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ABSTRACT 

This research uses new developments in redundancy 
resolution and real-time capability analysis to improve the 
ability of an articulated arm to satisfy task constraints. Task 
constraints are specified using numerical values of position, 
velocity, force, and accuracy. Inherent in the definition of task 
constraints is the number of output constraints that the system 
needs to satisfy. The relationship of this with the input space 
(degrees of freedom) defines the ability to optimize manipulator 
performance. This is done through a Task-Based Redundancy 
Resolution (TBRR) scheme that uses the extra resources to find 
a solution that avoids system constraints (joint limits, 
singularities, etc.) and satisfies task constraints. To avoid system 
constraints, we use well-understood criteria associated with the 
constraints. For task requirements, the robot capabilities are 
estimated based on kinematic and dynamic manipulability 
analyses. We then compare the robot capabilities with the user-
specified requirement values. This eliminates a confusing chore 
of selecting a proper set of performance criteria for a task at 
hand. The breakthrough of this approach lies in the fact that it 
continuously evaluates the relationship between task constraints 
and system resources, and when possible, improves system 
performance. This makes it equally applicable to redundant and 
non-redundant systems. The scheme is implemented using an 
object-oriented operational software framework and its 
effectiveness is demonstrated in computer simulations of a 10-
DOF manipulator. 
oceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use:
1. INTRODUCTION 
Kinematic redundancy gives robotic manipulators human 

arm-like versatility. This allows redundant robots to perform 
complex tasks that are otherwise impossible. With versatility, 
however, comes complexity of how to control the robot. 
Redundancy provides the robot with multiple choices from 
which a decision needs to be made in an intelligent manner as to 
finding the best solution. The process of solving the inverse 
kinematics problem of redundant robots is called redundancy 
resolution and methods for solving this problem are termed 
Redundancy Resolution Techniques (RRTs). 

Researchers have attempted to solve the redundancy 
problem for decades. Generalized inverses yield solutions that 
minimize the two-norm of the joint velocity vector or minimize 
the joint kinetic energy [19]. Liegeois [12] utilized redundancy 
to avoid joint limits by the gradient projection method.  
Redundancy is also used in avoiding obstacles [7], avoiding 
singularities [20], torque minimization [8], and so on. 

The notion of task oriented optimization for redundant 
manipulators is presented in [5] based on the task ellipsoid 
concept and robot’s velocity and force transmission ratios. The 
idea is to minimize a task-dependent performance measure 
defined as the deviation of the transmissions ratios along the 
task directions.  

Due to the realization that optimizing only a single criterion 
may not be sufficient in most tasks, the focus has been shifted to 
Multi-criteria Redundancy Resolution Problem (MRRP), where 
1 Copyright © 2004 by ASME 
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redundancy is used to achieve multiple performance objectives. 
Perhaps the most common technique of MRRP is to linearly 
combine all the criteria into a composite performance index. 
Criteria are given weights according to their perceived 
importance. The composite index is then used in such 
optimization schemes as the gradient projection method [12] or 
compact quadratic programming method [2]. 

Due to the popularity of the weighted sum method, a great 
deal of attention has been paid to devising the best weighting 
scheme. Several weighting strategies have been proposed, 
including a probability-based weighting technique [13], a fuzzy-
logic supervisor [6], and the parallel scheme [3]. 

Avoiding the weighted sum method, Pamanes and Zeghloul 
[16] performed the optimization of multiple criteria by assigning 
single performance measures to pre-specified points along the 
trajectory. Another approach called task prioritization divides a 
task into subtasks of different degrees of priority. Subtasks with 
higher priority are to be performed first and less important 
subtasks are satisfied only in the null space of the higher-priority 
tasks [14].  The task prioritization approach is also formulated in 
a recursive form to allow easy integration of any number of 
subtasks [18]. 

The major problem with traditional multi-criteria RRTs, is 
that almost all of them require that the user define a set of 
criteria and their relationships for a given task.  It is not 
straightforward to come up with a proper set of criteria, not to 
mention the relationships of one criterion to one another (i.e. 
which one is more important and by how much) because it is not 
obvious what kind of impact these criteria will have on the task. 
The main reasons are some of these criteria lack clear physical 
meanings and many of the criteria are coupled.  

