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In this paper, we discuss an estimator for average treatment effects (ATEs) known as the

augmented inverse propensity weighted (AIPW) estimator. This estimator has attractive

theoretical properties and only requires practitioners to do two things they are already

comfortable with: (1) specify a binary regression model for the propensity score, and (2)

specify a regression model for the outcome variable. Perhaps the most interesting property

of this estimator is its so-called ‘‘double robustness.’’ Put simply, the estimator remains

consistent for the ATE if either the propensity score model or the outcome regression is

misspecified but the other is properly specified. After explaining the AIPW estimator, we

conduct a Monte Carlo experiment that compares the finite sample performance of the

AIPW estimator to three common competitors: a regression estimator, an inverse propensity

weighted (IPW) estimator, and a propensity score matching estimator. The Monte Carlo

results show that the AIPW estimator has comparable or lower mean square error than the

competing estimators when the propensity score and outcome models are both properly

specified and, when one of the models is misspecified, the AIPW estimator is superior.

1 Introduction

In this paper, we discuss an estimator for average treatment effects (ATEs) known as the
augmented inverse propensity weighted (AIPW) estimator. Although the basic ideas
behind the AIPW estimator were developed by biostatisticians beginning 15 years ago
(Robins, Rotnitzky, and Zhao 1994; Robins 1999; Scharfstein, Rotnitzky, and Robins
1999), the AIPW estimator is largely unknown and unused by social scientists. This is
regrettable because the AIPWestimator has very attractive theoretical properties and only
requires practitioners to do two things they are already comfortable with: (1) specify a bi-
nary regression model for the propensity score and (2) specify a regression model for the
outcome variable. Most interestingly, the AIPWestimator is doubly robust in that it will be
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consistent for the ATE whenever (1) the propensity score model is correctly specified or (2)
the outcome regression is correctly specified (Scharfstein, Rotnitzky, and Robins 1999). To
demonstrate that the large-sample theory behind the AIPW estimator carries over to finite
samples, we conduct a Monte Carlo experiment that compares the performance of the
AIPW estimator to three common competitors: a regression estimator, an inverse propen-
sity weighted (IPW) estimator, and a propensity score matching estimator. The Monte Car-
lo results show that the AIPW estimator has comparable or lower mean square error than
the competing estimators when the propensity score and outcome models are both properly
specified and, when one of the models is misspecified, the AIPW estimator is superior.

This paper is organized as follows. In Section 2, we briefly review estimators of ATEs,
dividing the discussion into those estimators that primarily rely on outcome regression
models and those that focus on a model for treatment assignment. Section 3 introduces
the AIPW estimator and discusses its usage. In Section 4, we present a Monte Carlo study
comparing the performance of the AIPWestimator to other standard estimators of the ATE.
Section 5 concludes.

2 Estimators for ATEs Based on Regression Models or Treatment Assignment
Models

Throughout this paper, we will assume that units (indexed by i 5 1, . . ., n) are randomly
sampled from some population or superpopulation, that treatment is binary (Xi e {0 (con-
trol), 1 (treatment)}), and we observe an outcome variable Yi. Furthermore, we assume that
potential outcomes are defined as in Rosenbaum and Rubin (1983) such that Yi(1) is the
outcome that wewould observe if unit i had received treatment and Yi(0) is the outcome that
we would observe if unit i had received treatment. We also assume that the stable unit
treatment value assumption (SUTVA) (Angrist, Imbens, and Rubin 1996) holds such that
potential outcomes ({Yi(1), Yi(0)}) are completely determined and the observed outcome
will be equal to the potential outcome corresponding to the assigned treatment,

Yi 5Xi � Yið1Þ1ð12XiÞ � Yið0Þ:

Furthermore, we assume that a set of observed control variablesZ exists such that strong
ignorability holds givenZ and the propensity score (p(Z)5 Pr(X 5 1jZ)) is strictly greater
than zero and less than one over the support of Z,

fYð1Þ; Yð0ÞgvXjZ

0<pðZÞ< 1:

Using this framework, there are a number of reasonable estimators for the ATE,

ATE5E½Yð1Þ2Yð0Þ�:

We summarize two broad classes of these estimators in the following subsections.

