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We establish some unique fixed point theorems in complete partial metric spaces for generalized weakly 𝑆-contractive mappings,
containing two altering distance functions under certain assumptions. Also, we discuss some examples in support of our main
results.

1. Introduction and Preliminaries

An abstract metric space was first introduced and studied
by the French mathematician Frechet [1] in 1906. Many
researchers have generalized the concept of metric space
as cone metric space, semimetric space, quasimetric space,
and so forth, along with the generalization of contraction
mappings with applications (see [2–7]). The best approxima-
tions of functions in locally convex spaces were discussed by
Mishra et al. [8] andMishra [9].The degree of approximation
of signals in Lp-space is established in [10].

Matthews [11, 12] initiated the concept of partial metric
space as another generalization of metric space to study the
denotational semantics of dataflow networks. Also,Matthews
[11] generalized the Banach contraction principle to the class
of partial metric spaces as follows: let (𝑋, 𝑝) be a complete
partial metric space, and then a self-mapping 𝑇 on 𝑋,
satisfying

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (1)
where 0 ≤ 𝑘 < 1, has a unique fixed point.

After the Matthews [11] historical contribution, several
researchers have established somemore fixed point theorems
in partial metric spaces and also discussed its topological
properties (see [13–15] and references therein).

First, we recall some useful definitions and results, which
is useful throughout the paper.

Definition 1 (see [11, 12]). Let 𝑋 be a nonempty set, and a
mapping 𝑝 : 𝑋 × 𝑋 → [0,∞) satisfying the following
conditions is called a partial metric space on 𝑋:

(𝑃
1
) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),

(𝑃
2
) 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇔ 𝑥 = 𝑦,

(𝑃
3
) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),

(𝑃
4
) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧),

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, and the pair (𝑋, 𝑝) is called a partial
metric space. In the rest of the paper, (𝑋, 𝑝) represents a
partial metric space equipped with a partial metric 𝑝, unless
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otherwise stated. Let (𝑋, 𝑝) be a partial metric space and then
let a function 𝑑

𝑝
: 𝑋 × 𝑋 → [0,∞) be defined as

𝑑
𝑝
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑦, 𝑦) − 𝑝 (𝑥, 𝑥) (2)

which is a metric on𝑋. Consider the function 𝑑
𝑚

: 𝑋×𝑋 →

[0,∞) such that

𝑑
𝑚

(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) , 𝑝 (𝑥, 𝑦) − 𝑝 (𝑦, 𝑦)}

= 𝑝 (𝑥, 𝑦) − min {𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦)} ;

(3)

then 𝑑
𝑚 is a metric on 𝑋, and both of the above metrics 𝑑

𝑝

and 𝑑
𝑚 are equivalent [16].

Remark 2 (see [17]). In a partial metric space (𝑋, 𝑝),

(1) 𝑝(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦 but if 𝑥 = 𝑦, then 𝑝(𝑥, 𝑦) may
not be zero,

(2) 𝑝(𝑥, 𝑦) > 0 for all 𝑥 ̸= 𝑦,

for all 𝑥, 𝑦 ∈ 𝑋.

Example 3 (see [16]). Consider a mapping 𝑝 : [0,∞) ×

[0,∞) → [0,∞) such that 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all
𝑥, 𝑦 ∈ [0,∞). Then 𝑝 will satisfy all the property of partial
metric, and hence ([0,∞), 𝑝) is a partialmetric space but fails
to be the condition of 𝑝(𝑥, 𝑥) = 0 for all nonzero 𝑥 ∈ [0,∞).
Therefore ([0,∞), 𝑝) is not a metric space.

Example 4 (see [16, 18]). Let𝑝
𝑖
: 𝑋×𝑋 → [0,∞) (𝑖 = 1, 2, 3)

be three mappings and for any arbitrary mapping 𝑓 : 𝑋 →

[0,∞) such that

𝑝
1
(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) + 𝑝(𝑥, 𝑦),

𝑝
2
(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) + max{𝑓(𝑥), 𝑓(𝑦)},

𝑝
3
(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) + 𝑟,

for all 𝑟 ≥ 0, where (𝑋, 𝑑) and (𝑋, 𝑝) are a metric space and a
partial metric space, respectively. Then each 𝑝

𝑖
is the partial

metric on 𝑋.

Definition 5 (see [19]). In a partial metric space (𝑋, 𝑝), (1) a
sequence {𝑥

𝑛
} is said to be convergent to a point 𝑥 ∈ 𝑋 if and

only if lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥) = 𝑝(𝑥, 𝑥).

(2) A sequence {𝑥
𝑛
} is called Cauchy sequence if and only

if lim
𝑛,𝑚→∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) is finite.

(3) If every Cauchy sequence {𝑥
𝑛
} converges to a point

𝑥 ∈ 𝑋 such that

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 𝑝 (𝑥, 𝑥) , (4)

then (𝑋, 𝑝) is known as complete partial metric space.

Definition 6 (see [20, 21]). A self-mapping𝜓 on a positive real
number is said to be an altering distance function, if it holds
for all 𝑡 ∈ [0,∞) such that

(1) 𝜓 is continuous and nondecreasing,
(2) 𝜓(𝑡) = 0 ⇔ 𝑡 = 0.

The generalization of contractive mappings into 𝐶-
contractive mappings has been introduced by Chatterjea [6].

