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An Optimization Approach
to Teleoperation of the Thumb
of a Humanoid Robot Hand:
Kinematic Mapping
and Calibration
The complex kinematic structure of a human thumb makes it difficult to capture and con-
trol the thumb motions. A further complication is that mapping the fingertip position
alone leads to inadequate grasping postures for current robotic hands, many of which
are equipped with tactile sensors on the volar side of the fingers. This paper aimed to use
a data glove as the input device to teleoperate the thumb of a humanoid robotic hand. An
experiment protocol was developed with only minimum hardware involved to compensate
for the differences in kinematic structures between a robotic hand and a human hand. A
nonlinear constrained-optimization formulation was proposed to map and calibrate the
motion of a human thumb to that of a robotic thumb by minimizing the maximum errors
(minimax algorithms) of fingertip position while subject to the constraint of the normals
of the surfaces of the thumb and the index fingertips within a friction cone. The proposed
approach could be extended to other teleoperation applications, where the master and
slave devices differ in kinematic structure. [DOI: 10.1115/1.4027759]

1 Introduction

Teleoperation permits the operation of machines at a distance,
and it has been an integrated part of mechanical systems since
1950s, when Goertz built the first mechanical master-slave end-
effector for manipulating radioactive materials [1].

Teleoperation finds applications in surgery, advanced manufac-
turing, and education. In surgery, teleoperation is exemplified in
minimally invasive surgical robots [2–4], which enhance a sur-
geon’s accuracy, dexterity, and visualization [5]. In advanced
manufacturing, teleoperation allows human workers and robots to
work intelligently together to combine human perceptual and
problem-solving capabilities with the power and accuracy of
machines [6]. In education, teleoperation enhances remote-
learning by enabling students to access a robotics laboratory via
the internet, overcoming the common problem institutions face:
the limited availability of expensive robotics and control equip-
ment, and thus provides a cost-effective way for students to
acquire valuable “hand-on” experience [7–10].

A teleoperation interface consists of master and slave devices.
The master device may be a keyboard or joystick [11], or haptic
devices, such as data gloves and exoskeleton devices [12]. The
slave device may be a physical robot or a computer generated rep-
resentation of robots in a virtual world [8,10].

One impediment encountered in teleoperation is that the work-
spaces of master and slave devices differ intuitively and geometri-
cally. System designers are obliged to develop mapping functions
from the workspace of the master device to that of the slave de-
vice. Since exact mapping functions do not generally exist,
designers adopt various optimization methods, which are widely
used in mechanical design, including determination of the

boundary of manipulator workspace [13], maximization of
the dexterous regular workspace [14], optimization of joint stiff-
ness of robotic arms [15], and design of the spherical serial
manipulators [16].

The humanoid robotic hand is an example of slave device,
whose real-time control poses substantial challenges, especially
regarding the thumb motion. Studies [17–21] have shown that a
rigid palm limits the dexterity of a robotic hand and an improved
design furnishes the palm with extra degrees of freedom (DOFs),
leading to a complex kinematic structure of the thumb.

The master devices for a humanoid robotic hand include paral-
lel mechanisms [22,23], data gloves [24], and exoskeleton devices
[12], where the latter two devices gain popularity in recent years
due to intuitive user experience.

Exoskeleton master devices adopt the kinematic structure that
imitates a human hand, such as the multifingered force-reflecting
haptic device for grasp teleoperation [12]. Except for the thumb,
the mapping is straightforward, since the hand mounted mecha-
nism is capable of representing the joint angles. The operator
needs to calibrate by extending and retracting one’s fingers, allow-
ing the program to record the minimum and maximum voltage
signal delivered by potentiometers. The finger bend angles are cal-
culated in a linear manner depending on the voltage readings.

It presents a substantial challenge to design an exoskeleton de-
vice for the thumb, for a planar linkage cannot capture the thumb
position. One solution is a transverse pivotal mounting at the hand
attachment point to account for the nonplanar motion of the
thumb, but its effectiveness has not been reported [12].

Data-glove master devices use a human hand model to calibrate
the joint sensor readings and map the hand motion to a robot for
virtual manipulation or teleoperation [25–29]. While virtual
manipulation calibration focuses on a visually acceptable repre-
sentation of the human hand, teleoperation requires more accurate
calibration and mapping. The use of data gloves does not alleviate
the difficulties of teleoperating the thumb. Even with the aid of
computer vision, some studies adopt optimization techniques to
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estimate the centre of rotation from multiple surface markers on
the thumb [30,31].