For example, a velocity transmission ratio is a ratio between 
the magnitude of the EEF velocity in the direction of interest 
and the norm of the joint velocity vector. Maximizing this 
criterion means the EEF can move in the desired direction with 
minimal effort from the actuators. At the same time, maximizing 
velocity transmission ratio also means that the effect of joint 
errors is also maximized at the EFF, which is certainly not 
desirable. Generalized stiffness is the overall ability of the EEF 
to withstand a general load without causing too large a 
deflection. Maximizing this criterion can reduce the deflection at 
the EEF and therefore improve accuracy. Some questions arise.  
Should we minimize or maximize the velocity transmission ratio 
criterion? Under what circumstances should we maximize the 
generalized stiffness criterion and not the velocity transmission 
ratio or vice versa? Or we probably wish to maximize both of 
these criteria but which one should we give more import? 
Suppose the operator wants the robot to be able to exert 
maximum force in the Y direction. He can certainly try to 
maximize the force transmission ratio in the Y direction. 
However, what if the operator wants the robot to be able to exert 
maximum force in the Y direction and in the mean time achieve 
a certain level of accuracy tracking in the X direction? He could 
try to minimize the velocity transmission ratio in the X direction 
while maximizing the force transmission ratio in the Y direction. 
However, what value of weight should be assigned to each 
criterion? What if the accuracy needs to be maintained in the Z 
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direction too? To the best of the author’s knowledge, no work 
has been done that could address this problem. 

In this paper, we present an alternative approach called 
Task-Based Redundancy Resolution (TBRR).  Instead of 
optimizing multiple performance criteria in a conventional 
fashion, TBRR searches the null space for solutions that satisfy 
all the system constraints and task requirements in terms of 
speed, force, and accuracy to ensure that the task at hand can 
be carried out successfully and satisfactorily. This eliminates 
the perplexing process of selecting and combining multiple 
criteria that usually exists in traditional RRTs. 

2. ROBOTICS TASKS 
Because the whole purpose of TBRR is to exploit 

redundancy in such a way that tasks can be successfully 
executed, it is first mandatory to discuss what robotic tasks are 
in the context of this work. Robotic tasks can be described at 
many levels of abstraction. At the highest level, robots receive 
human-like commands such as “open the door” or “paint the 
panel” and then proceeds to execute the task. In a more 
common fashion, numerical task descriptions are given to the 
robot and the robot follows these commands.  Most robotic 
tasks can be represented by the numerical descriptions of the 
end-effector (EEF) path, speed, force, and accuracy. Robotic 
task executions are considered successful if no constraint is 
violated and all task requirements are satisfied. 

2.1 System Constraints 
System constraints are physical or operational limitations 

that may prevent the robot from successfully executing the task.  
Several types of constraints exist.  Among them are joint travel 
limits, joint torque limits, obstacles, singularities, etc. Not only 
does violating these constraints guarantee a failure in task 
execution, but it could also lead to environmental or system 
damage. These constraints usually have (constraint-based) 
criteria associated with them. One common characteristic of 
constraint-based criteria is that they generally have definite 
physical meanings that can easily be interpreted.  Two types of 
constraints are discussed here. 

 
Joint Travel Limit 

Joint travel limits are mechanical limits on the robot joints. 
During operation, all joints must be maintained within these 
limits. The Joint Range Availability (JRA) criterion is defined as 

 ,mid

,max

min 1 i i
JRA i

i

θ θ
γ

θ

 −
 = −
 
 

 (1) 

where iθ  is the joint displacement, ,midiθ the displacement at 
the midpoint of the travel range, ,maxiθ the displacement at the 
travel limits of joint i. JRA=1 signifies the best possible 
configuration where all joints are in the middle of their ranges. 
JRA=0 indicates that at least one joint is at its limit. It is 
necessary that the JRA criterion be kept above 0, preferably in 
the range of 0.05-0.1 throughout the operation. 
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Mathematical Singularity 
Several inverse kinematics schemes fail when the Jacobian 

matrix loses its rank at mathematical singularities. Therefore, it 
is crucial that singularities be avoided. Perhaps the most 
common criterion used in singularity avoidance is the Measure 
of Manipulability (MOM) defined as  