Definition 7 (see [2, 21]). A self-mapping 𝑇 on a metric space
(𝑋, 𝑑), satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤
1

2
[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑥, 𝑦)]

− 𝜙 (𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑇𝑥, 𝑦)) ,

(5)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 : [0,∞)
2

→ [0,∞) is a continuous
mapping with 𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 = 0 is called
weakly 𝐶-contractive mapping or a weak 𝐶-contraction.

Shukla and Tiwari [3] have introduced the concept of
weakly 𝑆-contractive mappings.

Definition 8 (see [3]). A self-mapping𝑇 on a completemetric
space (𝑋, 𝑑) is said to be weakly 𝑆-contractive mapping or a
weak 𝑆-contraction, if the following inequality holds:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤
1

3
[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑇𝑥, 𝑦) + 𝑑 (𝑥, 𝑦)]

− 𝜙 (𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑇𝑥, 𝑦) , 𝑑 (𝑥, 𝑦)) ,

(6)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 : [0,∞)
3

→ [0,∞) is a continuous
function with 𝜙(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 = 0.

Lemma 9 (see [7, 14]). In a partial metric space (𝑋, 𝑝),
if a sequence {𝑥

𝑛
} is convergent to a point 𝑥 ∈ 𝑋, then

lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑥) ≤ 𝑝(𝑥, 𝑧) for all 𝑧 ∈ 𝑋. Also, if 𝑝(𝑥, 𝑥) = 0,

then
lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑧) = 𝑝 (𝑥, 𝑧) ∀𝑧 ∈ 𝑋. (7)

Lemma 10 (see [13]). If {𝑥
2𝑛

} is not a Cauchy sequence in
(𝑋, 𝑝) and two sequences {𝑚(𝑘)} and {𝑛(𝑘)} of positive integers
such that 𝑛(𝑘) > 𝑚(𝑘) > 𝑘, then the four sequences

𝑝 (𝑥
2𝑚(𝑘)

, 𝑥
2𝑛(𝑘)+1

) , 𝑝 (𝑥
2𝑚(𝑘)

, 𝑥
2𝑛(𝑘)

) ,

𝑝 (𝑥
2𝑚(𝑘)−1

, 𝑥
2𝑛(𝑘)+1

) , 𝑝 (𝑥
2𝑚(𝑘)−1

, 𝑥
2𝑛(𝑘)

)

(8)

tend to 𝜀 > 0, when 𝑘 → ∞.

Lemma 11 (see [13, 16]). 𝐼𝑛 a partial metric space (𝑋, 𝑝):
(1) a sequence {𝑥

𝑛
} is a Cauchy if and only if it is a Cauchy

in (𝑋, 𝑑
𝑝
),

(2) 𝑋 is complete if and only if it is complete in (𝑋, 𝑑
𝑝
).

In addition, lim
𝑛→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑥) = 0 if and only if

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥) = 𝑝 (𝑥, 𝑥) . (9)

If {𝑥
𝑛
} is a Cauchy sequence in the metric space (𝑋, 𝑑

𝑝
),

we have
lim
𝑛,𝑚→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑥
𝑚
) = 0 (10)

and therefore, by definition of 𝑑𝑝, we have

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (11)



Journal of Function Spaces 3

2. Main Results

Theorem 12. Let (𝑋, 𝑝) be a complete partial metric space
and 𝜓 and 𝜑 be two altering distance functions such that
𝜓(𝑡)−𝜑(𝑡) ≥ 0 ∀𝑡 ≥ 0.Then the self-continuous nondecreasing
mapping 𝑇 on 𝑋, satisfying the condition

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜑(
𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑦)

3
)

− 𝜙 (𝑝 (𝑥, 𝑇𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑦)) ,

(12)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 : [0,∞)
3

→ [0,∞) is a continuous
function such that 𝜙(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 = 0,
has a unique fixed point in 𝑋.

Proof. First we prove that if fixed point of 𝑇 exists, then it
will be unique. On the contrary, we consider two fixed points
𝑧, 𝑢 ∈ 𝑋 of 𝑇 such that 𝑧 ̸= 𝑢. Then by (12), we have

𝜓 (𝑝 (𝑧, 𝑢)) = 𝜓 (𝑝 (𝑇𝑧, 𝑇𝑢))

≤ 𝜑(
𝑝 (𝑧, 𝑇𝑢) + 𝑝 (𝑇𝑧, 𝑢) + 𝑝 (𝑧, 𝑢)

3
)

− 𝜙 (𝑝 (𝑧, 𝑇𝑢) , 𝑝 (𝑇𝑧, 𝑢) , 𝑝 (𝑧, 𝑢))

󳨐⇒ 0 ≤ (𝜓 − 𝜑) (𝑝 (𝑧, 𝑢))

≤ −𝜙 (𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢)) .

(13)

By the property of 𝜙, we obtain

𝜙 (𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢)) = 0 󳨐⇒ 𝑝 (𝑧, 𝑢) = 0. (14)

Using Remark 2, we obtain 𝑧 = 𝑢, which is a contradiction
with respect to 𝑧 ̸= 𝑢. Thus, we conclude that 𝑇 has a unique
fixed point in 𝑋.

Next, we show that the mappings𝑇, satisfying (12), have a
fixed point.We choose an arbitrary point𝑥

0
in𝑋. If 𝑥

0
= 𝑇𝑥
0
,

then the theorem follows trivially. Now, we suppose that 𝑥
0
≤

𝑇𝑥
0
and we choose 𝑥

1
∈ 𝑋 such that 𝑇𝑥

0
= 𝑥
1
. Since 𝑇 is a

nondecreasing function, then we have 𝑥
0
≤ 𝑥
1
= 𝑇𝑥
0
≤ 𝑇𝑥
1
.