Several studies calibrate data gloves without using computer
vision. After admitting the unfeasibility of simulating the whole
thumb, each one of the studies concentrates on a different as-
pect. One study focuses on the thumb-tip point [28]; another
study uses teleoperation for a planar two-fingered gripper—the
thumb is overly simplified to a two DOFs planar series-chain
[26]; a third study does not provide details about controlling
the thumb motion, but mentions the advantages of teleopera-
tion: the combination of the durability of a robot and the flexi-
bility of a human mind to quickly develop and test control
strategies [32].

Mapping the kinematic chains from a human hand to a robot
hand could occur either in joint space or Cartesian space. Mapping
in the joint space makes the hand poses look similar, an important
factor for power grasps. Scale mismatch, i.e., differences in
dimensions between the master and the slave devices, is another
scenario where joint-space mapping is preferred, but this usually
entails similar kinematic structures.

Mapping in the Cartesian space allows manipulating an object
by the fingertips and is fit for objects that are graspable by a
human hand. In literature, this is normally called a precision
grasp, a pinch grasp, or a tip grasp [33–37]. Many humanoid
robotic hands, including the Shadow Hand, are meant to replicate
the functionality of a human hand and as a result, the dimensions
of these hands are very close to a human hand. For example, the
average length of a human hand measured from wrist to middle
fingertip is 208.78 mm (n¼ 80) [38]; the length of the Shadow
Hand from wrist to middle fingertip is 238.78 mm [39]. As to the
thumb, the average total length of a human thumb is 137.5 mm
(n¼ 11) [40]; the total length of the Shadow thumb is 106 mm.
The difference between thumb lengths is alleviated by the differ-
ence of the whole hand lengths. For this reason, we adopted the
mapping in the Cartesian space and focused on grasping the
objects that are graspable by a human hand.

The paper is organized as follows. It first describes the setup of
the hardware and compares a human-thumb workspace with a
robot-thumb workspace. After proposing the mapping method that
considers correlated sensor readings, it presents the experimental
protocol involving only nine rigid objects of different lengths. The
calibration is then formulated as minimizing the worst-case value
of the set of grasping postures with the performance metrics and
experimental results.

2 The Glove-Based Teleoperation

We demonstrated the proposed approach with a data glove—
CyberGlove II [41]—and a humanoid robotic hand—Shadow
Dexterous Hand.

Two factors complicate the implementation. First, the kine-
matic structure of a human thumb differs from that of a robotic
thumb. On the one hand, the axes of the interphalangeal joint (IJ),
the metacarpophalangeal joint (MPJ), and the trapeziometacarpal

joint of a human thumb are not orthogonal or intersecting, as in
Fig. 1. Thus, a kinematic chain with five orthogonal and intersect-
ing axes of rotation cannot describe realistic thumb motion [40].
On the other hand, it is economically unfeasible for a robotic
thumb to totally imitate the structure of a human thumb. This
leads to five orthogonal axes for most robotic thumbs (including
the Shadow Hand), endeavoring to duplicate a human-thumb
motion.

Second, data gloves are incapable of measuring all the inde-
pendent thumb movements. For example, the CyberGlove II only
measures four DOFs of the thumb motion and the sensor readings
of rotation and abduction are correlated, as in Fig. 2.

Each joint of the CyberGlove II has two calibration parameters:
gain and offset. The sensor strip at each joint gives the raw data
reading and the glove’s interface software converts this digital
value into an angle using a calibration procedure. The users take a
sequence of given poses, from which the gains and offsets are
computed. The results are visually acceptable, representing a
human hand across a wide variety of users. However, the spatial
accuracy produced by the default calibration is not accurate
enough for precision grasp.

Previous literature mainly focuses on calibrating and mapping
fingertip positions, because most robotic hands then had
hemispherical fingertips and generally no sensing capacity at the
fingertips. Recently, an increasing number of humanoid robotic
hands (including the Shadow Robot Hand) have the volar side
soft-padded and equipped with tactile sensor and the distal side
covered with fingernail. This renders the previous approaches
inadequate—unnatural precision grasp may be generated, as in
Fig. 3, where the thumb nail grasps the object.