 det( )T
MOM JJγ =  (2) 

where J is the Jacobian matrix [20]. MOM approaches zero 
at singularities. In reality, however, if MOM falls below a 
positive threshold whose value is robot-dependent (it is even 
unit-dependent), it could cause errors in the inverse kinematics 
scheme. Therefore, it is necessary to keep MOM above the 
threshold. It should be noted that MOM has multiple physical 
interpretations, some of which are unclear. Many studies, 
including [16] and [20], used MOM as one of the performance 
objectives for maximization, which may not yield the best 
solution for a given task. MOM is used here strictly to avoid 
mathematical singularities. 

2.2 Task Requirements 
For a robotic task to be performed successfully, we must 

satisfy all the task requirements, which are defined in terms of 
desired speed, force, and accuracy at the EEF.  It is therefore 
necessary to be able to estimate the robot’s achievable speed, 
force, and accuracy and compare them to the desired values.  
This section discusses how to estimate these robot capabilities 
from the robot properties, actuator capacities, and robot 
configuration. 

 
Achievable EEF Speed 

The robot’s EEF velocity is related to the joint velocity by 
 x Jθ=  (3) 
where mx∈R  is the EEF velocity and nθ ∈R is the joint 

velocity vector. A normalized joint velocity vector is defined as 
 1Lθθ θ−= , (4) 

where { }max max max
1 2, , , nL diagθ θ θ θ= …  is an n n×  diagonal 

matrix consisting of the joint speed limits.  It is assumed here 
that the joint speed upper and lower limits are of equal 
magnitude but in the opposite direction.  It should be noted here 
that the use of the normalized joint velocity vector allows the 
following formulations to be valid even with the presence of 
both prismatic and revolute joints.  Substituting θ  from (4) into 
(3) yields 

 x JLθθ= . (5) 
The EEF velocity is limited by the velocity ellipsoid 

 ( )
2 12

2
1T T Tx JL J xθθ θ θ

−
= = ≤ . (6) 

Let ˆx vt=  where t̂  is the unit vector in the direction of 
interest in the task space.  Then, (6) becomes 

 ( ) 12 2ˆ ˆ 1T Tt JL J t vθ

−  ≤  
. (7) 

The maximum achievable EEF speed in the t̂  direction is 
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( )

max 12

1

ˆ ˆT T
v

t JL J tθ

−
= ± . (8) 

 
Achievable EEF Acceleration 

Note that section above describes the kinematic constraint of 
the achievable EEF speed but does not take into account the 
dynamics and the torque limits of the robot. These properties 
dictate how much the robot can accelerate its EEF, which can in 
turn be a limiting factor of the true EEF speed. 

Here we will determine the acceleration capability of a robot 
with the assumptions that the robot is stationary ( 0θ = ) and the 
EEF is not constrained. The analytics from this section is 
borrowed from [4] so the reader is encouraged to consult [4] for 
detailed derivations of these formulations. The dynamic 
manipulability ellipsoid of a redundant manipulator can be 
expressed as 

 ( ) ( ) ( )11 1 1
T Tx JM g JQJ x JM g

−− −+ + ≤  (9) 

where M is the n n×  inertia matrix, g is the gravity torque 
vector, and 2Q ML Mτ

−≡ .  { }max max max
1 2, , , nL diagτ τ τ τ= …  is an 

n n×  diagonal matrix consisting of the joint torque limits.  

Let ( ) 1TN JQJ
−

≡  and ˆx at=  where t̂  is the unit vector in 
the direction of interest in the task space.  Then (9) can be 
rewritten as 

 2 2 0f fα β γ+ + ≤  (10) 
where 

 

ˆ ˆ
ˆ

1

T

T
g

T
g g

t Nt
t Nx

x Nx

α

β

γ

=

= −

= −

. 