Again, let 𝑥
2
= 𝑇𝑥
1
. Then we get

𝑥
0
≤ 𝑥
1
= 𝑇𝑥
0
≤ 𝑇𝑥
1
= 𝑥
2
≤ 𝑇𝑥
2
. (15)

Proceeding with this work, we obtained a sequence {𝑥
𝑛
} in𝑋

such that 𝑥
𝑛+1

= 𝑇𝑥
𝑛
and

𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ 𝑥
3
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ 𝑥
𝑛+1

⋅ ⋅ ⋅ . (16)

Supposing that 𝑝(𝑥
𝑛0
, 𝑥
𝑛0+1

) = 0 for some 𝑛
0

≥ 0, then by
Remark 2 we have

𝑥
𝑛0

= 𝑥
𝑛0+1

= 𝑇𝑥
𝑛0
, that is, 𝑥

𝑛0
is a fixed point of 𝑇.

(17)

Again, we suppose that 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

) > 0 ∀𝑛 ≥ 0. Firstly,
we prove that the sequence {𝑝(𝑥

2𝑛
, 𝑥
2𝑛+1

)} is nonincreasing.
Suppose this is not true, and then

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) ≥ 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) ∀𝑛 ≥ 0. (18)

Putting 𝑥 = 𝑥
2𝑛−1

and 𝑦 = 𝑥
2𝑛
in (12) and using (𝑃

4
), we have

𝜓 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

))

= 𝜓 (𝑝 (𝑇𝑥
2𝑛−1

, 𝑇𝑥
2𝑛

))

≤ 𝜑(
𝑝 (𝑥
2𝑛−1

, 𝑇𝑥
2𝑛

) + 𝑝 (𝑇𝑥
2𝑛−1

, 𝑥
2𝑛

) + 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)

3
)

− 𝜙 (𝑝 (𝑥
2𝑛−1

, 𝑇𝑥
2𝑛

) , 𝑝 (𝑇𝑥
2𝑛−1

, 𝑥
2𝑛

) , 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)) .

(19)

Using (𝑃
4
) above, we get

𝜓 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

))

≤ 𝜑(
2𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) + 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)

3
)

− 𝜙 (𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) , 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)) .

(20)

Using (18) above, we have

0 ≤ (𝜓 − 𝜑) (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

))

≤ −𝜙 (𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) , 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)) .

󳨐⇒ 𝜙 (𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) , 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)) = 0

󳨐⇒ 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) = 0, 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) = 0,

𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) = 0

∀𝑛 ≥ 0

󳨐⇒ 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 0 ∀𝑛 ≥ 0,

(21)

which contradicts our assumption that 𝑝(𝑥
2𝑛−1

, 𝑥
2𝑛+1

) > 0

for all 𝑛 ≥ 0. Thus, we deduce that {𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

)} is a
nonincreasing sequence. Therefore

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) ≤ 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) ∀𝑛 ≥ 0. (22)

Since {𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

)} is a monotonically decreasing and
bounded below sequence in 𝑋, then there exists 𝑟 ≥ 0 such
that

lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 𝑟. (23)

Using (23) and letting 𝑛 → ∞ in (20), we get

0 ≤ (𝜓 − 𝜑) (𝑟)

≤ −𝜙 ( lim
𝑛→∞

𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) , lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) , 𝑟)

󳨐⇒ 𝜙( lim
𝑛→∞

𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) , lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) , 𝑟) = 0

󳨐⇒ lim
𝑛→∞

𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛+1

) = 0,

lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛

) = 0, 𝑟 = 0.

(24)
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Then (23) reduces to

lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 0 ∀𝑛 ≥ 0. (25)

Now, we have required proving that the sequence {𝑥
𝑛
} is a

Cauchy sequence in the metric space (𝑋, 𝑑
𝑝
) and so in (𝑋, 𝑝)

by Lemma 11. On the contrary, that is, the sequence {𝑥
2𝑛

} not
being a Cauchy sequence in (𝑋, 𝑑

𝑝
), sequences in Lemma 10

tend to 𝜀, when 𝑘 → ∞. Now, we put 𝑥 = 𝑥
2𝑛(𝑘)+1

and 𝑦 =

𝑥
2𝑚(𝑘)

in (12). We have

𝜓 (𝑝 (𝑥
2𝑛(𝑘)+1

, 𝑥
2𝑚(𝑘)

))

= 𝜓 (𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑇𝑥
2𝑚(𝑘)−1

))

≤ 𝜑 ((𝑝 (𝑥
2𝑛(𝑘)

, 𝑇𝑥
2𝑚(𝑘)−1

) + 𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)

+𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)) (3)
−1

)

− 𝜙 (𝑝 (𝑥
2𝑛(𝑘)

, 𝑇𝑥
2𝑚(𝑘)−1

) , 𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

) ,

𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

))

= 𝜑 ((𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)

) + 𝑝 (𝑥
2𝑛(𝑘)+1

, 𝑥
2𝑚(𝑘)−1

)

+𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)) (3)
−1

)

− 𝜙 (𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)

) , 𝑝 (𝑥
2𝑛(𝑘)+1

, 𝑥
2𝑚(𝑘)−1

) ,

𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)) .