2.1 Estimators for ATEs Based on Regression Models

Much of traditional causal estimation in the social sciences relies on the formulation of
a regression model for the outcome variable Y. In other words, estimation of the conditional
expectation of Y given X andZ: E(YjX,Z). Given the stated assumptions of this paper, it has
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been shown that such a model can be used to identify the ATE through a subclassification
adjustment (Cochran 1968), the g-functional (Robins 1986), or the backdoor adjustment
(Pearl 1995, 2000). All these approaches yield the following formula for ATE:

ATE5E½EðYjX5 1;ZÞ2EðYjX5 0;ZÞ�;

where the outer expectation is taken with respect to the distribution of Z. The empirical
distribution of the conditioning set provides an easy estimate of FZ and simplifies integra-
tion, so that the corresponding regression estimator takes the form,

dATEreg 5
1

n

Xn
i5 1

fEˆ ðYjX5 1;ZiÞ2E
ˆ ðYjX5 0;ZiÞg; ð1Þ

where E
ˆ ðYjX5 1;ZiÞ is the estimated conditional expectation of the outcome given Zi

within the treated group, and E
ˆ ðYjX5 0;ZiÞ is defined analogously. These conditional

expectation functions can be estimated using any consistent estimator. Options include
ordinary least squares, generalized linear models, generalized additive models (GAMs),
local regression, kernel regression, etc.

The regression estimator for ATE will perform reasonably well when the estimated con-
ditional expectation functions are good estimates of the true regression functions. How-
ever, when the conditioning set Z is high dimensional, it may be difficult to estimate both
regression functions over the full range of Z. In particular, when the observed values of Z
are not similar for the treatment and the control groups, then one of the conditional ex-
pectation functions E(YjX 5 1,Zi) or E(YjX 5 0,Zi) will often be poorly estimated because
of the lack of data points near either (X 5 0, Zi) or (X 5 1, Zi). Depending on the method of
estimation, the estimation over such nonoverlapping ranges may massively underestimate
the uncertainty in this estimator and/or result in finite sample bias (King and Zeng 2006).
Further, many versions of the regression estimator for ATE tend to be quite sensitive to
small amounts of misspecification. Given these deficiencies, a number of researchers have
opted for methods of estimation that use models for treatment assignment instead of re-
gression models for the outcome.

2.2 Estimators for ATEs Based on Treatment Models

Another broad class of estimators explicitly or implicitly relies on a model for treatment
assignment instead a regression model for the outcome. If the true model for the probability
of treatment assignment were known, then this could be used to define propensity scores for
every unit, and these could be used for matching or weighting estimators. Because the
treatment assignment model is usually unknown, matching and weighting estimators either
explicitly estimate the propensity score function model or utilize the treatment assignment
model implicitly through notions of balance. If the propensity score model is estimated,
a well-known weighting estimator is the IPW estimator,

dATEIPW5
1

n

Xn
i5 1

�
XiYi
p̂ðZiÞ

2
ð12XiÞYi
12p̂ðZiÞ

�
; ð2Þ

where p̂ðZiÞ is the estimated propensity score, that is the estimated conditional probability
of treatment given Zi. If the propensity scores were known, then this estimator will be
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unbiased for the ATE (Tsiatis 2006). Furthermore, when the propensity scores are esti-
mated consistently, then this estimator is consistent for the ATE.1

However, the simple IPW estimator is also widely believed to have poor small sample
properties when the propensity score gets close to zero or one for some observations. This
can be seen from equation (2), in that division by numbers close to zero will lead to high
variance in the estimator. Specifically, units that receive treatment and very low propensity
scores will provide extreme contributions to the estimate. Similarly, units that receive con-
trol and very high propensity scores will provide extreme contributions to the estimate. In
some cases, these extreme contributions can produce estimates that are not bounded within
the plausible range for ATE (e.g., ATE estimates greater than one when Y is binary). Due to
these potential deficiencies, weighting estimators like equation (2) have fallen out of favor
in relation to estimators that match treatment and control units based on estimate propen-
sity scores or that directly balance Z between treatment and control units. But see Busso,
DiNardo, andMcCrary (2009a, 2009b) for evidence of favorable performance of weighting
estimators relative to many competitors. See Rubin (2006) for a book-length treatment on
matching or Diamond and Sekhon (2005) and Ho et al. (2007) for recent influential papers
on matching in political science.

A number of improvements to the basic IPW estimator can be made. The simplest is to
renormalize the weights so that they sum to one (Imbens 2004; Lunceford and Davidian
2004). This results in the estimator:

dATEIPW� 5

(Xn
i5 1

Xi

p̂ðZiÞ

)21 Xn
i5 1

XiYi
p̂ðZiÞ

2

(Xn
i5 1

12Xi

12p̂ðZiÞ

)21 Xn
i5 1

ð12XiÞYi
12p̂ðZiÞ

:

This is the estimator that we refer to as ‘‘the’’ IPW estimator in the Monte Carlo study
that follows. In the next section, we look at another method that can be used to improve the
basic IPWestimator. Namely, we introduce an augmented IPWestimator that makes use of
the information in the conditioning set for the prediction of the outcome variable in order to
improve on the basic IPW estimator.

