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  الملخص
توازي تـستند إلـى     الغرض من هذا البحث هو اقتراح خوارزمية تعتمد على طريقة ال          

وذلك ) MIMD(طريقة نيوتن لحل مسائل الامثلية اللاخطية باستخدام حاسبات متوازية من النوع 
بحل نظام معادلات خطية بطريقة الحذف لكاوس بشكل متوازٍ بدلاً من إيجاد معكوس مـصفوفة               

ت الحسابية هيسيان لكي نتجنب الخطأ الناتج من حساب معكوس المصفوفة ولتزيد من قوة العمليا 
 . وكذلك لتقليل الزمن اللازم لحل المسالة

 
ABSTRACT 

          The purpose of this paper is to introduce parallel algorithms based on 
the Newton method for solving non-linear unconstrained optimization 
problem in (MIMD) parallel computers by solving linear system in parallel 
using Gaussian Elimination method rather than finding inverse Hessian 
matrix to avoid the errors caused by evaluating the inverse matrix and also 
to increase computing power and reduce run time.  
 

1.Introduction: 
This paper is concerned with finding a local minimum x* of the 

unconstrained optimization problem  
 

min )(xf       (1) 
 

where nRx ∈  and the objective  f:Rn→R  is twice continuously 
differentiable. 

Methods for unconstrained optimization are generally iterative 
methods in which the user typically provides an initial estimate of x* , and 
possibly some additional information. A sequence of iterates {xi} is then 
generated according to some algorithm. Usually the algorithm is such that 
the sequence of function values fi is monotonically decreasing (fi denotes 
f(xi)). Due to practical applications of the unconstrained optimization 
problem, a considerable amount of effort has been expanded on the 
development of efficient sequential algorithms for the solution of this 
problems. Recent advances in parallel computing technology have made it 
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possible to solve the optimization problem more effectively and increasing 
computing power for this reason it is natural that there is an increased 
interest in designing parallel algorithms for various types of applications. In 
this paper, we will discuss parallel numerical algorithm namely Newton 
algorithm for the general unconstrained optimization problem using 
multiprocessors or (MIMD) parallel machines which consist of a number of 
fully programmable processors capable of simultaneously performing 
entirely different operations on different data, where each processor has its 
own local memory. 

Concurrent computation can be done at different levels. Our focus is 
on using (MIMD) computers where a number of processors communicate 
and cooperate to solve a common computational problem. Multiprocessor 
parallel computation involves three key ingredients hardware, software 
(programming language, operating system and compiler) and parallel 
algorithms (See [8] or [11]). 

A popular class of methods for solving problem (1) is the Quasi-
Newton  (QN) methods.  

Assume that at the ith iteration, an approximation point xi and n×n 
matrix Hi are available, then the methods proceed by generating a sequence 
of approximation points via the equation  

(2)                                                       1 iiii dxx α+=+  

where iα >0 is the step- size which is calculated to satisfy certain line 
search conditions and di  is an n-dimensional real vector representing the 
search direction. For QN methods, di  is defined by : 

(3)                                                          iii gHd −=   

where )( ii xfg ∇=  is the gradient vector of f(x) evaluated at point x=xi 

and Hi is an approximation of 1−
iG ( where )(2 xfG ∇= ) which is 

corrected or updated from iteration to iteration in general Hi is symmetric 
and positive definite , there are different choices of Hi , we list here some 
must popular forms (See [5],[6]or[4]).  
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Where iii xx −= +1δ  and iii ggr −= +1  is called rank- one 
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QN methods mentioned above have two disadvantages: one of which QN 
algorithms require line search which is expensive in practice and The 
second is the accumulation of error in evaluating the approximate Hussein 
matrix Hi at each iteration.  

