.

But is it a law? Let us compare it to something about
which there is no argument that it is a law – Newton’s
First Law, or the law of inertia. The similarity between
the exponential law and the law of inertia is striking.
First, both statements specify the state of the system in
the absence of any ‘‘influences’’ acting on it. The law of
inertia says how a body will move in the absence of
forces exerted on it; exponential law specifies how a
population will grow/decline in the absence of system-
atic changes in the environmental factors influencing
reproduction and mortality.

Second, the action of both laws in real life is ob-
scured by complexities characterizing real-life motions
of bodies, or population fluctuations. As a result, nei-
ther statement can be subjected to a direct empirical
test. Just as we cannot observe a body on which no
forces are acting, we cannot observe a population grow-
ing exponentially (at least, not for long), because we
cannot indefinitely keep its environment stationary. In-
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evitably, as a result of population growth, individuals
will eventually experience higher degree of crowding,
start running out of food, and suffer greater predation
or begin succumbing to epidemics. Thus, both laws
have to be arrived at by speculative thinking, and only
their consequences can be empirically tested. This point
is forcefully made by Murray (1992: 594) in his discus-
sion of Newton’s laws, although Murray does not
appear to agree with the proposal that the exponential
law is the equivalent of the law of inertia (see Murray
2000).

Third, both statements are in some sense self-evident
(at least, in retrospect!), so there is a suspicion that they
are trivial, or tautological in some sense. However, we
can imagine an alternate universe in which different
versions of first laws of population dynamics or classi-
cal mechanics would hold. The alternative to the law of
inertia is Aristotle’s concept that bodies come to a rest
in the absence of forces, discussed by Murray (1992:
594). In fact, in the pre-Gallileo and Newton’s days,
Aristotle’s ‘‘First Law’’ was widely believed. Similarly,
recollect that the exponential law is based on the notion
that organisms can come only from other organisms
(this principle underlies the law of conservation to
which I alluded to above). Interestingly, it so happens
that as late as in the 19th century many scientists
believed that life could spontaneously generate from
nonliving matter. During the Middle Ages it was
thought that dirty laundry and refuse bred mice and
flies, and that frogs fell from the skies with rain. It took
Louis Pasteur and his famous experiments to finally lay
that theory to rest.

Note that if spontaneous generation were possible,
then population dynamics theory would be completely
different (just as classical dynamics based on Aristotle’s
First Law would be a completely different science). In
particular, the equivalent of Eq. (1) would be

dN

dt
=S+B−D=S+bN−dN=S+rN (2)

All notation is as in Eq. (1) except S, which is a
constant rate at which organisms spontaneously gener-
ate themselves. Note that there is no per capita equiva-
lent to S because, unlike in the case of birth and death
processes, per capita spontaneous generation rate does
not make sense. By definition, spontaneous generation
depends on the properties of the environment (e.g., on
how dirty the laundry is), rather than on the number or
density of organisms.

For N near 0, Eq. (2) can be approximated as

dN

dt
�S which solves to: N(t)=N(0)+St (3)

In other words, when population density is small, pop-
ulation will grow linearly with time. In contrast, popu-

lation growing according to the exponential law
exhibits a nonlinear, accelerating pattern of growth.
Actually, Eq. (2) is not quite as ridiculous as it sounds.
It can be used to model population dynamics in a sink
habitat, dominated by immigration from some source
habitat (S, then, would represent a constant flow of
immigrants). Incidentally, if the biological universe was
based on the law of spontaneous generation, then we
would have many fewer examples of population oscilla-
tions (see Turchin unpubl.).