3 An AIPW Estimator for ATEs

One way the IPW estimator can be improved is by fully utilizing the information in the
conditioning set. The conditioning set Z contains information about the probability of
treatment, but it also contains predictive information about the outcome variable. The
AIPW estimator dATEAIPW efficiently uses this information in the following manner:

dATEAIPW 5
1

n

Xn
i5 1

("
XiYi
p̂ðZiÞ

2
ð12XiÞYi
12p̂ðZiÞ

#
2

ðXi2p̂ðZiÞÞ
p̂ðZiÞð12p̂ðZiÞÞ

½ð12p̂ðZiÞÞEˆ ðYijXi 5 1;ZiÞ1p̂ðZiÞEˆ ðYijXi 5 0;ZiÞ�
)
;

ð3Þ

1As a practical matter, it is a good idea to check for balance on the measured covariates when using an IPW
estimator (or an AIPW estimator). A simple diagnostic is to compare the weighted means of the measured co-
variates, higher powers of the measured covariates, and their interactions across treated and control groups. Re-
latedly, it is also a good idea to examine the weights to see if they are close to either zero or one. As noted below,
weights close to zero or one can cause problems for both IPW and AIPW estimators.
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where the first line of equation (3) corresponds to the basic IPW estimator, and the second
line adjusts this estimator by a weighted average of the two regression estimators. Note that
this formula does not require the same adjustment set Zi to be used in both the propensity
score model and the outcome model. All that is required is that conditional ignorability
holds given Z. This flexibility allows the researcher to, for instance, use the minimal set of
adjustment variables necessary for conditional ignorability to hold in the propensity score
model while including a near maximal set of adjustment variables in the outcome regres-
sion models.2 In Section 4, we investigate the gains/losses that are incurred by such an
approach.

This adjustment term in equation (3) has two properties that are easily deduced from the
formula. First, the adjustment term has expectation zero when the estimated propensity
scores and regression models are replaced with their true counterparts (see Appendix
A). Second, the adjustment term stabilizes the estimator when the propensity scores
get close to zero or one. This can be seen if we examine the right-hand side of equation
(3) when Xi 5 1:

Yi
p̂ðZiÞ

2
1

p̂ðZiÞ
½½12p̂ðZiÞ�Eˆ ðYjX5 1;ZiÞ1p̂ðZiÞEˆ ðYjX5 0;ZiÞ�

5

"
Yi

p̂ðZiÞ
2
½12p̂ðZiÞ�Eˆ ðYjX5 1;ZiÞ

p̂ðZiÞ

#
2E

ˆ ðYjX5 0;ZiÞ;
ð4Þ

and when Xi 5 0:

2
Yi

12p̂ðZiÞ
1

1

½12p̂ðZiÞ�
½½12p̂ðZiÞ�Eˆ ðYjX5 1;ZiÞ1p̂ðZiÞEˆ ðYjX5 0;ZiÞ�

5E
ˆ ðYjX5 1;ZiÞ2

"
Yi

12p̂ðZiÞ
2
p̂ðZiÞEˆ ðYjX5 0;ZiÞ

12p̂ðZiÞ

#
:

ð5Þ

Looking at equation (4) we see that when p̂ðZiÞ is close to zero, Yi
p̂ðZiÞ will get large

in absolute value. However, the
½12p̂ðZiÞ�Eˆ ðYjX5 1;ZiÞ

p̂ðZiÞ term gets large at the same rate

and the term in brackets is stabilized (to some extent). When p̂ðZiÞ approaches one,

the
½12p̂ðZiÞ�Eˆ ðYjX5 1;ZiÞ

p̂ðZiÞ term goes to zero and the term in brackets approaches Yi. Inspection

of equation (5) reveals similar relationships when Xi 5 0.dATEAIPW has a number of very attractive theoretical properties. This estimator can be
shown to be asymptotically normally distributed and valid large-sample standard errors can
be derived through the theory of M-estimation. Lunceford and Davidian (2004) find an
empirical sandwich estimator to work well in practice. This empirical sandwich estimator
of the sampling variance of dATEAIPW is Vˆ ð dATEAIPWÞ5 1

n2

Pn
i5 1 Î

2

i where

2The choice of what variables to condition on is a difficult problem that requires subject matter expertise. See Pearl
(1995, 2000) andMorgan andWinship (2007) for an approach to reasoning about this problem based on structural
causal models.
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Îi 5