Mapping and calibrating both the position and orientation of a
human thumb, we proposed a novel nonlinear optimization formu-
lation that minimizes the worst cases of positioning errors while
subject to the normals of the thumb and index-finger surfaces
within a friction cone.

Fig. 1 Human-thumb joints

Fig. 2 The sensor positioning of the CyberGlove II

Fig. 3 Inadequate precision grasp due to calibrating fingertip
position alone
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3 Workspace Comparison of a Human Thumb

and a Robot Thumb

A human thumb has a very complex kinematic structure
[35,42], which hinders its model in a kinematic chain consisting
of orthogonal revolute joints. We proposed a new thumb model
that matches the sensor positioning of the CyberGlove II, as in
Fig. 4, where TRT represents thumb rotation, TABD thumb abduc-
tion, TMPJ thumb MPJ, and TIJ thumb IJ, and T the thumb-tip
frame.

Denavit–Hartenberg (D–H) notation is the standard approach in
robotics to describe joint kinematics for computational applica-
tions [43]. The global frame T0 (O-x0y0z0) was established in such
a way that z0 is along the TRT axis and x0 is along the common
perpendicular line of TRT axis and TAB axis, as in Fig. 4. The pha-
lange lengths of a human thumb come from the mean values of
measurements of cadaveric thumbs (n¼ 11) [40], as in Table 1.

Forward kinematics yields the set of reachable thumb-tip
positions—the workspace of the human-thumb model, as in
Fig. 5.

The Shadow Hand thumb has five DOFs, with the global frame
O-x0y0z0 fixed to the palm body and O-xiyizi fixed to each axis, as
in Fig. 6.

The D–H parameters of the Shadow thumb are listed in Table 2
and the thumb-tip workspace of the Shadow Hand is shown in
Fig. 7.

The two workspaces shown in Figs. 5 and 7 differ geometri-
cally. Further the Shadow thumb has 1 more DOF than that of the
human model, disallowing mapping the whole workspace linearly
from the human thumb to the Shadow Hand thumb.

Hence, we considered only the part of the workspaces related to
grasping by the thumb and the index finger and used linear

Fig. 4 The thumb model matching the sensor positioning of
the CyberGlove II

Table 1 The D–H parameters of the human-thumb kinematical
model

di (mm) ui (rad) ai (mm) di (rad)

T0�TRT 0 p/2 0 0
TRT�TAB 0 [0, p/2] 13.6 3p/2
TAB�TMPJ 0 [�p/2, 0] 52.9 3p/2
TMPJ�TIJ 0 [0, p/2] 40.3 0
TIJ�TTip 0 [0, p/2] 30.7 3p/2

Fig. 5 The thumb-tip workspace of the human-thumb model

Fig. 6 The kinematic model of the thumb of the Shadow Hand

Table 2 The D–H parameters of the thumb of the shadow hand

di (mm) ui (rad) ai (mm) di (rad)

T0� J1 29 p/2 8.5 3p/4
J1� J2 0 [�1.04, 1.04] 0 p/2
J2� J3 0 [�1.40, 0] 38.0 0
J3� J4 0 [�0.70, 0.70] 0 p/2
J4� J5 0 [�0.26, 0.26] 32 0
J5�TTip 0 [0, p/2] 27.5 3p/2

Fig. 7 The thumb-tip workspace of the Shadow Hand
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mapping to scale and skew the workspace of the human thumb to
that of the robotic thumb.

4 Kinematic Mapping From the Human Thumb

to the Robotic Thumb

We made two assumptions in the proposed kinematic mapping.
The first was that the correlation of sensor readings can be mod-
elled by linearly correlated gain coefficients; the second was that
the joint angles of a human thumb can be linearly mapped to those
of a robotic thumb.

Two parameters—gain and offset—generate the joint angles for
each independent joint of the CyberGlove II

ui ¼ gibi � u0
i (1)

where ui the joint angle of the human hand, gi the gain, bi the sen-
sor reading, and u0

i the angle offset.
The independence of the Tij sensor reading allows using the

Eq. (1) directly to generate its angle

u4 ¼ g4b4 � u0
4 (2)

However, the sensor readings of TRT, TABD, and TMPJ are corre-
lated. We modeled this correlation by adding correlated gain coef-
ficients as

u1

u2

u3

2
64

3
75 ¼

g1 g12
1 g13

1
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2 g2 g23
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where ui is the joint angle, bi is the sensor reading, u0
i the offset,

gi the gain, and gjk
i the correlated gain.

