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On the Equivalence of Two Achievable
Regions for the Broadcast Channel

Yingbin Liang, Member, IEEE, Gerhard Kramer, Fellow, IEEE, and H. Vincent Poor, Fellow, IEEE

Abstract—A recent inner bound on the capacity region of the
two-receiver discrete memoryless broadcast channel is shown to
be equivalent to the Marton-Gelfand-Pinsker region. The proof
method is based on a result of Gelfand and Pinsker concerning
channel input distributions.

Index Terms—Broadcast channel, inner bound, rate region.

I. INTRODUCTION

T HE broadcast channel, in which one transmitter sends
common and individual information to multiple receivers,

was introduced in [1]. The performance measure of interest for
the broadcast channel is the capacity region, which character-
izes the simultaneously and reliably achievable communication
rates. Although the capacity region has been obtained for many
special cases, e.g., [2]–[11], it is still unknown for the general
discrete memoryless model even for the simplest two-receiver
case. Inner bounds on the capacity region have been obtained
in, e.g., [1], [2], [7], [12]–[15], and outer bounds have been
obtained in, e.g., [3]–[11], [13]–[18].

In this paper, we focus on capacity inner bounds, i.e., achiev-
able regions, for the case of two receivers. Marton’s region
[13, Theorem 2] is the largest known inner bound without
a common message. Marton’s region has been extended to
include a common message, a result that appears in [19, p.
391, Prob. 10(c)] and [7, Theorem 1]. We call this region the
Marton-Gelfand-Pinsker (MGP) region. Another inner bound
that was derived recently in [15] includes, but may not be
strictly larger than, the MGP region. In this paper, we first
review these two inner bounds and then show that the two
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Fig. 1. Two-receiver broadcast channel.

bounds are equivalent. The technique we exploit is based on a
property developed in [7, Proposition 1].

II. CHANNEL MODEL

The two-receiver discrete memoryless broadcast channel de-
picted in Fig. 1 includes a transmitter and two receivers (re-
ceivers 1 and 2). The transmitter has a common message for
both receivers, and private messages and for receivers 1
and 2, respectively. The messages , and are indepen-
dent of each other and are uniformly distributed over the mes-
sage sets , , and , respectively. Let be the channel
input alphabet, and be the channel output alphabets of
receivers 1 and 2, respectively, and be the -fold Carte-
sian product of . An encoder at the transmitter, i.e., :

, maps each message triple
to a codeword . The symbols are

transmitted over a broadcast channel with the transition proba-
bility so there are two output sequences and
at receivers 1 and 2, respectively. A decoder at receiver 1, i.e.,

, maps the received sequence to

a message pair , and a decoder at re-
ceiver 2, i.e., : , maps the received sequence

to a message pair .
The average block probability of error for a length code is

defined as

The rate triple is achievable if there exists a se-
quence of message sets with
for , 1, 2, and encoder-decoder triples such
that as goes to infinity. The capacity region is the
closure of the set of achievable rate triples.

III. PRELIMINARY AND MAIN RESULTS

Consider the MGP region in [19, P. 391, Prob. 10(c)] and [7,
Theorem 1] which is an extension of Marton’s region in [13,
Theorem 2] to include . The MGP region is given by
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(1)

where contains all nonnegative rate triples
that satisfy

(2)

(3)

(4)

(5)

(6)

for the joint distribution .
Another inner bound was derived in [14] and [15, Section

III-A] and is given by

(7)

where contains all nonnegative rate triples
that satisfy

(8)

(9)

(10)

(11)

(12)

for the joint distribution .
Comparing the regions and , it is clear that

differs from in that the
bound (12) replaces the bound (2). As commented in [15,
Remark 6] the region includes . In particular, we
note the following.

Remark 1: The region is strictly larger
than for some distributions . For
example, if is a constant, then for all points in

while may include points
with .

Although , it is not easy to see whether
is a strict subset of or not, because the rate points that
are in but not in may be
in for some . The
main result of this paper is stated in the following theorem,
which establishes the equivalence of the two regions.

Theorem 1: .

Remark 2: Theorem 1 is also true if the channel has cost con-
straints, either an average cost constraint over a block of inputs

and outputs, or a cost constraint over each channel use. This is
because every step in the proof of Theorem 1 in Section IV holds
for such cost constraints. A detailed discussion about cost con-
straints can be found in [20, Chapter 3].

IV. PROOF OF THEOREM 1

As we have argued in the previous section, .
Hence we need to show that to establish The-
orem 1. We first state three lemmas that will be useful in the
sequel. Lemmas 2 and 3 are new and of independent interest.

Lemma 1: The region is the capacity region for the
broadcast channel with degraded message sets, i.e., the cases
when or .

Proof: Let and set and in .
The region reduces to the region that contains all
nonnegative rate pairs satisfying

(13)

(14)

(15)

for some joint distribution . To show that the region
is the capacity region, we apply the outer bound given in [17,
Lemma 2] for which we set , and apply the bound on

, the first bound on , and the second bound on
to obtain

(16)

(17)

(18)

The above bounds coincide with the bounds in with
being replaced by , which completes the proof.

Remark 3: The capacity region for the broadcast channel with
degraded message sets was established in [9] and [19, p. 360,
Theorem 4.1] and is given by the region that contains all
nonnegative rate pairs satisfying

(19)

(20)

(21)

for some joint distribution . Thus, must be equivalent
to .

We further use to denote the capacity region of the broad-
cast channel when .

We next state a lemma that will help to prove an important
property of (see Lemma 3 below).

Lemma 2: For a joint distribution , if
and , then there exists a

function with being a random variable indepen-
dent of , , , , and , such that

.