(26)

Taking 𝑘 → ∞ and applying Lemma 10 in the above
inequality, we have

0 ≤ (𝜓 − 𝜑) (𝜀) ≤ −𝜙 (𝜀, 𝜀, 𝜀)

󳨐⇒ 𝜙 (𝜀, 𝜀, 𝜀) = 0 󳨐⇒ 𝜀 = 0,

(27)

which is a contradiction with respect to 𝜀 > 0. Thus {𝑥
2𝑛

}

is a Cauchy sequence in (𝑋, 𝑑
𝑝
) and so in (𝑋, 𝑝). Since

(𝑋, 𝑝) is complete, (𝑋, 𝑑
𝑝
) is also complete (by Lemma 11).

Therefore, the Cauchy sequence {𝑥
𝑛
} converges in (𝑋, 𝑑

𝑝
);

that is, lim
𝑛→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑧) = 0; then by Lemma 11, we have

𝑝 (𝑧, 𝑧) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑧) = lim

𝑛,𝑚→∞
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) . (28)

By Lemma 11, we get lim
𝑛,𝑚→∞

𝑑
𝑝
(𝑥
𝑛
, 𝑥
𝑚
) = 0. So, by

definition of 𝑑𝑝, we get

𝑑
𝑝
(𝑥
𝑛
, 𝑥
𝑚
) = 2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) − 𝑝 (𝑥

𝑛
, 𝑥
𝑛
) − 𝑝 (𝑥

𝑚
, 𝑥
𝑚
) . (29)

Using (24) and taking 𝑛,𝑚 → ∞ in the above inequality, we
obtain

lim
𝑛,𝑚→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (30)

From (28) and (30), we get

𝑝 (𝑧, 𝑧) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑧) = 0. (31)

By (𝑃
4
), we obtain

𝑝 (𝑧, 𝑇𝑧) ≤ 𝑝 (𝑧, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑇𝑧) − 𝑝 (𝑥

𝑛
, 𝑥
𝑛
) . (32)

Taking 𝑛 → ∞ and using (31), (24), and Lemma 9 in the
above inequality, we have

𝑝 (𝑧, 𝑇𝑧) ≤ 𝑝 (𝑇𝑧, 𝑇𝑧) . (33)

From (𝑃
2
), we have

𝑝 (𝑇𝑧, 𝑇𝑧) ≤ 𝑝 (𝑧, 𝑇𝑧) . (34)

By (33) and (34), we get

𝑝 (𝑧, 𝑇𝑧) = 𝑝 (𝑇𝑧, 𝑇𝑧) . (35)

From (35) and (12), we obtain
𝜓 (𝑝 (𝑧, 𝑇𝑧)) = 𝜓 (𝑝 (𝑇𝑧, 𝑇𝑧))

≤ 𝜑(
𝑝 (𝑧, 𝑇𝑧) + 𝑝 (𝑇𝑧, 𝑧) + 𝑝 (𝑧, 𝑧)

3
)

− 𝜙 (𝑝 (𝑧, 𝑇𝑧) , 𝑝 (𝑇𝑧, 𝑧) , 𝑝 (𝑧, 𝑧)) .

(36)

Using (31) and property of𝜑 in the above inequality, we obtain

0 ≤ (𝜓 − 𝜑) 𝑝 (𝑧, 𝑇𝑧) ≤ −𝜙 (𝑝 (𝑧, 𝑇𝑧) , 𝑝 (𝑇𝑧, 𝑧) , 0)

󳨐⇒ 𝜙 (𝑝 (𝑧, 𝑇𝑧) , 𝑝 (𝑇𝑧, 𝑧) , 0) = 0 󳨐⇒ 𝑝 (𝑧, 𝑇𝑧) = 0

󳨐⇒ 𝑇𝑧 = 𝑧.

(37)

Thus, 𝑧 is a unique fixed point of 𝑇 in 𝑋.

Example 13. Let ([0, 1], 𝑝) be a complete partial metric space
defined by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} ∀𝑥, 𝑦 ∈ [0, 1]. Consider a
self-map𝑇 on [0, 1] such that𝑇𝑥 = 3𝑥

2
+2𝑥
3. Also, we define

𝜓, 𝜑 : [0,∞) → [0,∞) such that 𝜓(𝑡) = 𝑡 + 𝑡
2
/2, 𝜑(𝑡) =

3𝑡
2
+ 𝑡
3, respectively, and 𝜙 : [0,∞)

3
→ [0,∞) such that

𝜙(𝑝, 𝑞, 𝑟) = (𝑝 + 𝑞 + 𝑟)
2
/54.

If 𝑥 ≥ 𝑦, then

𝑝 (𝑇𝑥, 𝑇𝑦) = max {𝑇𝑥, 𝑇𝑦} = 𝑇𝑥 = 3𝑥
2
+ 2𝑥
3
,

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) = 3𝑥
2
+ 2𝑥
3
+

9

2
𝑥
4
+ 6𝑥
5
+ 2𝑥
6
,

𝜑 (
𝑝 (𝑥, 𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑦)

3
)

= (2𝑥 + 3𝑥
2
+ 2𝑥
3
)
2

(3 + 2𝑥 + 3𝑥
2
+ 2𝑥
3
) ,

𝜙 (𝑝 (𝑥, 𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑦)) =

(2𝑥 + 3𝑥
2
+ 2𝑥
3
)
2

54
.

(38)

We observe that, for all 𝑥, 𝑦 ∈ [0, 1],

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜑(
𝑝 (𝑥, 𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑇𝑦)

3
)

− 𝜙 (𝑝 (𝑥, 𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑦)) .