To overcome these disadvantages we use parallel Newton method 
without approximating Hussein matrix and neglecting line search  
 
2-Newton Method  

Newton method uses first and second derivatives, the idea behind 
this method is as follows: 

Given a starting point x0 , we construct a quadratic approximation to    
the objective  function that matches the first and the second derivative 
values at the point. We then minimize the approximate (quadratic) function 
instead of the original objective function. We use the minimizer of the 
objective function as the starting point in the next step and we repeat the 
procedure iteratively. If the objective function is quadratic, then the 
approximation is exact, and the method yields the true minimizer in one 
step. If on the other hand, the objective function is not quadratic then the 
approximation will provide only an estimate for the position of the true 
minimizer. 

We can obtain a quadratic approximation to the given twice 
continuously differentiable function f(x) using the Taylor series expansion 
of f about the current point xi, neglecting terms of order three and higher in 

ix∆  for simplicity we let ix∆  = iδ  

i
T
i

T
iiii Gfqxf δδδδδ 22

1)()( ++=≈+     (7) 

where iδ , ix nR∈  and the matrix G usually positive definite when xi  is in 

some neighborhood of x*. A unique minimizer of )( iq δ  exists if and only 
if G is positive and Newton method is only well defined in this case. (See 
[5]). Then ( iδ ) is obtained by finding the stationary point at )( iq δ , which 
requires the solution of the linear system  

iii gG −=δ         (8) 
the next step is then defined by  

iii xx δ+=+1        (9) 
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We then prove that the sequence {xi} convergence and the order of 
convergence is two (See [13]). These local convergence properties represent 
the ideal local behavior which other algorithms aim be evaluated as far as 
possible (See [6]). In fact, super linear convergence of any algorithm is 

obtained if and only if the step ix∆ is asymptotically equal to the step given 
by solving (8). This fundamental results due to Dennis and More (1974) 
emphases the importance of the Newton step for local convergence.  

Two quite different classes of methods for solving the linear system 
(8) are at interest: direct methods and iterative methods. In direct method, 
the system is transformed to a system of simpler form e.g. triangular or 
diagonal form, which can be solved in an elementary way. The most 
important direct method is the Gaussian elimination, we will use it to solve 
the linear system (8). 
 
3. Gaussian Elimination Method  

A fundamental observation in Gauss elimination is the elementary 
row operations, which can be performed on the system without changing the 
set of solution. These operations are: 
1- adding a multiple of the ith equation to the jth equation  
2- Interchange two equations.  

The idea behind Gaussian elimination is to use such elementary 
operations to eliminate the unknowns in the system (8) in a symmetric way, 
so that at the end an equivalent upper triangular system is produced, which 
is then solved by back – substitution.  

If 011 ≠a . (where Ga ij ∈ ). Then in the first step we eliminate 

1δ from the last (n-1) equation by subtracting the multiple  

ni
a
a

L i
i ,....,3,2

11

1
1 ==  

of the first equation from the ith equation. This produces a reduces system 
of (n-1) equations in the (n-1) unknowns nδδδ  ,......,, 32 , where the new 
coefficients are given by : 

nigLggaLaa iiijiijij ,......,,3,2~;~
1111 =−=−=  

If 022 ≠a , we can eliminate 2δ from the last (n-2) equations. After 
m-1 steps, nm ≤ of Gaussian elimination the matrix G has been reduced to 
the form: 
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Where 
)(m

ija is the reduced element produced from row operation at 
steps m=1,2,…,n . 

The elements ),......,1(
)(

nia
m

ii = are called pivotal elements. There are 
two difficulties in the Gaussian elimination method. The first if a zero 
pivotal element is encountered i.e 0

)(

=
m

iia  for some nm ≤ , then we cannot 
proceed. But this case does not occur in our problem, which is stated in (8). 
Since G is square matrix and positive definite, this means that all diagonal 
elements of G are non-zero. Second a zero pivot in exact arithmetic will 
almost invariably be polluted by rounding errors in such a way that it equals 
some small non-zero number, unfortunately, there is no general rule which 
can be used to decide when a pivot should be taken to be zero. What 
tolerance to use in such a test should depend on the context. This question 
and the stability (without these two difficulties) of Gaussian method treated 
in [Laxxus, 2000]   