The first two joints of the human thumb and the robotic
thumb—TIJ and J5, TMPJ and J4—have similar kinematic struc-
ture. Thus, the two angles of the human thumb can be mapped to
those of the robotic thumb by multiplying a scalar factor ki as

h4

h5

� �
¼ k1 0

0 k2

� �
u3

u4

� �
(4)

where h4 and h5 represent the joint angles of J4 and J5 of the
Shadow thumb, respectively. Substituting Eq. (2) and the third lin-
ear equation in Eq. (3) into the above equation and merging the
constants yield

h4

h5

� �
¼ k1 0
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3 g3 0

0 0 0 g4

� � b1

b2

b3

b4

2
6664

3
7775�

u0
3

u0
4

� �
0
BBB@

1
CCCA (5)

The angles h1, h2, and h3 of the Shadow Hand have to be gener-
ated from the two angles of the TRT and TAB joints. A 3� 2 matrix
containing scalar factors kij maps linearly from u1 and u2 to these
three angles
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h3

2
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3
5 ¼ k11 k12
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� �
(6)

Substituting the first two linear equations of Eq. (3) into the above
equation yields
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h2

h3

2
4

3
5 ¼ k11 k12

k21 k22

k31 k12

2
4

3
5 g1 g12

1 g13
1

g21
2 g2 g23

2

� � b1

b2

b3

2
4

3
5� u0

1

u0
2

� �0
@

1
A (7)

Combining Eqs. (5) and (7) into one linear equation and rewriting
the coefficients give

h ¼ Gb� u0 (8)

where

h ¼

h1

h2

h3

h4
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2
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3
7777775
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The left side of the above equation gives the joint angles of the
robotic thumb and the right side gives the mapping from the sen-
sor readings bi. This completes mapping the sensor readings of
the human thumb to the joint angles of the robotic thumb.

The map function in Eq. (8) contains 22 parameters: ki, gi, kij,
gjk

i , and u0
i . Optimization in this dimension would have been com-

putationally heavy; but scrutinizing it reveals a simpler form

h1
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h3

h4

h5

2
66664

3
77775 ¼

a11 a11 a13 0

a21 a22 a23 0
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3
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2
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3
775

0
BB@

1
CCA (9)

This reduces the number of parameters from 22 to 17: aij and bi, sim-
plifying the optimization substantially. Empirical studies show that
on a laptop with the Intel

VR i5 duo-core central processing unit and
four gigabytes memory, the average optimization time is 8 min with
the 17-parameter model and 14 min with the 22-parameter model.

5 Calibrating the Sensor Readings

5.1 A Minimum Extra-Hardware Experimental Protocol
Without Computer Vision. We designed an experimental proto-
col that does not require computer vision. Admittedly, computer
vision would have provided a redundant set of data to help com-
pensate for the imprecision of data-glove measurements. How-
ever, the initial setup of computer-vision system—3D computer
vision in this case—requires knowledge and experience in
computer-vision hardware and software; especially when the
computer-vision system would have to capture the small-scale
movement of the thumb, and it thus involves high-resolution cam-
era and accurate calibration—this would be time-consuming and
expensive. A computer-vision system would also compromise the
portability of the teleoperation system: the stereo camera would
have to be supported to a proper height and proper lightening con-
ditions would have to be provided.

This proposed experimental protocol involves only minimum
extra hardware: a set of nine rigid objects of lengths from 10 mm
to 90 mm. Each operator uses the precision grasp to grasp each of
the nine rigid objects between the volar sides of the thumb and
index fingertips with natural poses, as in Fig. 8.

In the select setup, the lengths of the rigid objects cover the
graspable range by the index and thumb fingertips of a human
hand, ensuring that the objects of intermediate length are also
graspable.
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5.2 Distance Optimization Subject to Surface-Normal
Constraints. We assumed an antipodal grasp of a planar object
with a friction-cone-contact model and a normal force large
enough to provide the necessary momentum in the tangential and
normal directions.

Recent robotic fingertips imitate a human fingertip with tactile
sensors equipped on the volar side and fingernails on the distal
side. It is thus important for precision grasps to keep the thumb
and index fingers’ volar sides facing each other and the two nor-
mal vectors within a friction cone [44].