�
XiYi
p̂ðZiÞ

2
ð12XiÞYi
12p̂ðZiÞ

�
2

ðXi2p̂ðZiÞÞ
p̂ðZiÞð12p̂ðZiÞÞ

� ½ð12p̂ðZiÞÞEˆ ðYijXi 5 1;ZiÞ1p̂ðZiÞEˆ ðYijXi 5 0;ZiÞ�2 dATEAIPW:

It is also possible to estimate the sampling variance of dATEAIPW using alternative
large-sample results as well as the bootstrap (see Section IVof Imbens (2004)).3 All these
standard error estimates are implemented in the CausalGAM R package (Glynn and Quinn
2009) that accompanies this article.dATEAIPW will be unbiased for ATE when both the propensity score model and the
outcome models are known and consistent for ATE when the propensity score and the
outcome regressions are consistently estimated.4 When the propensity score and the re-
gression function are modeled correctly, the AIPWachieves the semiparametric efficiency
bound. As noted above, dATEAIPW is doubly robust in that it will be consistent for ATE
whenever (1) the propensity score model is correctly specified or (2) the two outcome
regression models are correctly specified (Scharfstein, Rotnitzky, and Robins 1999).5 This
double-robustness property gives the AIPW estimator a tremendous advantage over most
other estimators in that with the AIPW estimator the researcher has more hope of getting
a reasonable answer in complicated real-world situations where there is uncertainty about
both the treatment assignment process and the outcome model. We refer the reader to
Tsiatis (2006) for a textbook treatment of the theory behind the AIPW estimator as well
as related estimators.

However, even if correct propensity score and regression models are utilized, the AIPW
estimator may have drawbacks in small samples. If the estimated propensity scores are
highly variable, then the sampling distribution for ATE can be skewed and the AIPW es-
timator quite variable as a result (Robins andWang 2000; Kang and Schafer 2007a; Robins
et al. 2007). For additional recent work exploring the properties of the AIPWestimator and
improvements on such double-robust estimators, we refer the reader to Kang and Schafer
(2007a); Ridgeway and McCaffrey (2007); Robins et al. (2007); Tan (2007); Tsiatis and
Davidian (2007); Kang and Schafer (2007b). Another drawback of this estimator is that one
must estimate a propensity score model and two regression models (one for treatment and
one for control). Nonetheless, most researchers are already comfortable with fitting regres-
sion models for the propensity score and the outcome variable. Further, because one only
needs predictions from these models, flexible routines can be used (we use GAMs in this
paper).

Due to the good large-sample theoretical properties of the AIPW estimator, there
is some hope that the estimator will perform reasonably well in small samples. In
the next section, we investigate bias and efficiency for the AIPW and compare this per-
formance to other standard regression and matching estimators of ATE under a variety
of conditions.

3PreliminaryMonte Carlo work suggests that standard errors based on these variance estimators tend to be reason-
able unless the level of confounding is so severe that many of the estimated propensity scores are very close to
zero or one. In these situations, the standard errors tend to be downwardly biased.
4See Appendix A.1 for a proof of this result.
5See Appendix A.2 for a proof of this result and see Ho et al. (2007) for a related but distinct estimator that has this
double-robustness property.
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4 A Monte Carlo Study

As noted above, the theoretical results for the AIPWestimator are large sample in nature. In
order to gage the finite sample performance of the AIPWestimator relative to the standard
regression, IPW, and matching estimators, we designed a Monte Carlo study.

4.1 Study Design

The basic design of the study features three levels of confounding (low, moderate, and
severe), twomean functions (linear and nonlinear) linking treatment status and background
variables to the outcome variable, and three sample sizes (250, 500, and 1000) for a total of
eighteen types of Monte Carlo data sets. One thousand data sets were created under each of
these eighteen scenarios for a total of 18,000 Monte Carlo data sets. These data sets were
saved to disk and each estimator was applied to the same 18,000 data sets. The remainder of
this subsection provides additional detail about how the Monte Carlo study was conducted.

4.1.1 Data-generating processes

All the Monte Carlo data sets feature five variables: Z1, Z2, Z3, X, and Y. Z1, Z2, and Z3

represent background variables, X denotes treatment status, and Y is the outcome variable.
Z1, Z2, and Z3 are drawn from independent standard normal distributions. New draws of
these variables are obtained for each of the 18,000 data sets. With Z1, Z2, and Z3 in hand,
treatment status X is drawn from a Bernoulli distribution where the probabilities of X 5 1
depend on the realized Z1, Z2, and the degree of confounding (low, moderate, and severe).
Table 1 summarizes the treatment assignment probabilities as a function of Z1 and Z2 under
the three levels of confounding. Once Z1, Z2, Z3, and X have been generated, we generate
the outcome variable Y. Y is assumed to follow a normal distribution with a mean that
depends on Z2, Z3, and X and a constant variance of one. The mean function for Y can
be either linear or nonlinear in Z2 and Z3. Table 2 provides the mean functions for treated
and control units under the linear and nonlinear scenarios.