From (10), if 2 0β αγ− ≥ , the achievable acceleration is in 
the range of 

 
2 2

a
β β αγ β β αγ

α α
− − − − + −

≤ ≤ . (11) 

 
EEF Position Error 

Here we assume that the joint errors are so small that the 
EEF error vector x∆  is related to the joint error vector θ∆  
through the linear relation x J θ∆ = ∆ . Similar to the EEF speed, 
the EEF error is then constrained by 

 ( ) 12 1T Tx JL J xθ

−

∆∆ ∆ ≤ . (12) 

where { }max max max
1 2, , , nL diagθ θ θ θ∆ = ∆ ∆ ∆…  is an n n×  

diagonal matrix consisting of the maximum joint errors.  Similar 
to the achievable EEF speed in the previous section, the EEF 
position error can then be estimated as 

 
( ) 12

1

ˆ ˆT T
x

t JL J tθ

−

∆

∆ ≤ . (13) 

Although there are many more types of errors, in this work, 
we assume that each maximum joint error can be estimated by 
3 Copyright © 2004 by ASME 
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combining the joint encoder resolution with the joint deflection 
due to joint flexibility as shown by 

 [ ]max ,    1,...,i i i
C i nθ ε τ∆ = + =  (14) 

where εi is the encoder resolution of joint i, C is the joint 
compliance matrix, and τ is the joint torque vector.  Naturally, 
others joint errors can be added to this model. 

 
EEF Static Force Capability 

Considering the EEF force and gravity, the joint torques can 
be expressed as 

 TJ F gτ = + . (15) 
Define the normalize joint torque vector 

 1Lττ τ−= . (16) 
The force ellipsoid can be expressed as 

 ( ) ( )2 1
TT T TJ F g L J F gττ τ −= + + ≤ . (17) 

Let ˆF ft=  where t̂  is the unit vector in the direction of 
interest in the task space.  Then (17) can be rewritten as 

 2 0f fτ τ τα β γ+ + ≤ , (18) 
where 

 

2

2

2

ˆ ˆ

ˆ

1

T T

T T

T

t JL J t

g L J t

g L g

τ τ

τ τ

τ τ

α

β

γ

−

−

−

=

=

= −

. 

Solving (18) yields the robot’s static force capability as 

 
2 2

fτ τ τ τ τ τ τ τ

τ τ

β β α γ β β α γ
α α

− − − − + −
≤ ≤ . (19) 

3. TASK-BASED REDUNDANCY RESOLUTION 
We have defined robotic tasks, system constraints and task 

requirements. Now we can put all those components to work 
and introduce task-based redundancy resolution. 

3.1 TBRR Concept 
The concept of TBRR revolves around utilizing redundancy 

to make the robot execute the task successfully.  From the user’s 
point of view, his role is greatly simplified to specifying the 
critical values for the constraints and the desired values for the 
task requirements. Then, TBRR attempts to allocate the extra 
resources to help the robot perform the task without violating 
any constraint and satisfying the speed, accuracy, and force 
requirements. The remaining resources can then be utilized to 
minimize the energy consumption or other criteria as desired. 
Figure 1 illustrates the concept of TBRR.  

The red (or shaded) regions correspond to violations of the 
system constraints, shown here are joint limit, obstacle, and 
singularity. The yellow (or diagonal patterned) regions denote 
violations of the task requirements. Therefore only the null 
space in the middle is deemed acceptable in terms of satisfying 
the constraints and task requirements. The best configuration 
according to the efficiency-related criterion is then selected 
from this acceptable null space. 
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Figure 1.  TBRR Concept of Constraints and Task Requirements 

3.2 TBRR Scheme 
In earlier studies, we have proposed a performance-based 

multi-criteria RRT [11]. To find an optimal solution, this RRT 
uses a two-step approach consisting of a generation of candidate 
inverse kinematics solutions and a selection of solution via 
evaluations of performance criteria.  Basically, this method 
generates a finite number of solutions in the null space called 
“options” by means of direct search [9], ranks these options 
based on the performance objective function, and then selects 
the best ranked option. TBRR borrows this two-step approach. 
However, the solution selection step instead evaluates the 
system constraints and task requirements and filters out non-
compliant options. This results in an acceptable null space that is 
smaller than the original null space. This two-step TBRR 
scheme is depicted in Figure 2 and the detailed discussion is 
followed. 

 
Figure 2.  Flow Chart Of TBRR Implementation. 
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3.2.1 Generate Options 
Similar to the generate options scheme implemented earlier 

in [11], a two-level scheme is also employed in the generation of 
the candidate inverse kinematics solutions.  The first level uses 
the pseudoinverse of the Jacobian in solving the position-level 
inverse kinematics. 