(39)

Similarly, we can show the result for 𝑦 ≥ 𝑥. Thus, (12) holds
for all 𝑥, 𝑦 ∈ [0, 1] and satisfies all the requirements of
Theorem 12. So, 0 is the unique fixed point of 𝑇.
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Corollary 14. Let (𝑋, 𝑝) be a complete partial metric space.
Then the self-continuous nondecreasing mapping 𝑇 on 𝑋,
satisfying the condition

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓(
𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑦)

3
)

− 𝜙 (𝑝 (𝑥, 𝑇𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑦))

(40)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓 and 𝜙 which are the same as in
Theorem 12, has a unique fixed point in 𝑋.

Corollary 15. In Corollary 14, if partial metric space (𝑋, 𝑝) is
replaced by usual metric space (𝑋, 𝑑), then it reduces to the
result of [21].

Corollary 16. In Theorem 12, if we take 𝜓(𝑡) = 𝜙(𝑡) = 𝑡 and
partial metric space (𝑋, 𝑝) is replaced by usual metric space
(𝑋, 𝑑), then we obtain the main result of [3], which unifies the
main result of [2].

Corollary 17. If we put 𝑝(𝑥, 𝑦) = 0 in (12) and let 𝜙 : [0,∞)×

[0,∞) → [0,∞) be a function, such that 𝜙(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦 = 0, then Theorem 12 reduces to Theorem 2.1 of
[13].

Theorem 18. Let (𝑋, 𝑝) be a complete partial metric space and
𝜓 and 𝜑 be two altering distance functions such that 𝜓(𝑡) −

𝜑(𝑡) ≥ 0 ∀𝑡 ≥ 0. Then the two self-continuous nondecreasing
mappings 𝑆 and 𝑇 on 𝑋, satisfying the condition

𝜓 (𝑝 (𝑇𝑥, 𝑆𝑦)) ≤ 𝜑(
𝑝 (𝑥, 𝑆𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑦)

3
)

− 𝜙 (𝑝 (𝑥, 𝑆𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑦))

(41)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙 : [0,∞)
3

→ [0,∞) is a continuous
function such that 𝜙(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 = 0,
having a unique common fixed point in 𝑋.

Proof. First, we show that the common fixed point of 𝑇 and
𝑆 is unique, if it exists. On the contrary, we assume two
common fixed points 𝑧, 𝑢 ∈ 𝑋 of 𝑇 and 𝑆 such that 𝑧 ̸= 𝑢.
Then by (41), we get

𝜓 (𝑝 (𝑧, 𝑢)) = 𝜓 (𝑝 (𝑇𝑧, 𝑆𝑢))

≤ 𝜑(
𝑝 (𝑧, 𝑆𝑢) + 𝑝 (𝑇𝑧, 𝑢) + 𝑝 (𝑧, 𝑢)

3
)

− 𝜙 (𝑝 (𝑧, 𝑆𝑢) , 𝑝 (𝑇𝑧, 𝑢) , 𝑝 (𝑧, 𝑢))

󳨐⇒ 0 ≤ (𝜓 − 𝜑) (𝑝 (𝑧, 𝑢))

≤ −𝜙 (𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢)) .

(42)

Property of 𝜙 implies that

𝜙 (𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢) , 𝑝 (𝑧, 𝑢)) = 0 󳨐⇒ 𝑝 (𝑧, 𝑢) = 0 󳨐⇒ 𝑧 = 𝑢,

(43)

which contradicts our assumption that 𝑢 ̸= 𝑧. Therefore, we
conclude that 𝑇 and 𝑆 have a unique common fixed point in
𝑋.

Now, we prove that the mappings 𝑆 and 𝑇, satisfying (41),
have a common fixed point in 𝑋. We choose an arbitrary
point 𝑥

0
in 𝑋. If 𝑥

0
= 𝑆𝑥
0
and 𝑥

0
= 𝑇𝑥

0
, then theorem

follows trivially. So, we suppose that 𝑥
0

̸= 𝑆𝑥
0
and 𝑥

0
̸= 𝑇𝑥
0
.

Then we construct a sequence {𝑥
𝑛
} in 𝑋, in such a way that

𝑆𝑥
2𝑛+1

= 𝑥
2𝑛+2

and 𝑇𝑥
2𝑛

= 𝑥
2𝑛+1

∀𝑛 ≥ 0.
Let us assume that 𝑝(𝑥

2𝑛
, 𝑥
2𝑛+1

) > 0 and 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+2

) >

0 ∀𝑛 ≥ 0. Then, we can prove that 𝑆 and 𝑇 have a common
fixed point in 𝑋. Firstly, we show that {𝑝(𝑥

2𝑛
, 𝑥
2𝑛+1

)} is
nonincreasing sequence. Suppose this is not true, and then

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) ≥ 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) ∀𝑛 ≥ 0. (44)

Putting 𝑥 = 𝑥
2𝑛
and 𝑦 = 𝑥

2𝑛+1
in (41) and using (𝑃

4
), we get

𝜓 (𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

))

= 𝜓 (𝑝 (𝑇𝑥
2𝑛

, 𝑆𝑥
2𝑛+1

))

≤ 𝜑(
𝑝 (𝑥
2𝑛

, 𝑆𝑥
2𝑛+1

) + 𝑝 (𝑇𝑥
2𝑛

, 𝑥
2𝑛+1

) + 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)

3
)

− 𝜙 (𝑝 (𝑥
2𝑛

, 𝑆𝑥
2𝑛+1

) , 𝑝 (𝑇𝑥
2𝑛

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)) .