 
Gaussian Elimination Algorithm  

Given a matrix nnRGG ×∈= )1(  and a vector nRgg ∈= )1(  the 
following algorithm reduces the system  Gδ=g  to upper triangular form 

n1,2,..,i , 0 =≠iia , since 
nn

G
×

is positive and symmetric)  

For k=1:n-1  
For i=k+1:n 

      )(

)(

k
kk

k
ik

ik a
a

L =  

for j=k+1:n 
;)()()1( k

kjik
k

ij
k

ij aLaa −=+
 

end 
)()()1( k

kik
k

i
k

i gLgg −=+  
end  
end 
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4- Parallel algorithms for finding Newton direction:  
In order for the algorithm to be as efficient as possible, we must be 

able to exploit the memory hierarchy of the architecture we are running on. 
The memory hierarchy refers to different kinds of memories inside a 
computer. These range from very fast, expensive and therefore small 
memory at the top of the hierarchy, down to slow. Cheap and very large 
memory at the bottom (for more detail see [13]). Useful floating point 
operations can only be done at the top of hierarchy, in the registers. Since an 
entire large matrix cannot fit inside the registers, it must be moved up and 
down through the hierarchy. This takes time and for maximum performance 
should be optimized for each architecture.   

The Basic linear Algebra Subprograms BLAS are high performance 
routines for performing basic vector and matrix operations. The BLAS are 
specifically machine optimized to exploit the memory hierarchy. Level 1 
BLAS does vector-vector operation, Level 2 BLAS does matrix-vector 
operations and Level 3 BLAS does matrix-matrix operations (see [7]). 

In order to speed up Gaussian elimination, we wish to use as high a 
level of BLAS as possible. 

There are different ways to parallelize the Gaussian elimination 
method. In this paper, we consider two types of parallel Gaussian 
elimination, the first is based on the rows of the matrix G and the second 
uses columns of G. 

 
4-1: Parallel Gaussian Elimination Based on Rows (PGER) 

The most popular form of Gaussian elimination is defined by 
subtracting multiple of row of the matrix G from other rows in order to 
reduce (8) to an upper triangular system, which is then solved directly by 
back substitution. We assume that the computing system consists of n 
(where n is the dimension of the problem) identical independent processors 
also assume that the ith row of G is assigned to processors i. At the first 
stage, the first row of G is sent to all processors and then the elimination of 
the first elements of rows 2 to n can be done in parallel in the processors 
P2,……,Pn . 
The computation is continued by sending the new second row of the 
reduced matrix from processors P3,……,Pn , then doing the calculations in 
parallel ; and so on [see figure, 1] 
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P1     P2     ……  Pn 
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5..recieve 22 p from jL  and repeat  

     (4) for 
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6.receive the vector )1(δ  to find  
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g from )2(x  
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4- If G upper triangular  use back 
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ii δδ   

and 
)2(

)1(
)1(

nn

n
n a

g
=δ   

5- send )1(δ  to 1P  

Figure (1) tasks of processors in PGER 

This approach has two major drawbacks (See [9]) (i) there is a 
considerable communication of data between the processors at each stage  
(ii) the number of active processors decreases by one at each stage.  
 

4-2: Parallel Gaussian Elimination Based on Columns (PGEC) 
Let nRgx ∈)1()1( , and nnRGG ×∈= )1(  are given and assume that 

the computing system consists of n+1 identical independent processors and 
fully communicated processors, also assume that the jth column (Cj). of  the 
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matrix )1(G is assigned to processor j and column 
)1(g assigned to Pn+1 . 