Table 1 Equations governing treatment assignment in the Monte Carlo study

Degree of confounding True treatment assignment probabilities

Low Pr(X 5 1jZ) 5 U(0.1Z1 1 0.1Z2 1 0.05Z1Z2)
Moderate Pr(X 5 1jZ) 5 U(Z1 1 Z2 1 0.5Z1Z2)
Severe Pr(X 5 1jZ) 5 U(1.5Z1 1 1.5Z2 1 0.75Z1Z2)

Note. Observation-specific subscripts have been left off. U(�) denotes the standard normal distribution function.

Each unit’s treatment status is assumed to be drawn independently from a Bernoulli distribution according to the

probabilities above.

Table 2 Equations governing the outcome variable in the Monte Carlo study

Outcome equation (control) Outcome equation (treatment)

Linear Y 5 Z2 1 Z3 1 e Y 5 5 1 3Z2 1 Z3 1 e

Nonlinear Y 5 Z2 1 Z3 1 e Y5 513Z21Z312Z2
212Z2

31e

Note. Observation-specific subscripts have been left off. It is assumed that e follows a standard normal distribution

and that e is independent across observations.
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From Tables 1 and 2, we see that treatment assignment depends on Z1 and Z2, whereas
the outcome depends on Z2, Z3, and X. Because Z1, Z2, and Z3 do not have any common
causes, it follows that adjusting for just Z2 (either in the outcome model or the treatment
assignment model) is sufficient to produce a consistent estimate of the ATE of X on Y (Pearl
1995, 2000). In fact, given the structure of the data-generating process, it is the case that
one could adjust for any combination of Z1, Z2, and Z3 that includes Z2 to produce a con-
sistent estimate of the ATE—this is true of all the estimators considered in this paper. Nev-
ertheless, as wewill see in theMonte Carlo results, there will be better and worse choices of
adjustment strategies in finite samples.

Figure 1 depicts the distributions of the conditional treatment assignment probabilities
given measured covariates among units that actually received treatment and control under
the three different levels of confounding. This figure looks at these treatment assignment
probabilities conditional on both Z1 and Z2 (the true assignment mechanism) and condi-
tional on Z2 but averaged over Z1 (the minimal assignment mechanism). Several points are
worth noting here. First, under the low level of confounding, the distribution of treatment
assignment probabilities looks very similar across treated and control units. Thus, we
would expect all the estimators to perform well on the Monte Carlo data sets that feature

Probability of Treatment
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Assignment Model = True
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Assignment Model = True

0.0 0.2 0.4 0.6 0.8 1.0
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Assignment Model = True
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Assignment Model = Minimal
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Control Treated

Fig. 1 Conditional treatment assignment probabilities among treated and control units. Assignment
model 5 true corresponds to the assignment probabilities conditional on Z1 and Z2, that is Pr(X 5

1jZ1, Z2). These probabilities were generated as described in Table 1. They are the actual treatment
assignment probabilities used to determine treatment status. Assignment model 5 minimal
corresponds to the assignment probabilities conditional on Z2 but averaged over Z1. These
probabilities were calculated by taking observed treatment status and using those data to estimate
Pr(X 5 1jZ2) via a GAM. These are not the actual treatment assignment probabilities. However, given
the data-generating process used for the Monte Carlo study, conditioning on these probabilities is
sufficient to remove confounding bias. Note that by using only Z2 in the assignment model (as one
would need to specify for the IPW, matching, and AIPW estimators), one produces better overlap
between the treated and control units whereas still alleviating confounding bias.
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low confounding. Under moderate and severe confounding, the distributions of treatment
assignment probabilities become increasingly distinct for treated and control units. This is
especially the case when the treatment assignment probabilities are conditional on both Z1

and Z2. Interestingly, if one calculates the treatment assignment probabilities conditional
on just Z2 (the minimal assignment mechanism), one achieves better overlap between the
treated group and the control group. Thus, wewould expect that estimators that make use of
the propensity score and specify the propensity score just as a function of Z2 will perform
better than those that specify the propensity score as a function of Z1 and Z2—despite the
fact that the actual treatment assignment mechanism depends on Z1.