Let θ  denote the current set of joint variables so that 
 ( )f xθ =  (20) 
gives the current EEF position.  The difference between the 

actual and the desired EEF positions is given by 
 x x xδ = − . (21) 
The required changes in the joint variables can be found 

using 
 #J xδθ δ=  (22) 
where #J  is the pseudoinverse of the Jacobian.  The new set 

of joint variables thus becomes 
 θ θ δθ= +  (23) 
which is iterated through the forward kinematics, using (20)-

(23), until 
 x x ε− <  (24) 

where ε  is a small positive-valued error tolerance for the 
EEF constraints. 

The second level uses the “direct search” technique [9] 
which is accomplished by introducing small perturbations to 
joint variables in a systematic fashion. These joint perturbations 
result in a change and an error in the EEF position. The 
required changes in the joint variables to compensate for this 
change can be computed by (22). For different sets of joint 
perturbations, we end up with a finite set of options that satisfy 
the same EEF constraints. The Generate Options scheme 
creates a finite number of inverse kinematics solutions around 
the current configuration of the manipulator without moving its 
end-effector. This is called self-motion and is shown in Figure 
3. 

 

 
Figure 3.  A Redundant 7-DOF Arm Performing Self-Motion. 
 

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
3.2.2 Solution Selection 
The next step is to select the best solution from the set of 

generated options. Traditionally, the best solution is determined 
by evaluating a composite performance index. Let 

( ) : ,    1n
i i Lψ θ → = …R R  denote the ith performance 

criterion defined as a function of the configuration nθ ∈R . For 
the sake of simplicity and without loss of generality, we assume 
that all performance criteria are to be minimized. Let 

1 2, , Kθ θ θ…  be the set of generated options from the previous 
section. A composite index for the jth configuration (option) can 
then be defined as 

 ( )
1

,      1
L

j
j i i

i

G w j Kψ θ
=

= =∑ …  (25) 

where 0 1iw≤ ≤  is the relative weight of the ith criterion. 
The weights can be fixed throughout the entire operation or 
dynamically changing according to some algorithms (see [3] 
for example). Another type of composite index is presented in 
[11] and is repeated here. 

 ( )
1

1 ,      1
L

j
j i i

i
H w j K

L
ψ θ

=

= =∑ …  (26) 

where 

 ( )
( ) ( ){ }
( ){ } ( ){ }

min

max min

j j
i ijj

i j j
i ijj

ψ θ ψ θ
ψ θ

ψ θ ψ θ

−
=

−
. (27) 

Notice that ( )j
iψ θ  is the normalized form of ( )j

iψ θ  and 

0 1jH≤ ≤ . The best configuration is the one that yields the 
minimum value for Gj or Hj. It should be noted that this two-
level approach is a sub-optimal but efficient way of resolving 
redundancy without the need for calculating the gradients of 
the objective functions. 

In TBRR, however, we apply the system constraints and 
task requirements to the redundancy resolution scheme. For 
each option, the constraint-based criteria are evaluated against 
the critical values specified by the user. The options that do not 
satisfy all the constraints are filtered out and only the options 
that do are passed on to the next step. Next, the robot 
capabilities are estimated and then evaluated against the desired 
values of the task requirements specified by the user. Again, the 
options that do not satisfy all the task requirements are filtered 
out. The best configuration can then be chosen from the 
remaining options by using the efficiency criterion to achieve 
long-term efficient operation or any other criterion as desired. 

It is not unusual that none of the generated options satisfies 
all constraints and/or task requirements.  In that case, two 
alternatives exist.  The first one is to notify the Generate Options 
scheme to generate a new set of options and apply TBRR again 
until at least one option that satisfies all constraints and task 
requirements is found.  There is, however, no guarantee that one 
such option exists.  It is quite possible that in that neighborhood 
the robot cannot physically satisfy all the constraints and task 
requirements.  This brings us to the second alternative: conflict 
5 Copyright © 2004 by ASME 
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resolution.  In conflict resolution, we would choose the option 
that least violates the constraints and/or task requirements. 