(45)

Using (𝑃
4
) above, we get

𝜓 (𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

))

≤ 𝜑(
2𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) + 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

3
)

− 𝜙 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) , 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)) .

(46)

By (44) and (46), we obtain

0 ≤ (𝜓 − 𝜑) (𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

))

≤ −𝜙 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) , 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

))

󳨐⇒ 𝜙 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) , 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)) = 0

󳨐⇒ 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) = 0, 𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 0,

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) = 0

∀𝑛 ≥ 0,

(47)

which is a contradiction with respect to 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

) > 0

and 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+2

) > 0 ∀𝑛 ≥ 0. Therefore {𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

)} is a
nonincreasing sequence in 𝑋. Thus, we have

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) ≤ 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

) ∀𝑛 ≥ 0. (48)

Since {𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

)} is a monotonically decreasing sequence
in 𝑋, then there exists 𝑟 ≥ 0 such that

lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 𝑟. (49)
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Letting 𝑛 → ∞ in (46) and using (49), consequently we get

0 ≤ (𝜓 − 𝜑) (𝑟)

≤ −𝜙 ( lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) , lim
𝑛→∞

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) , 𝑟)

󳨐⇒ 𝜙( lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) , lim
𝑛→∞

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) , 𝑟) = 0

󳨐⇒ lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+2

) = 0, lim
𝑛→∞

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

) = 0, 𝑟 = 0.

(50)

Then (49) will get reduced to

lim
𝑛→∞

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 𝑟 = 0 ∀𝑛 ≥ 0. (51)

Now, we have to show that {𝑥
𝑛
} is a Cauchy sequence in

the partial metric space (𝑋, 𝑝). By similar arguments as used
in case of provingTheorem 12 we find that the sequence {𝑥

2𝑛
}

is a Cauchy sequence. Putting 𝑥 = 𝑥
2𝑛(𝑘)

and 𝑦 = 𝑥
2𝑚(𝑘)−1

in
(41), we have

𝜓 (𝑝 (𝑥
2𝑛(𝑘)+1

, 𝑥
2𝑚(𝑘)

))

= 𝜓 (𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑆𝑥
2𝑚(𝑘)−1

))

≤ 𝜑 ((𝑝 (𝑥
2𝑛(𝑘)

, 𝑆𝑥
2𝑚(𝑘)−1

) + 𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)

+𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)) (3)
−1

)

− 𝜙 (𝑝 (𝑥
2𝑛(𝑘)

, 𝑆𝑥
2𝑚(𝑘)−1

) , 𝑝 (𝑇𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

) ,

𝑝 (𝑥
2𝑛(𝑘)

, 𝑥
2𝑚(𝑘)−1

)) .

(52)

Taking 𝑘 → ∞ and using Lemma 10 in the above inequality,
we obtain

0 ≤ (𝜓 − 𝜑) (𝜀) ≤ −𝜙 (𝜀, 𝜀, 𝜀) 󳨐⇒ 𝜙 (𝜀, 𝜀, 𝜀) = 0 󳨐⇒ 𝜀 = 0,

(53)

which contradicts our assumption that 𝜀 > 0. Thus {𝑥
2𝑛

} is
a Cauchy sequence in (𝑋, 𝑑

𝑝
) and so in (𝑋, 𝑝). Further, by

similar arguments of Theorem 12, we obtain

𝑝 (𝑧, 𝑧) = lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑧) = lim

𝑛,𝑚→∞
𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (54)

By substituting 𝑥 = 𝑧, 𝑦 = 𝑥
2𝑚(𝑘)−1

in (41), we obtain

𝜓 (𝑝 (𝑇𝑧, 𝑥
2𝑚(𝑘)

))

= 𝜓 (𝑝 (𝑇𝑧, 𝑆𝑥
2𝑚(𝑘)−1

))

≤ 𝜑 ((𝑝 (𝑧, 𝑆𝑥
2𝑚(𝑘)−1

) + 𝑝 (𝑇𝑧, 𝑥
2𝑚(𝑘)−1

)

+𝑝 (𝑧, 𝑥
2𝑚(𝑘)−1

)) (3)
−1

)

− 𝜙 (𝑝 (𝑧, 𝑆𝑥
2𝑚(𝑘)−1

) , 𝑝 (𝑇𝑧, 𝑥
2𝑚(𝑘)−1

) ,

𝑝 (𝑧, 𝑥
2𝑚(𝑘)−1

)) .

(55)

Letting 𝑘 → ∞ and using (54) with property of nondecreas-
ing function 𝜑 in the above inequality, we obtain

0 ≤ (𝜓 − 𝜑) 𝑝 (𝑇𝑧, 𝑧) ≤ −𝜙 (𝑝 (0, 𝑝 (𝑇𝑧, 𝑧) , 0))

󳨐⇒ 𝜙 (0, 𝑝 (𝑇𝑧, 𝑧) , 0) = 0 󳨐⇒ 𝑝 (𝑧, 𝑇𝑧) = 0

󳨐⇒ 𝑇𝑧 = 𝑧.

(56)

Hence 𝑧 is a fixed point of 𝑇. Similarly, if we take 𝑥 = 𝑥
2𝑛(𝑘)+1

and 𝑦 = 𝑧 in (41) and use (54), we obtain 𝑆𝑧 = 𝑧. By
uniqueness of the fixed point, 𝑧 is a unique common fixed
point of 𝑆 and 𝑇.