The fourth way in which the two ‘‘First Laws’’ are
similar is that they provide the basis for building pre-
dictive theories for population dynamics and for classi-
cal mechanics, respectively. Just as Newton was able to
predict how far an apple would fall by using the law of
inertia (plus several other laws, to be sure), population
ecologists use the exponential law as the basis for
modeling populations. This can be seen by rewriting
Eq. (1) by dividing both sides by N, and making the per
capita rate of population change, r, a function of ‘‘all
sorts of things’’ that may affect the population change:

r�
dN

N dt
= f(…) (4)

Practically all population dynamics models have this
form (or an equivalent if we use some other mathemat-
ical framework than ordinary differential equations). In
fact, the exponential law is most profitably thought of
as the null state in which any population would be if no
forces (=environmental changes) were acting on it. It
is a direct equivalent of the law of inertia, and is used
in the same way, as a starting point to which all kinds
of complications are added. Thus, the starting point in
the analysis of time-series data is the discrete version of
(4):

rt� ln
Nt

Nt−1

= f(Nt−1, Xt−1, Yt−1, Zt−1, …) (5)

where rt is the realized per capita rate of change and Nt

is the density at time t. Xt, Yt etc. are various environ-
mental factors that affect growth of the target popula-
tion (other species, climatic factors, and so on). If we
have data on how these factors change, we can investi-
gate their effect by regression methods. If we only have
data on Nt, then we can employ Takens theorem
(Schaffer 1985), and represent the action of unknown
interacting species with lagged population densities:

rt= ln
Nt

Nt−1

= f(Nt−1, Nt−2, … , �t) (6)

where �t represents the action of exogenous (non-inter-
active) variables (Royama 1981, 1992, Turchin 1990,
Turchin and Taylor 1992, Berryman 1999).
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Population self-limitation

One cannot predict the motion of planets with just the
law of inertia. Similarly, we need more principles in
addition to the exponential law to predict population
dynamics, so that we can eventually subject the com-
plete framework to empirical tests. The second founda-
tional principle that I would like to propose is a
formalization of the notion that population growth
cannot go forever: there has to be some upper bound
beyond which population density cannot increase. I
think that self-limitation should be elevated to the
status of a foundational principle because (1) it is
logically necessary at the level of population mecha-
nisms, and (2) because it is a very important ingredient
in models of population dynamics, at the level of
population dynamics. I acknowledge that the applica-
tion of this principle to practical investigations of popu-
lation dynamics has been very controversial in the past;
however, a certain degree of consensus is also emerging
(for reviews, see Turchin 1995, 1999).

How can we formalize the notion of self-limitation?
One possible approach is to require that population
density would always decrease when density is above
some threshold. That is,

dN

N dt
�r�0 if N�N* (7)

where N* is the upper threshold density. Note that r is
not a constant in this equation (as it was in the expo-
nential model, Eq. 1), but a function of environmental
influences, including population density (as in Eq. 4).
The problem with this approach is that the value of N*
is likely to change with time depending on environmen-
tal conditions, such as resource or natural enemy abun-
dances. For example, individuals may defend smaller
territories when food is abundant, and larger territories
when it is scarce. It is desirable to separate the effects of
self-limitation, understood as direct, or undelayed den-
sity dependence, from population feedbacks involving
time lags, such as depletion of food (when food is a
slow dynamical variable), or increase in specialist natu-
ral enemies.

The alternative approach, thus, is to require that the
partial derivative of r with respect to N is negative:

�r

�N
�0 for N�N* (8)

The biological meaning of this statement is that as we
vary N, while keeping all other variables that affect r
constant, increasing N leads to a decrease in r, and vice
versa. In the example of territories varying with food
availability, we fix food availability and then consider
how increasing population density will affect the per
capita growth rate. Clearly, as N becomes large enough

so that there are not enough territories for all individu-
als, r will decrease, and so (8) holds. We now also see
why we have to hedge (8) with a condition that it
should only hold for high enough densities. It is con-
ceivable that r will not change with N when N is low (or
even increase if we have an Allee effect). What is
important for self-limitation is that there is a negative
relationship between r and N at high population
densities.