Two contact models, frictional point contact and soft contact,
have been used in studying grasping and manipulation in previous
literature. The former is modelled by “friction cone” defined by
the Coulomb friction, which determines the ratio of tangential to
normal forces that can sustained without slipping [45]. The latter
is established on the well-known Hertzian contact model, which
assumes that linear elastic objects with small deformation [46,47].
Though the soft contact model is more realistic, it has to consider
the geometry and forces of the contact surfaces. At issue is getting
an accurate contact force in the tangential direction. Mechanics
literature also recognizes it to be a difficult problem [48,49].

Adopting the friction-cone-contact model, we aimed to propose
a general approach to teleoperation, for considering geometry and
force of a particular hand would hinder its application to a variety
of humanoid robotic hands.

Two metrics could be used to measure the performance of a
thumb. The first one is given by the method of least squares,
which evaluates the overall solution and minimizes the sum of the
squares of the errors of the nine grasp set. This metric does not
adequately address the problem because large deviation of one set
could lead to the failure of precision grasp of a particular length.
The second metric minimizes the maximum error (minimax algo-
rithms) of the set of nine grasps as a worst-case problem, excelling
in limiting the maximum deviation of all grasps.

Choosing the second metric, we casted the problem into a con-
strained nonlinear optimization: The algorithms generate the opti-
mal parameters aij and bi from the sensor readings of the
experimental setup, where users grasp a set of nine rigid objects
whose lengths span the distances between the two fingertips.

The readings of the index finger give the position and the orien-
tation of the index fingertip, from which the desired position and
the orientation of the thumb fingertip can be generated as

FTi ¼ FIi þ LizIi

2p
3
� wi � p

(10)

where FTi is the desired position vector the thumb fingertip, FIi is
the position vector of the index fingertip, Li the length of the rigid
object, zIi the unit normal of the index fingertip surface, wi is the

angle of the normals of the tip surfaces, and i is the ith object
grasped by the operator.

The first equation in Eq. (10) defines the distance requirement
and the second equation defines that the normals of the two surfa-
ces lie within the friction cone. The static friction coefficient
between rubber and other materials could be in the range of 0.5–1,
giving the friction-cone angle from 0.46 to 0.78. Thus, the angle
wi between these two fingertip normals is constrained between
120 deg and 180 deg with antipodal point grasps.

The mapping is formulated as an optimization problem as

min
x

max
i

Ddij j

s:t:� 1 � zTi � zIi � �
1

2

(11)

Ddi is the difference between the desired thumb fingertip and the
actual position and the dot product of the normals gives the nor-
mal constraint. The optimization variables are the 17 parameters
aij and bi in Eq. (9).

6 Validation and Results

The proposed method was tested on empirical studies. The
method was implemented using MATLAB 7.1 (Mathworks, Inc.) and
used the MATLAB fminimax function to minimize the worst-case
value of the nine set of readings with the initial values obtained
following the CyberGlove II User’s manual and the constrained
terms processed by a penalty function.

Sensor readings were recorded using a CyberGlove II, connected
to a personal computer (PC) via serial port. The system recorded
the sensor readings at the rate of 20 Hz for 10 readings—the mean
values of each of the 10 readings were used. The resolution of each
joint of CyberGlove II is approximately 61 deg, sensor repeatabil-
ity approximately 63 deg, sensor linearity 0.6% maximum nonli-
nearity over full joint range. A Shadow Hand E1M3R was used,
operating at a frequency of 1.0 Hz with a position control strategy
in the host PC. The resolution of each joint is 0.2 deg.

Six able-bodied subjects took part in the study, hand length
from fingertip to wrist 204.2 mm 6 8.7 mm (mean 6 std, n¼ 6).
Each subject was instructed to put on a data glove and fix it tightly
at the wrist. Each subject then grasped the nine rigid objects
(10 mm–90 mm) using natural poses, and sensor readings were
generated and recorded on a PC. After calibration, each subject
was instructed to teleoperate the Shadow Hand by grasping
three objects of different lengths 25 mm, 50 mm and 75 mm, as in
Fig. 9. The distances and normal vectors of the Shadow Hand at
each test were recorded.