Again, if 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

) = 0 or 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+2

) = 0 ∀𝑛 ≥ 0,
then we will show that the mappings 𝑆 and 𝑇 have a common
fixed point in 𝑋.

Here, we suppose that 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+2

) = 0 ∀𝑛 ≥ 0. Then by
Remark 2, 𝑥

2𝑛
= 𝑥
2𝑛+2

, for all 𝑛 ≥ 0. Let 𝑛 = 𝑘, and then

𝑥
2𝑘

= 𝑥
2𝑘+2

∀𝑘 ≥ 0. (57)

From (41), we get

𝜓 (𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

))

= 𝜓 (𝑝 (𝑇𝑥
2𝑘

, 𝑆𝑥
2𝑘+1

))

≤ 𝜑 (((𝑝 (𝑥
2𝑘

, 𝑆𝑥
2𝑘+1

)) + (𝑝 (𝑇𝑥
2𝑘

, 𝑥
2𝑘+1

))

+ (𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

))) (3)
−1

)

− 𝜙 ((𝑝 (𝑥
2𝑘

, 𝑆𝑥
2𝑘+1

)) , (𝑝 (𝑇𝑥
2𝑘

, 𝑥
2𝑘+1

)) ,

(𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

))) .

(58)

Using (𝑃
4
), (𝑃
1
), and (57) above, we obtain

0 ≤ (𝜓 − 𝜑) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

≤ −𝜙 (𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+2

) , 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

) , 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

))

󳨐⇒ 𝜙 (𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+2

) , 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

) ,

𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)) = 0

󳨐⇒ 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+2

) = 0, 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

) = 0,

𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

) = 0

󳨐⇒ 𝑥
2𝑘

= 𝑥
2𝑘+1

= 𝑥
2𝑘+2

∀𝑘 ≥ 0.

(59)

Similarly, we can show that

𝑥
2𝑘

= 𝑥
2𝑘+1

= 𝑥
2𝑘+2

= 𝑥
2𝑘+3

= ⋅ ⋅ ⋅ ∀𝑘 ≥ 0. (60)

Thus {𝑥
𝑛
} becomes a constant sequence. So 𝑥

𝑛
= 𝑇𝑥
𝑛

= 𝑆𝑥
𝑛

for all 𝑛 ≥ 0. Hence 𝑥
𝑛
is a common fixed point of 𝑇 and 𝑆.

Finally, we assume that 𝑝(𝑥
2𝑛

, 𝑥
2𝑛+1

) = 0 ∀𝑛 ≥ 0.Then by
Remark 2, we have 𝑥

2𝑛
= 𝑥
2𝑛+1

∀𝑛 ≥ 0. Let 𝑛 = 𝑘, and then

𝑥
2𝑘

= 𝑥
2𝑘+1

∀𝑘 ≥ 0. (61)



Journal of Function Spaces 7

Using (58), (61), and (𝑃
4
) with property of nondecreasing

function 𝜑, we have

0 ≤ (𝜓 − 𝜑) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

≤ −𝜙 (𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+2

) , 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

) , 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)) .

(62)

Using similar property of 𝜙, as used in first case, we have

𝑥
2𝑘

= 𝑥
2𝑘+1

= 𝑥
2𝑘+2

= 𝑥
2𝑘+3

= ⋅ ⋅ ⋅ ∀𝑘 ≥ 0. (63)

Thus, {𝑥
𝑛
} becomes a constant sequence. So 𝑥

𝑛
= 𝑇𝑥
𝑛
= 𝑆𝑥
𝑛
.

Hence 𝑥
𝑛
is a common fixed point of 𝑇 and 𝑆.

Example 19. Let 𝑇, 𝑝, 𝜓, 𝜑, and 𝜙 all be the same as in
Example 13 and a self-mapping 𝑆 on [0, 1] defined as 𝑆𝑥 =

𝑥
2
/2 + 𝑥

3
/3. Then 0 is a unique common fixed point of 𝑆

and 𝑇. One can compute the solution similarly as done in
Example 13.

Corollary 20. Two self-continuous nondecreasing mappings 𝑆
and 𝑇 on a complete partial metric space (𝑋, 𝑝), satisfying the
condition

𝜓 (𝑝 (𝑇𝑥, 𝑆𝑦)) ≤ 𝜓(
𝑝 (𝑥, 𝑆𝑦) + 𝑝 (𝑇𝑥, 𝑦) + 𝑝 (𝑥, 𝑦)

3
)

− 𝜙 (𝑝 (𝑥, 𝑆𝑦) , 𝑝 (𝑇𝑥, 𝑦) , 𝑝 (𝑥, 𝑦))

(64)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜓 and 𝜙, are the same as in Theorem 18,
having a unique common fixed point in 𝑋.

Corollary 21. In Corollary 20, if partial metric space (𝑋, 𝑝) is
replaced by usual metric space (𝑋, 𝑑), then one gets Theorem
2.3 of [21].