Having a mathematical statement of the principle of
self-limitation allows us to easily find out whether any
particular ecological model includes self-limitation or
not. We simply rewrite the equation for the focal
species in per capita form, differentiate the right-hand
side with respect to N, and check whether it is negative
for any values of N, especially those greater than some
average level of fluctuations (for example, the equi-
librium density, if the model has an equilibrium). For
example, the Lotka-Volterra predation model fails this
test (the partial derivative or r with respect to N is zero
for all N). This makes sense because the Lotka-Volterra
predation model does not involve any self-regulation
terms in either prey or predator equations.

As I pointed out in the previous section, all ecologi-
cal textbooks discuss the law of exponential growth.
Another ‘‘standard’’ ecological model that is often dis-
cussed right after the exponential one is the logistic.
The relationship between the principle of self-limitation
and the logistic model is obvious. Can the logistic
curve, however, serve as a general law of population
growth? Raymond Pearl thought so (e.g., Pearl and
Reed 1920), and during the 1920s vigorously advocated
the logistic curve as such a general law of population
biology (see Kingsland 1995 for the history of the
ensuing debate). Pearl failed to establish his point. The
logistic equation is a much maligned model in the
ecological literature, and it is certainly not my intention
to add to the abuse here (in fact I consider it an
extremely useful building block in modeling population
interactions). However, I agree with the currently pre-
vailing opinion among ecologists that the logistic model
is not a general law of population growth, and it is
worth discussing why not.

The main reason why the logistic model falls short of
a general law is that it is too much of a special case: it
assumes a linear relationship between the realized per
capita rate of population change and density, there is
no explicit consideration of effects of noise, and, most
importantly, no lags. Each of these assumptions, when
relaxed, leads to a rather substantial change in the
qualitative type of the predicted behavior. Nonlineari-
ties in density dependence result in an asymmetric
pattern of growth, noise changes the nature of equi-
librium from a stable point to a stationary distribution,
and lags allow density to overshoot the equilibrium,
potentially leading to cycles and chaos (for example, in
the discrete versions, such as the Ricker model). Con-
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trast this with the exponential model, which generalizes
very nicely, as I pointed out in the previous section. No
matter what complications we throw at it, as long as
there is no density dependence in any form or shape,
the pattern of growth remains essentially the same
(especially, if we sample the population once each
generation, to get away from any effects of fluctuating
age structure).

My conclusion, therefore, is that the logistic lacks
generality to qualify as a central organizing principle
for population dynamics. It is rather the simplest possi-
ble model embodying this principle (Berryman 1999).
Nevertheless, it is worth repeating that the logistic
model remains an extremely useful tool for modeling
fluctuating populations. In fact, the diagnosis of its
failures in the previous paragraph can be turned around
as a prescription of how it could be modified in any
specific case study.

Consumer-resource oscillations

Ecologists distinguish five general classes of pairwise
species interactions, classified by the positive (+ ), neg-
ative (− ), or no (0) effect of species on each other:
interference competition (− , − ), mutualism (+ , + ),
commensalism (+ , 0), amensalism (− , 0), and trophic
interaction (+ , − ). Although resource-consumer or
trophic interaction is only one of the five types, popula-
tion ecologists have devoted a massive share of their
attention to studying trophic interactions. This is not to
say that other interactions, like mutualisms, are unim-
portant. But there is something very fundamental and
universal about consumption. Certainly, we cannot
hope to understand one important class of ecological
dynamics, population oscillations, without a thorough
grounding in resource-consumer theory.

Arguably, the simplest possible model for the dynam-
ics of a resource-consumer system is the Lotka-Volterra
model (Lotka 1925, Volterra 1926):

dN

dt
=rN−aNP

dP

dt
= −dP+caNP

(9)

where N and P are population densities of resources
and consumers, r is the per capita rate of population
growth of resources in the absence of consumers, d is
the per capita rate of population decline of consumers
in the absence of resources, a is the consumer searching
rate, and c is the constant of proportionality relating
the number of consumed resources to the number of
new consumers produced per unit of time.