The concept of conflict resolution of constraints and task 
requirements is identical.  Therefore, we will only show that for 
the constraints and the same will be applied for the task 
requirements as well.  For simplicity and without loss of 
generality, we assume that all constraint-based criteria are to be 
maximized.  For each constraint, a deviation from the critical 
value is defined as: 

 

( )

0;             

100%;     , 0

;      , 0

i i

i i
i i i i

i

i i i i i

a c

c a
z a c c

c
c a a c c

 ≥

 −= × < > 
 
 − < =

 (28) 

where ai is the actual value, ci is the critical value of 
constraint i.  Here if the actual value is less than the critical 
value (i.e. the constraint is already satisfied), then the deviation 
is zero.  If not, then the deviation will have some positive value.  
Then, all the deviations can be added in a linear fashion to form 
the overall score. 

 i i
i

Z w z= ∑  (29) 

where wi is the weight for constraint i.  From (28) and (29), 
if the score is 0, then no constraint is violated.  Larger scores 
mean higher degrees of constraint violation.  Therefore, the 
solution with the lowest score will be chosen. 

Normally, all the weights should be set to 1.0 because all 
the constraints or task requirements (at their respective levels) 
are considered equally important.  However, one could argue 
that obstacle avoidance is more critical than singularity 
avoidance since if obstacles are not avoided, it could result in 
physical damages.  In that case, the weight of the constraint 
associated with obstacle avoidance can be raised higher. 

3.2.3 Buffering 
Most RRTs employ local optimization that relies only on the 

information at the time instant. TBRR is no exception. TBRR 
will attempt to satisfy whatever task requirement values that 
have been passed on to the scheme at that instant. Basically, 
TBRR does not influence the solution until one or more task 
requirement values approach the associated robot capabilities. 
This however can cause a delay and lead to unsatisfactory 
solutions because the robot may already be in a neighborhood 
where it cannot physically satisfy those specific task 
requirements. 

Therefore, TBRR would in general be more effective if it is 
supplied with the task requirement values plus some buffers. 
This is like giving the manipulator a performance reserve or an 
advance warning for each task requirement. For example if the 
force requirement is 200 N, then it may be better to add a buffer 
of say 20 N and pass the force requirement value of 220 N onto 
TBRR. This will allow the robot to adjust its configuration when 
its estimated force capability declines to 220 N, instead of 200 
N. The effect of buffering will be demonstrated in the 
simulations. 

Some may dispute that these buffer values are subjective 
and their inclusions introduce another burden to the user of the 
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scheme. It is argued here, however, that because these buffers 
have physical meanings that the user can easily relate to, 
buffering is much more straightforward than assigning the 
weights to performance criteria. In addition, a development of 
an adaptive buffering scheme is underway. Adaptive buffering 
would alleviate this burden from the user. 

3.3 Software Implementation 
TBRR software was developed using OSCAR (Operational 

Software Components for Advanced Robotics), which is an 
object-oriented framework implemented in C++ language for 
developing control software for intelligent machines [10][15]. 
This framework presents the applications developer with a 
generalized and extensible environment that supports 
mathematical abstractions, generalized forward and inverse 
kinematics, generalized dynamics, performance criteria, etc. for 
serial manipulators. TBRR software implementation abides by 
OSCAR’s principle concepts of generality, extensibility, and 
modularity. As a result, TBRR can be applied to serial 
manipulators of any geometry. Additional constraints or task 
requirements can also be easily added as desired. 

4. SIMULATIONS 
In this section, we evaluate the performance of the proposed 

redundancy resolution scheme by computer simulations. The 
goal of these simulations is to demonstrate that TBRR can 
improve the system performance over traditional RRTs when it 
comes to satisfying system constraints and task requirements.  

In order to accurately gauge the effectiveness of TBRR, we 
will run simulations on a spatial 10-DOF robot using traditional 
RRTs and TBRR and compare the results.  This 10-DOF robot 
was chosen due to its complexity. The RRTs chosen in this 
comparative study are the pseudoinverse (PI), an RRT using the 
composite performance index in (26) with a fixed weighting 
(FW) scheme. The pseudoinverse solution is used for baseline 
comparison. FW uses the same “generate options” scheme as 
TBRR and thus the only difference between TBRR and FW lies 
in how they select the best solution. By doing this, we 
emphasize the effect of TBRR and not the intricacy of the 
underlying search algorithm. 