It is also useful to get a visual depiction of the outcome variable as a function of treat-
ment status, the single confounding variable Z2, the degree of confounding, and the form of
the mean function for the outcome variable. Figure 2 displays this information. Here, we
see that under low confounding there are enough treated and control units at each level of
Z2 to identify the treated and control outcome regressions across the range of Z2. This is
true for both the linear and nonlinear outcome mean functions. Extrapolation becomes
necessary when we move to the data sets with either moderate or extreme confounding.
For such data sets with a linear mean function for the outcome variable, we expect that the
extrapolation will not cause major problems in estimating the ATE. However, for data sets
with a nonlinear outcome mean and moderate or severe confounding, we expect the es-
timates to be more adversely affected since there is very little information in the data about
the counterfactual outcome mean under treatment for the control units with Z2 less than
about 21.5 and 21.0, respectively. We note in passing that the panels in Fig. 2 are only
conditioned on Z2—the minimal confounder. More accurate estimates of the outcome
mean function can be obtained by conditioning on Z2 and Z3.

4.1.2 Model specifications

Now that we have discussed the data generation process under each of the 18 Monte Carlo
scenarios, we move on to discuss the six model specifications used in the Monte Carlo
study. These are summarized in Table 3. Each specification consists of a propensity score

z2

y
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Outcome Mean = Linear

−4 −2 0 2

Confounding = Severe
Outcome Mean = Linear

Confounding = Low
Outcome Mean = Nonlinear
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Confounding = Severe
Outcome Mean = Nonlinear

Fig. 2 Scatterplots of outcome variable Y as a function of treatment status and the confounder Z2

Given the degree of confounding and the form of the mean function for Y. The gray points correspond
to treated units and the black points correspond to control units. There are 1000 total units in each
panel.
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model, an outcome model for treated units, and an outcome model for control units. Not all
estimators will use all three models. For instance, the matching and IPW estimators will
only use the propensity score model, whereas the regression estimator will only use the two
outcome models. The propensity score model is a GAM for binomial outcomes with
a probit link and the outcome models are GAMs for conditionally Gaussian outcomes with
the identity link.

We can think of these specifications as follows. In specification A, both the propensity
score model and the outcome models are fully consistent with the true models that gen-
erated the data. Specification B includes all three Z variables in the propensity score model
and the outcomemodels. Specification C can be thought of the minimal specification in that
only the minimal confounder Z2 enters into the propensity score model and the outcome
models. Specification D consists of the minimal propensity score model and the true out-
comemodels. Each of specifications A, B, C, and D is sufficient for consistent estimation of
ATEs. Specifications E and F are partially misspecified. In specification E, the propensity
score model is misspecified, whereas the outcome models are specified in a way that is
sufficient to control confounding. Thus, we would expect that the use of specification
E with either the matching or IPW estimator would result in biased and inconsistent es-
timates of causal effects. In specification F, the propensity score model is specified in a way
so as to control confounding but the outcome regressions omit the confounder Z2 and are
thus misspecified. We would thus expect that the use of this specification with the regres-
sion estimator would produced biased and inconsistent estimates of causal effects. Because
not all estimators use all three pieces of a specification, it will be the case that some spec-
ifications will be equivalent for a particular estimator. For instance, specifications C, D, and
F are equivalent for the matching estimator and the IPW estimator.

4.2 Results

4.2.1 Bias under specifications consistent for ATE

We first look at results from specifications A, B, C, and D. Under any of these four spec-
ifications, all the estimators under study (matching, IPW, AIPW, and regression) are con-
sistent for the ATE. Nonetheless, we do expect them to have different finite sample

Table 3 Model specifications used in the Monte Carlo study

Specification Propensity score model Outcome model (treated) Outcome model (control)

A X � lo(Z1, Z2) Y � lo(Z2) 1 lo(Z3) Y � lo(Z2) 1 lo(Z3)
B X � lo(Z1, Z2)

1 lo(Z3)
Y � lo(Z1) 1 lo(Z2)

1 lo(Z3)
Y � lo(Z1) 1 lo(Z2)
1 lo(Z3)

C X � lo(Z2) Y � lo(Z2) Y � lo(Z2)
D X � lo(Z2) Y � lo(Z2) 1 lo(Z3) Y � lo(Z2) 1 lo(Z3)
E X� lo(Z1) Y � lo(Z2) Y � lo(Z2)
F X � lo(Z2) Y� lo(Z3) Y� lo(Z3)