The Lotka-Volterra equations are a horribly unrealis-
tic model for real resource-consumer systems. It is, in
fact, so bad that, to my knowledge, there has been no
successful application of it to any actual population
system, whether in the field or laboratory. But this is all
beside the point, because the Lotka-Volterra model
seems to get at some extremely basic feature of trophic
interactions: their inherent proneness to oscillations
(May 1974). In fact, the Lotka-Volterra model predicts
a rather special kind of oscillations that have no fixed
amplitude. Such dynamics, in which the amplitude of
oscillations depends on initial conditions, and does not
either decrease or increase with time (unless perturbed
by an external force), are called neutral oscillations.

Let us rewrite Model (9) using per capita growth
rates (remember, this is the right thing to do, because it
is what the first law of population dynamics tells us):

dN

N dt
=r−aP

dP

P dt
= −d+caN

(10)

Model (10) has one extremely interesting feature: the
per capita rate of each species depends only on the
density of the other species. For example, N does not
appear on the right-hand side of the resource equation.
Thus, there is no direct population feedback to resource
density, although there is, of course, an indirect connec-
tion (since increase in prey density will eventually cause
the predator to increase, which will in turn have a
negative effect on prey per capita rate of change).
Similarly, consumer dynamics depend directly only on
resource density. I will call a system in which per capita
rates of change of both resource and consumer do not
depend on their own density a pure resource-consumer
system. Also note that the right-hand sides in Model
(10) are linear functions. Thus, the Lotka-Volterra
model is, indeed, the simplest possible formulation of a
pure resource-consumer system (because a line is the
simplest function).

Two features of Model (10), that it is a pure re-
source-consumer system, and that its dynamics are
oscillatory, are clearly connected. This observation sug-
gests that the Lotka-Volterra model may have identified
an important general principle, which may deserve the
status of a law of population dynamics. Let us first see
how this law might be stated based on the observation
made above, and then we will consider whether it is a
general result, or depends sensitively on particular as-
sumptions of the Lotka-Volterra model. Here is my
statement of the law of consumer-resource oscillations:
a pure resource-consumer system will inevitably exhibit
unstable oscillations. By ‘‘unstable oscillations’’ I un-
derstand population oscillations that do not converge
to a point equilibrium. They can be either neutral, as in
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the Lotka-Volterra model, or they may actually di-
verge, getting away from the point equilibrium with
each cycle, as in the Nicholson-Bailey model.

Does this statement depend on details of the Lotka-
Volterra model? In particular, what about the linear
form of right-hand sides in Model (10)? Actually, we
can make an argument that this is not a problem. The
stability of nonlinear generalizations of the Lotka-
Volterra model will be determined by the stability of
the linearized version in the vicinity of an equilibrium.
As long as the linearized version has the same signs in
front of its coefficients (and lacks direct population
feedbacks in both equations), we should obtain neu-
trally stable oscillations. (Of course, what happens
when the oscillation gets away from the equilibrium will
depend on the nonlinearities.) Interestingly, this is the
argument by which Lotka accomplished his derivation
of the Lotka-Volterra model. Unlike Volterra, who
started by considering specific mechanisms of predators
chasing prey, Lotka first wrote the predator-prey equa-
tions in general form. He then considered the lineariza-
tion of the general equations that leads to Model (10).

We also need to check on how the general insight
from Model (10) depends on its mathematical formula-
tion as a system of ordinary differential equations. One
alternative framework is discrete difference equations.
May (1973) considered a discrete version of the Lotka-
Volterra model, and showed that it is characterized by
diverging oscillations for all values of parameters. The
oscillations are not neutral, as in the continuous vari-
ant, because discretization introduces a lag in the re-
sponses of predators and prey to each others’ densities,
and lags are an inherently destabilizing feature in any
model. By making time step increasingly smaller, we
can make the oscillations diverge very slowly, and in
the limit, when the time step is 0, we recover the neutral
stability of the Lotka-Volterra model. May (1973) fur-
ther showed that the Nicholson-Bailey parasitoid-host
model is equivalent in its stability properties to the
discrete Lotka-Volterra model (despite different func-
tional forms used by Nicholson and Bailey). In sum-
mary, it appears that the tendency of pure
consumer-resource systems to show unstable oscilla-
tions does not depend sensitively on the specific as-
sumptions of the Lotka-Volterra model.