Proof: See Appendix A.
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Remark 4: A statement similar to Lemma 2 has been made
in [7], which claims the existence of a deterministic function

in contrast to a stochastic function in Lemma
2. However, such a deterministic function does not al-
ways exist. A simple counter example arises when is a bi-
nary random variable. Then a deterministic function ei-
ther has the same distribution as or has a constant value. So

cannot always be satisfied.

Lemma 3: Let , and denote the following sets of
distributions:

(22)

(23)

(24)

The region given in (7) can be obtained by taking the union
over only , and , i.e., we have

(25)

Proof: See Appendix B, which follows the proof in [7, Ap-
pendix] where it is shown that the region has the same
type of property.

Remark 5: The regions defined by the distributions in and
in Lemma 3 can be achieved by superposition coding. The

regions defined by distributions in require both superposition
coding and binning in general. Lemma 3 thus provides guidance
on the required code structures.

We next consider , where is in ei-
ther , , or .

(1) If , then the reader can readily check that
, both containing

all nonnegative rate triples that satisfy

(26)

(27)

(2) If , we also have
.

(3) If , i.e., , we obtain
the region that contains all nonnega-
tive rate triples satisfying

(28)

(29)

(30)

(31)

It is clear that the points that satisfy are in
. We need to consider only the extreme points that satisfy

. Under this condition, (31) can be written as

(32)

where the right-hand side is smaller than that of (30), because
. Hence, the bound (30) is redundant. The ex-

treme points, which satisfy and are on the plane
determined by or , are in or , and are
hence in . The remaining extreme points are the intersec-
tions of the planes defined by the following bounds:

(33)

(34)

(35)

Now, if , the sum of the first and second bounds
is equal to the third one, and hence the three bounds become two
and the intersection of the corresponding two planes is not an
extreme point. If , the above three bounds do
not have common points because the sum of the first and second
bounds is larger than the third one. Hence, we have shown that
all extreme points of are in , which im-
plies all points in are in . This con-
cludes the proof.

V. A GEOMETRIC ILLUSTRATION

We now illustrate the region in Fig. 2 for the
case when . The four bounds on ,

, , and in (28)–(31) deter-
mine four planes in three-dimensional space. We use , , ,
and to denote these respective planes. We also use , , ,
and to denote points where these planes intersect the -axis,
and use to denote the values for , re-
spectively. Suppose that , which
is the case when the four planes have the greatest number of
intersections with each other. In addition to these four planes,
we also plot plane in the figure, which is determined by

, and intersects the -axis at point . We as-
sume that .

We first observe that the region is con-
tained within the planes (plane ),
(plane ), (plane ), (plane ),

(plane ), (plane ), and
(plane ). For the region , plane

is not a constraint, and plane is an additional constraint.
We also note that plane intersects plane at line , and
hence plane does not play a role (i.e., is not a part of the
boundary for the region ) above plane . This
demonstrates that the bound on the sum rate
becomes redundant when . Above plane , the
region has more rate points than the region

, and these rate points are contained in planes
(plane ), (plane ),

(plane ), (plane ), (plane ),
and (plane ). From the figure, it can be seen
that all extreme points in this region are either on plane or
on plane or . It is clear that the extreme points
on plane are contained in . The extreme
points on plane or are contained in or

as defined in the proof for Lemma 1, and hence must be
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Fig. 2. Illustration of the regions � �� � and � �� �
when ��� �� � � ��� �� �.

in (these points are not necessarily achieved by the
distribution ).

VI. CONCLUSIONS

We have shown that two seemingly different inner bounds
on the capacity region of the two-receiver discrete memoryless
broadcast channel are equivalent. Our proof is based on an im-
portant property, motivated by one shown in [7] for the MGP
region, that can also be characterized by only a subset
of joint input distributions. This property greatly facilitates the
proof, which may be challenging otherwise. We also anticipate
that this property is useful for studying rate regions for other
multiuser channels.

APPENDIX A
PROOF OF LEMMA 2

We define a binary random variable that is independent of
, , , and , and satisfies

We define a function that satisfies

We further define

It suffices to show that there exists a value such that

(36)

We first compute the left-hand side of (36) to be

(37)

where the last step defines a function . We next compute
the right-hand side of (36) to be

(38)

where the last step defines a function .
It is easy to see that the function is continuous,

and when and
when . Hence there must exist a value such
that , i.e., such that

APPENDIX B
PROOF OF LEMMA 3

For a given distribution if ,
then assume without loss of generality. We
wish to show that there exists a distribution that is in

such that .
We consider the following two cases.

Case 1: . Let ,
, , and . It is clear that

, and we obtain the region that contains all
nonnegative rate triples satisfying

(39)

(40)

In order to show , we
consider a given point . It is
clear that satisfies (39). We further compare (40)
with (10) and find that

(41)

Thus, the rate triple also satisfies (40) and is hence
in .

Case 2: . The conditions
in Lemma 2 are satisfied, and hence there exists a function

with being a random variable independent of all
other random variables under consideration, such that

Let , , , and
. It is clear that , and we obtain the re-
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gion that contains all nonnegative rate triples
satisfying

(42)

(43)

(44)

(45)

where we have used the following equation:

(46)

It is easy to see that a given point
characterized by (8)–(12) satisfies (42)

and (43). Furthermore, we show that the bound (44) is looser
than the bound (10) by considering

(47)

where follows because

(48)

Thus, the triples satisfying (10) satisfy (44). Based
on the inequality (47), we can further show that the bound (45)
is larger than the bound (12) by considering

(49)

This concludes the proof.
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