Corollary 22. If one puts 𝑝(𝑥, 𝑦) = 0 in (41) and lets 𝜙 :

[0,∞)×[0,∞) → [0,∞) be a function, such that 𝜙(𝑥, 𝑦) = 0

if and only if 𝑥 = 𝑦 = 0, then Theorem 18 reduces to Theorem
2.3 of [13].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to express their deep gratitude to
the anonymous learned referee(s) and the editor for their
valuable suggestions and constructive comments, which
resulted in the subsequent improvement of this research
article. Special thanks are due to our great Master and friend
academician Professor M. Mursaleen, Editor of the Journal
of Function Spaces, for his efforts to send the reports of the
paper timely. The authors are also grateful to all the editorial
board members and reviewers of esteemed journal, that is,
Journal of Function Spaces.Thefirst author LakshmiNarayan
Mishra acknowledges the Ministry of Human Resource

Development, New Delhi, India, for supporting this research
article. All the authors carried out the proof of theorems.
Each author contributed equally in the development of the
paper. Vishnu Narayan Mishra conceived of the study and
participated in its design and coordination. The second
author Shiv Kant Tiwari is grateful to Ms. Jagrati Bilthare for
her valuable suggestions during the preparation of this paper.
All the authors read and approved the final version of paper.

References

[1] M. Frechet, “Sur quelques points du calcul fonctionnel,” Rendi-
conti del Circolo Matematico di Palermo, vol. 22, pp. 1–74, 1906.

[2] B. S. Choudhury, “Unique fixed point theorem for weak C-
contractive mappings,” Kathmandu University Journal of Sci-
ence, Engineering and Technology, vol. 5, no. 1, pp. 6–13, 2009.

[3] D. P. Shukla and S. K. Tiwari, “Unique fixed point theorem for
weakly S-contractive mappings,” General Mathematics Notes,
vol. 4, no. 1, pp. 28–34, 2011.

[4] Deepmala,A study of fixed point theorems for nonlinear contrac-
tions and its applications [Ph.D. thesis], Pt. Ravishankar Shukla
University, Raipur, India, 2014.

[5] Deepmala and H. K. Pathak, “A study on some problems on
existence of solutions for nonlinear functional-integral equa-
tions,”ActaMathematica Scientia, Series B—English Edition, vol.
33, no. 5, pp. 1305–1313, 2013.

[6] S. K. Chatterjea, “Fixed-point theorems,” Comptes Rendus de
l’Academie Bulgare des Sciences, vol. 25, pp. 727–730, 1975.

[7] T. Abdeljawad, “Fixed points for generalized weakly contractive
mappings in partialmetric spaces,”Mathematical andComputer
Modelling, vol. 54, no. 11-12, pp. 2923–2927, 2011.

[8] V. N. Mishra, M. L. Mittal, and U. Singh, “On best approxima-
tion in locally convex space,” Varahmihir Journal of Mathemat-
ical Sciences India, vol. 6, no. 1, pp. 43–48, 2006.

[9] V. N. Mishra, Some problems on approximations of functions
in Banach spaces [Ph.D. thesis], Indian Institute of Technology,
Uttarakhand, India, 2007.

[10] V. N. Mishra and L. N. Mishra, “Trigonometric approximation
in 𝐿
𝑝
(𝑝 ≥ 1)-spaces,” International Journal of Contemporary

Mathematical Sciences, vol. 7, pp. 909–918, 2012.
[11] S. G. Matthews, “Partial metric topology,” in Proceeding of 8th

Summer conference on General Topology and Applications at
Queens College, vol. 728, pp. 183–197, Annals of the New York
Academy of Sciences, New York, NY, USA, 1994.

[12] S. G. Matthews, “Partial metric topology,” Research Report
212, Department of Computer Sciences, University ofWarwick,
1992.

[13] C. Chen and C. Zhu, “Fixed point theorems for weakly 𝐶-
contractive mappings in partial metric spaces,” Fixed Point
Theory and Applications, vol. 2013, article 107, 2013.

[14] K. P. Chi, E. Karapınar, and T. D. Thanh, “A generalized
contraction principle in partial metric spaces,” Mathematical
and Computer Modelling, vol. 55, no. 5-6, pp. 1673–1681, 2012.

[15] V. C. Rajik, S. Radenovic, and S. Chauhan, “Common fixed
point of generalized weakly contractive maps in partial metric
spaces,”ActaMathematica Scientia, vol. 34, no. 4, pp. 1345–1356,
2014.

[16] H. Aydi, S. Hadj Amor, and E. Karapınar, “Berinde-type
generalized contractions on partial metric spaces,”Abstract and
Applied Analysis, vol. 2013, Article ID 312479, 10 pages, 2013.



8 Journal of Function Spaces

[17] E. Karapinar and I. M. Erhan, “Fixed point theorems for opera-
tors on partial metric spaces,” Applied Mathematics Letters, vol.
24, no. 11, pp. 1894–1899, 2011.

[18] N. Shobkolaei, S. M. Vaezpour, and S. Sdghi, “A common fixed
point theoremonordered partialmetric spaces,” Journal of Basic
and Applied Scientific Research, vol. 1, pp. 3433–3439, 2011.

[19] E. Karapinar and I. S. Yuce, “Fixed point theory for cyclic gen-
eralized weak 𝜑-contraction on partial metric spaces,” Abstract
andAppliedAnalysis, vol. 2012, Article ID491542, 12 pages, 2012.

[20] M. S. Khan, M. Swaleh, and S. Sessa, “Fixed point theorems by
altering distances between the points,” Bulletin of the Australian
Mathematical Society, vol. 30, no. 1, pp. 1–9, 1984.

[21] W. Shatanawi, “Fixed point theorems for nonlinear weakly
𝐶-contractive mappings in metric spaces,” Mathematical and
Computer Modelling, vol. 54, no. 11-12, pp. 2816–2826, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