Note. Each specification consists of a propensity score model, an outcome model for treated units, and an outcome

model for control units. Not all estimators will use all three models. The propensity score model is a GAM for

binomial outcomes with a probit link and the outcome models are GAMs for conditionally Gaussian outcomes

with the identity link. The three cells to the right of a given specification consist of the R formula sent to the gam

function in the gam package that performed the model fitting (where lo() indicates a loess fit within the gam

package). Non-bolded entries are sufficient adjustments to achieve consistent estimates of ATEs. Bolded entries

are not sufficient to control confounding bias. All four estimators under study (regression, matching, IPW, and

AIPW) should be consistent for the ATE under specifications A, B, C, and D. This will not be true for specifications

E and F.
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performance. Figure 3 presents Monte Carlo estimates of the bias of each of these four
estimators across the various sample sizes; levels of confounding; (non)linearity of the
outcome mean function; and specifications A, B, C, and D.6

Fig. 3 Monte Carlo estimates of bias for four estimators of the ATE across four different model
specifications, three levels of confounding, three sample sizes, and twomean functions for theoutcome.

6All theMonte Carlo analyses were conducted in R (RDevelopment Core Team 2007).We use the gam function in
the gam package (Hastie 2009) to estimate the propensity score and outcome models. The Matching package
(Sekhon2009)wasused toestimate theATEusingone toonenearestneighbormatchingon theestimatedpropensity
score. The CausalGAM package (Glynn and Quinn 2009) implements all the estimators used in this paper.
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Looking at the results under low confounding, we see that all the estimators appear to be
essentially unbiased in any of the three sample sizes and with either true outcome mean
function. There appears to be a very slight amount of downward bias in the matching es-
timator under specification B and, to a lesser extent, specification A. These specifications
include more variables than necessary in the propensity score model and thus goodmatches
become more difficult to find. Nevertheless, all four estimators perform well across all
specifications and data sets with low confounding.

With moderate confounding, the performance of the estimators begins to diverge. Look-
ing first at the estimated bias under the true linear outcome model and moderate confound-
ing, we see that the regression and AIPWestimators are essentially unbiased at all sample
sizes. The matching estimator exhibits some minor upward bias in small samples, but this
largely disappears in larger samples. The IPW estimator shows noticeable upward bias in
small samples and a small amount of bias with n 5 1000. This is true across specifications
A, B, C, and D. Looking at the estimated bias under a true nonlinear outcome model and
moderate confounding, we see that all the estimators show some signs of bias across the
various specifications and sample sizes. As we would expect, bias decreases with sample
size. All the estimators perform similarly here with a slight edge in terms of bias going to
the IPW estimator.

The results under moderate confounding are accentuated under severe confounding.
Here, under the true linear outcome model, the AIPW and regression estimators remain
essentially unbiased in all sample sizes. However, the IPWestimator becomes badly biased
with the matching estimator somewhere in between. Under the true nonlinear outcome
model, we see that the patterns under moderate confounding are accentuated with all
the estimators showing noticeable bias, but the bias diminishing as sample size increases.

In summary, the results here should not be that surprising. In situations with minimal
confounding, all four estimators are essentially unbiased under a range of specifications.
With moderate or severe confounding and linear outcome mean functions, the estimators
that model the outcome mean function perform the best. In situations with moderate or
severe confounding and nonlinear outcome mean functions, all the estimators exhibit some
finite sample bias, but this diminishes as sample size increases.

4.2.2 Root mean square error under specifications consistent for ATE

Looking just at the finite sample bias of correctly specified versions of the four estimators
under study does not provide clear guidance as to which estimator is to be preferred. How-
ever, looking at the root mean square error (RMSE) of the estimators provides more rel-
evant information. Figure 4 plots the RMSE of the AIPW, IPW, matching, and regression
estimators.

Looking at the left panels of Fig. 4 that correspond to situations with low degrees of
confounding, we see that all four estimators perform similarly with RMSE decreasing as
sample size increases. This is as we would expect.

In situations with moderate confounding (the middle panels of Fig. 4), we see some
differences emerge. Looking first at the case where the outcome mean is truly linear,
we see that the regression estimator and the AIPW estimator outperform the matching
and IPW estimators. This difference is minimized under specifications C and D where
the propensity score model only includes Z2. This is consistent with the idea that condi-
tioning on a minimally sufficient set of adjustment variables can produce better overlap
between treated and control groups than would be the case if one conditioned on all co-
variates that effect treatment assignment. The IPWestimator closes the gap with the AIPW
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and regression estimators in situations with moderate confounding and a nonlinear mean
function for the outcome. There is some evidence that the best specification for the AIPW
estimator is specification D (a minimal propensity score model that conditions on just Z2

and an outcome model that adjusts for both relevant covariates—Z2 and Z3).
Looking at the situation of severe confounding with a linear mean function for the out-

come variable, we see that the regression and AIPW estimators do much better than the