There may be two objections to my proposal of
consumer-resource oscillations as a general law of pop-
ulation dynamics. First, we know very well from experi-
ence that not all (actually, a minority) of real-life
consumer-resource systems show persistent oscillations.
This objection, however, misunderstands the nature of
a general law. Like the law of exponential growth, the
law of consumer-resource oscillations is not meant to
be tested directly. In real life, we never expect to
encounter pure resource-consumer systems. Necessarily,
the per capita growth rate of both resource and con-
sumer populations would be affected by their densities

(as formulated by the population self-limitation princi-
ple). Furthermore, there will be other species in the
community. Consumers may be generalists. Resources
may not be killed during the process of consumption,
but only lose a part. There are refuges, spatial and
temporal heterogeneity, and many other potentially
stabilizing (as well as destabilizing) mechanisms known
to ecologists. What the law says, however, is that there
is an inherent tendency for specialist consumer-resource
systems to oscillate. This ‘‘signal’’ may or may not
come through the ‘‘noise’’ of real-life complications.

The second point (raised by Joel Brown in his review
of an earlier version of this paper) is that consumer-re-
source oscillations are a consequence of certain assump-
tions about how these two types of organisms interact,
and thus it has the logical status of theorem. This is in
contrast to, for example, relation (8), which has the
status of postulate (assumption) because we do not
derive it from more elementary principles. I agree that
this is a very important consideration, and is worth
discussing in some greater detail.

‘‘Laws’’: postulates or theorems?

Note that up to now I have avoided defining just what
exactly I mean by ‘‘law’’. I did this on purpose, because
I wanted to avoid definitional wrangles. Instead, I
adopted the approach of arguing by analogy with the
laws of classical dynamics. At this point, however, it is
becoming clear that we have to think more carefully
about the logical status of various ‘‘law-like’’ state-
ments. In particular, perhaps we should distinguish
between elementary propositions that are taken without
proof (postulates) and statements derived from a set of
these postulates (theorems). Note, however, that this
distinction is not absolute. For example, we can take
exponential growth as a postulate. On the other hand,
we can also derive it from more elementary principles
(namely, the law of conservation and the assumption
that births and deaths are proportional to the number
of organisms in the population). In the second ap-
proach (which I favor) exponential growth is a
theorem.

Population self-limitation, relation (8), as pointed out
above, is a postulate. If we use another postulate, that
the expected per capita population growth rate is posi-
tive at low densities, then we can derive another theo-
rem, stating that population density will stay within
certain limits, or undergo bounded fluctuations (see
Chesson 1982 for a rigorous treatment of this
proposition).

Resource-consumer oscillations is a theorem that
clearly follows from some more elementary principles.
Analyzing the structure of a typical resource-consumer
model we observe that in addition to exponential
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growth and self-limitation terms (although the Lotka-
Volterra model does not have the latter term), there are
two other components. The first one, in the resource
equation, reflects the impact of predators on prey num-
bers or biomass. It is typically written as a product of
predator density and ‘‘killing rate’’ per predator, known
as the functional response. The second term, in the
predator equation, typically specifies how consumed
prey biomass is translated into enhanced predator sur-
vival and reproduction. This process, ‘‘numerical re-
sponse’’, is clearly based on some principle related to
conservation of energy. Thus, it appears that we need at
least two postulates, in addition to those underlying
exponential growth and bounded fluctuations.

The preceding discussion, thus, suggests that we may
have several kinds of law-like statements in population
ecology. The postulates may include (1) conservation of
numbers, (2) per capita rates, (3) self-limitation, (4)
positive rate of change, (5) functional response, and (6)
numerical response. The theorems are (1) exponential
growth, (2) bounded fluctuations, and (3) consumer-re-
source oscillations. Incidentally, the exponential, logis-
tic, and Lotka-Volterra equations are the simplest
possible ways to model these three ‘‘laws’’ in the ODE
(ordinary differential equations) framework.