The robot’s EEF is to follow the circular path with the 
diameter of 1 m, which is the lid of the barrel shown in Figure 4 
without changing its orientation. The position and size of the 
barrel are chosen so that its far end is close to the boundary of 
the robot workspace, thus forcing the robot to approach its 
boundary singularities. The path is trapezoidal at the velocity 
level and is divided into a total of 600 step points. The total 
execution time is 12 seconds. 

For FW, we use the JRA and MOM criteria to avoid joint 
limits and singularities. In addition, the following two 
performance criteria may be included in hope of improving the 
robot’s EEF force capability and accuracy. 
Torque Efficiency (TEF) 

 ( )T T
TEF u JJ uγ =  (30) 

where u is the unit vector in the direction of interest. TEF is 
the reciprocal of the force transmission ratio criterion defined in 
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[5]. Minimizing TEF will lead to increased force capability in u 
direction. In our simulations, u is set to be in the Z direction. 

 

 
Figure 4.  10-DOF robot tracking a circular path. 

Generalized Load Stiffness (GLS) 
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−
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∑  (31) 

where iλ  the ith eigenvalue of the stiffness matrix [17]. 
Minimizing GLS usually leads to smaller EEF deflections due to 
joint compliances; thus increased accuracy. 

In the experiments to be followed, we ran FW with different 
set of weights. Let w1, w2, w3, and w4 be the weights of JRA, 
MOM, GLS, and TEF criteria used in FW, respectively. These 
sets of weights are listed in Table I. 

TABLE I.  SETS OF WEIGHTS FOR FW 

 w1 w1 w3 w4 
FW1 1 1 0 0 
FW 2 1 1 1 0 
FW 3 1 1 0 1 
FW 4 1 1 1 1 

4.1 Experiment I 
The task requirements in terms of speed, force, and accuracy 

are listed in Table II.  

TABLE II.  TASK REQUIREMENTS FOR EXPERIMENT I. 

 Max. Speed 
(m/s; deg/s) 

Force 
(N; N-m) 

Accuracy 
(mm; deg) 

X 
Y 
Z 

0.4 
0.4 
0 

0 
0 

250 

1.5 
1.5 
1.5 

Roll 
Pitch 
Yaw 

0 
0 
0 

0 
0 
0 

2 
2 
2 

X 

Y 

Z 
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The simulation results are summarized in Table III. The 
numbers in the table represent the number of step points (out of 
600) in which a certain task requirement is not satisfied. Other 
task requirements not listed in the table are satisfied at all step 
points and therefore need not be compared. The total (in the 
fifth column) is merely a sum of the numbers in the previous 
three columns.  It represents the total number of task 
requirement violations for a given method along the trajectory.  
If all task requirements are considered equally important, then 
the total can be used as a single performance metric, indicating 
how well each method performs (the lower the total, the better). 
One exception is when any constraint violation occurs. Since 
constraints have higher priority, a method that produces 
constraint violation will be deemed a failure and inferior to a 
method without constraint violation regardless of the total. The 
asterisks next to PI and FW4 indicate that the joint limit 
constraint was violated during the operation and thus were 
physically impossible if we were to run them on a real robot. In 
TBRR1, buffering is not used, i.e. the task requirement values in 
Table I are used directly in the TBRR scheme. TBRR2 here 
adds a buffer of 10 N to the force requirement in Z. 

TABLE III.  NUMBER OF POINTS WHERE TASK REQUIREMENTS ARE NOT MET 
FOR EXPERIMENT I. 

Method Velocity 
in X 

Force 
in Z 

Accuracy 
in Z 

Total 

PI* 0 465 158 623 
FW1 0 174 0 174 
FW2 0 316 0 316 
FW3 67 153 0 220 
FW4* 0 87 0 87 
TBRR1 0 13 0 22 
TBRR2 0 0 0 0 

4.2 Experiment II 
To demonstrate the flexibility of TBRR, we changed some 

of the task requirements to the values shown in Table IV. Note 
that we reduce the force requirement in the Z direction and 
increase the accuracy requirements (by reducing the acceptable 
errors) in the X, Y, and Z directions from Experiment I. 