The empirical results are listed in Table 3, where the mean dis-
tance with its standard deviation and the mean normal angle with
its standard deviation were obtained when the subjects telegrasped
the objects of length 25 mm, 50 mm, and 75 mm, respectively.

7 Discussions

Two factors affected the calibration results. The first was that
the resolution of each joint of CyberGlove II is approximately
61 deg, which limits the grasping precision to no better than

Fig. 8 Generating sensor readings

Fig. 9 Precision grasps of objects of length 25 mm, 50 mm,
and 75 mm
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1 mm in hand configurations. The second was that the precision
grasp with the thumb and the index finger causes tip deformation.
The maximum distance differences were estimated at 3 mm.

There are two main contributions of this work compared with
previous work [25,26,28,50,51]. The first is, we presented a new
kinematic model of the human thumb. One major difference
between this model and previous one is that the MPJ joint in this
work is perpendicular to the metacarpal bone, instead of being
parallel to it [26]. This arrangement matches the glove-sensor
positioning and is able to effectively measure the movement of
the trapezium-metacarpal joint, while previous model measures
the twist motion of this bone—current data gloves are not capable
of this task. The proposed new model may provide new clues to
develop a better exoskeleton device.

The second contribution is, we used a new metric, which mini-
mizes the worst case of the range graspable by a human hand,
while previous approaches minimize the overall performance in
the sense of least squares. It has been shown that for any bounded
parameter set, a minimax estimator achieves lower mean-squared
error than the least-squares estimator over the entire parameter set
[52,53]. Physically, it means that while the least-squares metric
evaluates the overall performance, it fails to prevent large devia-
tion occurring. The minimax metric considers the performance
across the graspable range and yields better results.

We mapped the workspace in the Cartesian space. One issue of
the approach is the slave device can only grasp objects that are
graspable by a human hand. Extending the current mapping to
larger objects would entail new experimental protocols: At issue
is the mapping of the fingertip distances. One possible approach is
via virtual grasp, where the setup sees a virtual hand that matches
the size of the robotic hand and the kinematic structure of a
human hand. Another possible approach is to equip the robotic
hand with proximity sensing, such as tactile sensors, and equip the
data glove with physical stimulus device, such as vibration motor.
The proximity sensing triggers the vibration motor, closing the
loop and giving the users the sense of distance.

Mapping in the joint space would have solved the problem of
scale mismatch and enabled the robotic hands grasp larger objects.
However, one impediment exists: the structure mismatch. The
human thumb and the robot thumb differ in terms of structure and
DOFs. For example, the Shadow thumb has five DOFs, while the
CyberGlove II can only measure four DOFs of a human thumb.
This poses a dilemma, of correlating two joint angles to three joint
angles, should the mapping occur in joint space.

Recent years have witnessed a growing interest in freehand
3D human–machine interaction. Digits, a wrist-worn motion cap-
ture device that utilizes laser scan, show encouraging 3D spatial
interaction with mobile devices and eyes-free interaction [54].
Leapfrog, a 80 mm long device that uses light-emitting diodes and
small cameras, promises tracking all ten fingers up to 0.01 mm
[55]. It would be fascinating to see these devices applied to tele-
operating a robotic hand.

We addressed the problem of teleoperating a humanoid robotic
thumb, enabling grasping objects with the index finger. Three-
fingered hands, such as the King’s College London Metamorphic
Hand [17], are the mainstream end-effector in terms of cost and
efficiency. Our future work will be using data gloves to teleoper-
ate three-fingered hands and will be addressing one critical issue:
measuring the palm movements and reflecting them on the rela-
tive positioning of the fingers.

8 Conclusions

We used a data glove as the input to teleoperate a humanoid
robotic thumb, focusing on both the position and the orientation
of the thumb fingertip—this differed from previous approaches
that only considered fingertip position. We presented a novel
human-thumb model that matched the data-glove-sensor position-
ing and developed an experimental protocol that required each
operator to grasp a set of nine rigid objects with the index finger
and thumb. Scrutinizing the initial mapping function reduced the
number of parameters from 22 to 17, which were subsequently
optimized by a nonlinear constrained-optimization technique.
This approach required minimum extra hardware and the lengths
of the rigid objects covered the graspable range by the index and
thumb fingertips, ensuring the objects with intermediate length
were also graspable. We further discussed various factors that
affected the calibration accuracy.
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