I want to emphasize that what I propose here is no
more than a bare sketch. I have only focused on two
ecological ‘‘forces’’: the self-limitation and the trophic
interaction. Other interactions such as mutualisms
could also be included. Population structure is impor-
tant. Spatial considerations is another huge area.

Furthermore, I do not insist on this particular set of
six postulates and three theorems as foundational prin-
ciples even of temporal dynamics of unstructured popu-
lations. In fact, I am following Joel Brown’s
prescription (Brown 2001) to be both opinionated and
open-minded. On one hand, I insist that we need a set
of general principles to place population dynamics on a
firm logical foundation. On the other hand, if some-
body can come up with a better set than the one in this
paper, I will be happy to switch to it.

Comparison to other proposals

Once again, I wish to make a disclaimer: there are no
novel theoretical proposals in this paper. The elemen-
tary ecological models that I have discussed have been
the foundations of theoretical ecology since the times of
Lotka and Volterra. All I tried to do here was to point
out that these fundamental concepts that are presented
in all ecological texts, and we routinely use in con-
structing ecological theory (without thinking much
about it), are very similar to general laws, as they are
used in some areas of physics. I am, similarly, not the
first to propose that ecology has general laws, and it

would therefore be useful to say a few words about
other proposals.

Going back to the origins, Alfred Lotka (1925: 64–
65) proposed his Law of Population Growth in the
following form:

dN

dt
=F(N) (11)

Lotka expanded the function F in a Taylor series, and
noted that the minimum number of terms that need to
be retained in order for the model to have an equi-
librium point is two, which of course leads to the
logistic model. Later (in Chapter VIII) Lotka general-
ized the approach to a system of differential equations.
One special case was Lotka’s host-parasite model, now
known as the Lotka-Volterra predation model.

More recently, Lev Ginzburg (1986) published an
article on first principles of population dynamics, in
which he suggested the analogy between the exponen-
tial growth law and Newton’s First Law. Usually the
exponential law is formulated in terms of first-order
derivatives or differences. For example, the realized per
capita rate of change can be interpreted as the rate of
change (first temporal derivative) of log-transformed N :

r=
dN

N dt
=

d
dt

(ln N) (12)

Instead, Ginzburg proposed to write down the expo-
nential law in terms of the second derivative of ln N :

d2

dt2 ln N=0 (13)

Furthermore, Ginzburg proposed that instead of using
Eq. (3) as the basis of population dynamics models, we
use a second-order model such as

d2

dt2 ln N= f
�

N,
dN

dt
�

(14)

Ginzburg calls this approach ‘‘the inertial view’’
(Ginzburg 1998). In the 1986 paper, he attributed
inertia to intrinsic causes and illustrated its effect on
predator-prey interactions. Subsequently, Ginzburg de-
veloped models showing that one particular intrinsic
factor, the maternal effect, may lead to second-order
oscillations (Ginzburg and Taneyhill 1994, Inchausti
and Ginzburg 1998). I agree with the premise that
underlies much of Ginzburg’s work, that second-order
dynamics (that is, dynamics characterized by delayed
density dependence) are widespread in nature and de-
serve to be studied (Turchin 1990, Turchin and Taylor
1992). However, we part ways when it comes to ex-
plaining the causes of oscillations in empirical cases:
whereas Ginzburg emphasizes intrinsic population
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mechanisms, I believe that the majority of cases of
oscillatory dynamics in ecology (if not all) are ex-
plained by trophic interactions.