The first step is to find ni
a
aL i

i ,......2;)1(
11

)1(
1

1 == in P1  then the values of Li1 can be 

sent to processor Pj (j=2,…..,n+1) , then the computation can be done in 
parallel in all processors  as follows : 
for each processors j =1,……,n  

niaaLa ijjjiij ,....,2;)2()1(
1

)1( ==−  

and processor n+1 compute the vector  )2(g  from  
nmggLg mmm ,....,2;2)1(

11
)1( ==−  

for next step (see figure (2) we can find 

ni
a
a

L i
i ,......3;)1(

11

)1(
1

1 ==  in 2p  and then send to processors P3,……,Pn+1 

and the process is repeated until the matrix G is transformed to upper 
triangular matrix, we denote it G(k) latter k steps and then backsubstitution is 
used to find the vector δ . 

The new point 1+kx  is found from equation (9). Again in this 
algorithm the number of active processors decreases by one at each stage. 
The main advantage of this algorithm is that we optimized data transfer 
between processors since we need only transfer elements instead of vectors, 
this will reduce the time required to complete the computations. 
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1nn21 p                                  p                                p                                              +p
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Figure (2) tasks of processors in PGEBC 

 

 
Numerical Example: 
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We give an example from [1] to illustrate the tasks of processors in 
the algorithms PGER and PGEC 
 

1-Minimize the function  

)10(                 .2342),,( 323121
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1. Using PGER: We need 3 processors , see figure (3) 
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Figure (3) Tasks of processors using PGER algorithm 
 

 

2- Using PGEC:  
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We need 4 processors to solve the problem given (10) as shown in figure (4) 
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2- do 

8-(-2)(-4)=0 

 

send it to P1 

 

 

 

 1-save  

[ ](1)
3 3 2 2 TC =  

2-receive L21 

,L31 

3-do  

2- (-2)(3)=8 

2-(3/2)(3)=-5/2   

[ ](2)
3 3 8 5/ 2 TC −

 

step(2) 

1- receive L22=2 

2- do  

-5/2-(-2)(8)=27/2 

[ ](2)
3 3 8 27/2 TC∴ =

 

send it to P1 

 1- save  

[ ](1) 3/ 2 1 1 Tg− = − − −
 

2-receive  L21 ,L31 

3- do  

-1-(-2)(-3/2)=-4 

-1-3/2(-3/2)=5/4 

[ ](2) 3/2 4 5/ 4 Tg∴ = − −

 

step(2) 

1- receive L22 

2- do  

5/4 -(-2)(-4)=-27/4 

[ ](3) 3/2 4 27/4g∴ = − − −
 

send it to P1 

 

 

Figure (4): Tasks of processors for PGEC algorithm 

 

5-Numerical experiments: 



Parallel Newtonian Optimization… 
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Both the amount of time required to complete the calculations and 
the subsequent round-off error depend on the number of floating arithmetic 
operations needed to solve a routine problem. The a mount of time required 
to perform multiplication or division on a computer is approximately the 
same and is considerably greater than that required to perform an addition or 
subtraction (see [3]). The total number of arithmetic operation depends on 
the size n as follows: 

Multiplications / divisions: 
33

2
3 nnn

−+    

Additions / subtractions: 
6

5
23

23 nnn
−+  

 
For large n, the total number of Multiplications and divisions is 

approximately 
3

3n  as is the total number of additions and subtractions.  

Hence if the all operations done on sequential computer then the 
accumulation error will be large. On the other hand, dividing the operation 
on different processors will reduce the amount of errors.  

As for the amount of time, If we assume t1 is time required to 
complete the calculations in sequential computer, we expect the time 
required to perform the same calculations in the parallel algorithms 
proposed is 

1
1

−p
t  where p number of processors. 

In the algorithms PGER and PGEC, there is no need to line search 
and matrix inversion, all operations are done using ordinary arithmetic 
operations. Also, the number of function evaluations are only (2), since the 
Gaussian method gives exact solutions shown in the given example.  
 
Conclusion: 

In this paper we proposed two parallel algorithms for solving 
unconstrained optimization problem. These methods can be extended to any 
non-homogenous linear system with positive definite matrix. These methods 
do not require to vector multiplication and matrix inversion as shown in the 
numerical example. 
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