TABLE IV.  TASK REQUIREMENTS FOR EXPERIMENT II. 

 Max. Speed 
(m/s; deg/s) 

Force 
(N; N-m) 

Accuracy 
(mm; deg) 

X 
Y 
Z 

0.4 
0.4 
0 

0 
0 

100 

1.2 
1.2 
1.2 

Roll 
Pitch 
Yaw 

0 
0 
0 

0 
0 
0 

2 
2 
2 

 
The results for Experiment II are shown in Table V.  TBRR1 

again indicates TBRR without buffering. TBRR2 adds a buffer 
of 0.1 mm for the accuracy requirements in the Y and Z 
directions. 
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TABLE V.  NUMBER OF POINTS WHERE TASK REQUIREMENTS ARE NOT MET 
FOR EXPERIMENT II. 

Method Velocity 
in X 

Accuracy 
in Y 

Accuracy 
in Z 

Total 

PI* 0 101 139 340 
FW1 0 105 132 237 
FW2 0 168 211 379 
FW3 67 65 81 213 
FW4* 0 163 214 377 
TBRR1 0 68 62 130 
TBRR2 0 51 45 96 
 
As seen from both experiments, TBRR yielded much 

superior results to traditional RRTs that use the weighted sum 
method as a means to cope with multiple criteria. With 
appropriately chosen values of buffers, TBRR performed even 
better. In Experiment I, with TBRR and buffering, the robot 
satisfies the task requirements at every step point.  FW4 would 
have been the closest competition to TBRR had it not violated 
the joint limit constraint. As a result, FW1 was the second best 
behind TBRR. With changes in task requirements in Experiment 
II, TBRR with buffering still performs the best even though it 
cannot satisfy the task requirements at all step points. It is 
interesting to note that FW3 came in second behind TBRR in 
Experiment II while FW1 was second in Experiment I. One 
cannot predict which combination of weights will yield the best 
results when there are changes in the task requirements and this 
is a major drawback of traditional RRTs. 

We can clearly see the advantages of TBRR over traditional 
RRTs. Not only does it better satisfy the task requirements, but 
it also is able to adapt more effectively. For traditional RRTs, in 
order to best satisfy the task requirements, the user needs to 
figure a new combination of performance criteria when the task 
requirements change (as seen from the experiments that FW1 
was best for Experiment I whereas FW3 was best for 
Experiment II). This process is not trivial and requires in-depth 
experience. With TBRR, when the task requirements change, 
the user just needs to supply the TBRR scheme with a new set 
of task requirements and optionally a set of buffers. In real-
world complex tasks, since the task requirements can change 
rapidly, TBRR can save a lot of deployment time and money. 

In both experiments, an operational frequency of 
approximately 50 Hz was achieved by the TBRR scheme on a 
PC with Athlon XP 2400 processor with 512 MB of RAM 
running Windows XP. By contrast, FW with all four 
performance criteria ran at around 95 Hz on the same machine. 
Although TBRR does not run as fast as FW, its computational 
speed is acceptable for supervisory control applications. 

5. CONCLUSION 
We have presented the concepts of system constraints, task 

requirements, and task executability and applied them in a new 
task-based decision making scheme for redundant manipulators, 
called Task-Based Redundancy Resolution (TBRR). TBRR uses 
system constraints and task requirements to guide the 
redundancy resolution process. It computes the robot 
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capabilities and compares them with the task requirements to 
ensure the task can be executed. TBRR has been shown with 
computer simulations of a 10-DOF robot to be more effective 
and more responsive than traditional RRTs using the weighted 
sum method. 

Currently, two areas of further research are being actively 
pursued. One is the development of new robot capability 
estimations using a method called vector expansion, which is 
based on the ellipsoid expansion method [1]. The vector 
expansion method is aimed at providing more accurate 
estimates than the ellipsoid method used in this paper. Yet it is 
computationally efficient enough for use in real-time 
monitoring and control, and thus in TBRR. The other effort 
tries to improve the performance of TBRR through a method 
called adaptive buffering. Adaptive buffering uses soft 
computing techniques (fuzzy logic, evolutionary algorithms, 
etc.) and online information to actively adjust the sizes of the 
buffers in real-time. 
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