Another very interesting recent paper addressing the
issue of general laws in ecology is by John Lawton
(1999). Lawton (1999: 178) states several deep univer-
sal laws that underpin ecological systems: (1) the two
laws of thermodynamics, (2) the rules of stoichiometry
(particularly, conservation of matter), (3) natural selec-
tion, and (4) physical principles governing diffusion,
mechanical properties of materials, etc. These princi-
ples are not ecological laws (and, more specifically, not
laws of population ecology, with which I am concerned
in this paper). However, they may underlie some of the
postulates I discussed above (for example, the rate at
which consumers transform prey biomass into their
own should clearly be subject to thermodynamic laws).
I am also in agreement with Lawton’s discussion of
population dynamics (1999: 179–180). Although he
does not explicitly formulate a set of laws for popula-
tion ecology, similarly to what I attempt in this paper,
he emphasizes the importance of qualitative classes of
population dynamics and of general theoretical models.

Another recent proposal of general laws in ecology is
due to Bertram Murray (2000). The first law of popu-
lation dynamics according to Murray (2000) is: ‘‘A
population with constant age-specific rates of survival
and initial size of cohorts maintains a steady state’’.
Note the difference between this statement and the
exponential law. Murray’s first law implies a popula-
tion maintaining a steady state, while exponential law
implies exactly the opposite – an unregulated popula-
tion that is either exploding to infinity or going extinct.
The key difference between the two alternative laws is
in the assumed mode of reproduction. While the expo-
nential law is derived by assuming that the per capita
rate of reproduction is constant, Murray’s first law
assumes that the total rate of reproduction is constant.
But does it really make sense to make this assumption?
Suppose that every time step (e.g., a year) the Murray-
type population has 1000 recruits added to the first age
class (Murray’s ‘‘initial size of cohorts’’). This number
is independent of the total number of reproducing
adults in the population. Whether we have a million,
just 10, or even zero reproducing adults, the popula-
tion always gets an infusion of 1000 recruits. Thus,
Murray’s assumption of constant number of recruits
implies spontaneous generation! This can be more
clearly seen if we slightly simplify Murray’s model by
assuming that the death rate in his population is inde-
pendent of age (this simplification does not affect the
main argument). Then, we can write the following
differential model that describes the dynamics of the
Murray population:

dN

dt
=S−dN (15)

where S is the number of recruits added to the popu-
lation per unit of time, and d is the per capita death
rate of organisms. Note that this is a special case of
Model (2), since (15) can be obtained from (2) by
setting b=0 (that is, assuming that the only new re-
cruits are produced by the process of spontaneous
generation, and there is no reproduction from the ex-
tant population).

Furthermore, Murray’s first law imposes population
regulation by force, rather than allowing it to arise
naturally as a result of density-dependent feedback.
As a result, Murray’s first law has the same logical
relationship to the exponential law as the Aristotle’s
first law of motion to the law of inertia. Recollect
that Aristotle’s law of motion says that a body will
come to a state of rest if there are no forces acting
on it. Murray’s law says the same thing about a pop-
ulation (where a ‘‘rest’’ is the population equilibrium).
By contrast, in Newtonian dynamics, a body will
come to a rest if there is some force that opposes
motion, for example, friction. Similarly, our modern
understanding of population dynamics implies that
population density would move towards an equi-
librium only if some specific ecological mechanisms
would cause decreased survival/fecundity when popu-
lation density gets too high, and increased survival/fe-
cundity when density gets too low.

Murray’s first law provides a nice illustration of my
claim above that the exponential law is not a trivial
statement, because it is possible to come up with an
alternative equation on which to base ecological the-
ory. The big question, of course, is which law pro-
vides a better basis for the theory. Just as
Aristotelian notions of mechanics were abandoned in
favor of Newtonian ones, it is a demonstrable fact
that ecological theory is overwhelmingly based on the
exponential equation. (I do not wish to make this
statement too absolute: Eqn (15) may provide a rea-
sonable starting point for modeling certain restricted
cases, such as populations in sink habitats whose dy-
namics are dominated by immigration.)

Finally, in a recent book Alan Berryman (1999)
proposed a set of five fundamental principles underly-
ing population dynamics: (1) exponential growth, (2)
cooperation, (3) competition, (4) circular causality,
and (5) limiting factors. Our approaches are quite
similar. In fact, we share the first principle (exponen-
tial growth). There are also some analogies between
the principles of self-limitation and trophic oscilla-
tions that I proposed here and Berryman’s third and
fourth principles. Additional principles in Berryman’s
codification arise primarily because he considers a
greater variety of ‘‘forces’’ than I did here. For exam-
ple, his second principle of cooperation is essentially
the Allee effect. In sum, our approaches appear to be
closely related.
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Conclusion

The exponential, logistic, and Lotka-Volterra predation
models are covered by all serious ecological textbooks.
As I argued in this paper, the reason that these three
elementary models are of such importance is because
they introduce and illustrate the three foundational
concepts of population dynamics: exponential popula-
tion growth, self-limitation, and trophic oscillations.
None of the elementary models can be considered as a
realistic model for any real-life population. The expo-
nential model generalizes very nicely when population
structure and exogenous effects are added, but no
population can really grow exponentially forever. Few
real populations show the classical S-shaped pattern of
growth predicted by the logistic model, and adding
realism to it can result in very different dynamical
patterns. I know of no ecological populations, labora-
tory or field, that could be even approximately de-
scribed by the Lotka-Volterra predation model. In
short, the three elementary models are no more than
metaphors for the corresponding concepts of population
dynamics. Yet, they lay bare some of the fundamental
features of population dynamics, and serve as simplest
models embodying each principle.

In this paper I argued that these three foundational
principles of population dynamics are conceptually very
similar to laws in certain fields of physics, such as
classical mechanics. The exponential law is a direct
analogue of the law of inertia in that it provides the
starting point for a mathematical description of dynam-
ics of population systems. The other two principles,
self-limitation and trophic oscillations, have a some-
what different logical status. If the exponential law tells
us how the system should behave in the absence of any
forces acting on it, the other two laws capture the most
important essence of two of the most important
‘‘forces’’ that can act on a population: population
self-limitation and trophic interactions. Other impor-
tant forces, such as mutualism or direct (‘‘interference’’)
interspecific competition can probably be codified with
their own laws (see Berryman 1999, for example). Inci-
dentally, exploitative competition is better modeled as
an indirect interaction, mediated by a shared resource
(MacArthur 1972). Thus, exploitative competition is
not a binary interaction (= ‘‘elementary force’’), but a
complex one, being a property of a system of three or
more interacting components (minimally, two con-
sumers and one resource).

There is no denying that certain physical systems,
such as the solar system, can be predicted by laws of
classical mechanics much better than any real ecological
population, even in the laboratory. However, note that
most of the real-world physical problems are much
harder to predict than planetary motions. Consider the
proverbial apple. In the real world, there is weather
(wind and rain), there are branches (that may move

unpredictably as a result of wind), and there are willful
humans who could pluck the apple before it had a
chance to fall down of its own accord. Real physical
systems are much harder to predict than is portrayed by
ecologists suffering from physics-envy. Surely an impor-
tant aspect of Newton’s genius was in selecting a per-
fect system – planetary motions – to apply his theory
to. By contrast, ecologists insist on asking really tough
and messy questions, such as how many species should
a community have (note that, as far as I know, physi-
cists have craftily avoided even asking the messy ques-
tion of how many planets should be rotating around
the Sun). What we ecologists should do is first cut our
teeth on more manageable problems. The obvious place
to start in population ecology is the puzzle of popula-
tion oscillations. This is a big and exciting problem, of
high intellectual and applied interest in its own right.
Moreover, once we test the general theories and ap-
proaches on population oscillations, we should be able
to extend the resulting insights to systems with messier
dynamics. My survey of case studies suggests that
simple ecological models can predict population oscilla-
tions with accuracy of up to 90% (Turchin unpubl.). It
may be that the study of population oscillations will do
the same for ecology that the study of planetary mo-
tions did for physics.
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