Fig. 4 Monte Carlo estimates of RMSE for four estimators of the ATE across four different model
specifications, three levels of confounding, three sample sizes, and two mean functions for the
outcome.
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matching and IPW estimators. Again, this difference in RMSE diminishes under specifi-
cations C and D that only adjust for Z2 in the propensity score model. Further, there is some
slight evidence that the best specification for the AIPWestimator is specification D. Things
are slightly more complicated in the situation of severe confounding with nonlinear mean
functions for the outcome variable. Under specifications A and B, the IPW, AIPW, and
regression estimators all perform similarly and are all better than the matching estimator.
Under the more minimal specifications C and D, the IPW estimator outperforms the other
three estimators. With a sample size of 250, the matching estimator is also noticeably better
than the regression and AIPWestimators. Again, there is some evidence that specification
D is the best specification for the AIPW estimator.

Across all these correct specifications, we see that the RMSE of the regression estimator
is always quite similar to that of the AIPWestimator and, except for the case of a nonlinear
mean function for the outcome accompanied by severe confounding, the regression and
AIPW estimators tend to have lower RMSE than either the matching or IPW estimators
studied here. Thus, if we were certain that we had a correct model specification, either the
AIPW or the regression estimator would appear to be superior to the matching or IPW
estimators in many, but not all, situations.

4.2.3 Bias under specifications inconsistent for ATE

Of course we never know whether our model specification is sufficient to control con-
founding. For this reason, we would like to know how the various estimators perform when
the model specifications are partially deficient in the sense that either (1) the treatment
assignment model is misspecified and the outcome models are correctly specified or (2)
the treatment assignment model is correctly specified, but the outcome models are mis-
specified. Specification E falls under category (1), whereas specification F falls under
category (2).

Figure 5 shows the bias of the four estimators across the various Monte Carlo scenarios
under specifications E and F. The general pattern here is quite clear—‘‘only the AIPW
estimator remains essentially unbiased across all scenarios and both model specifications.’’
With moderate or severe confounding, the regression estimator will fail miserably if spec-
ification F is used, whereas the IPW and matching estimators will perform even worse if
specification E is used. Nonetheless, as long as either the propensity score model or the
outcome model is properly specified, the AIPW estimator exhibits only small amounts of
bias. Further, we know from theoretical results of Scharfstein, Rotnitzky, and Robins
(1999) that the AIPW estimator will retain its consistency for the ATE under such partial
misspecification.

4.2.4 RMSE under specifications inconsistent for ATE

Although the double-robustness property of the AIPW illustrated above would seem to
strongly favor its use over the IPW, matching, or regression estimators, we might also
be interested in its RMSE relative to other estimators under partial misspecification.
Fig. 6 plots the RMSE of the four estimators under specifications E and F. Consistent
with the earlier Monte Carlo results, we see that the RMSE of these other estimators
are never much, if at all, below that of the AIPWestimator and under some circumstances,
the RMSE of these estimators is dramatically (10–15 times) higher than that of the AIPW
estimator.
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5 Discussion

In this paper, we have shown that the AIPW performs about as well as extant estimators
under a fully correct specification. However, the AIPW estimator performs dramatically
better than IPW, matching (one to one nearest neighbor matching on the estimated pro-
pensity score), or regression estimators under partial misspecification. Of course, this study
should not be taken as comprehensive (other data-generating processes and estimators

Fig. 5 Monte Carlo estimates of bias for four estimators of the ATE across two different model
specifications, three levels of confounding, three sample sizes, and two mean functions for the
outcome.
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should be considered in future studies). However, these initial results indicate the promise
for estimators of this type. Since there is essentially no cost to using the AIPW estimator
when one knows the correct specification and sizable advantages to using the AIPW es-
timator when the specification is partially deficient, it seems reasonable that most applied
researchers should seriously consider using the AIPWestimator for their applied work that
seeks to estimate ATEs.

Fig. 6 Monte Carlo estimates of RMSE for four estimators of the ATE across two different model
specifications, three levels of confounding, three sample sizes, and two mean functions for the
outcome.
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Our study also provides some ideas about how to specify the two key pieces of the
AIPW estimator—the propensity score model and the outcome regressions. First con-
sider the situation where one has a very high degree of certainty regarding the causal
process by which one’s data were generated. In such a setting, one can use the meth-
ods of Pearl (1995, 2000) to identify sets of covariates that can be conditioned on to
remove confounding bias. In some cases, there will be multiple such sets. In these set-
tings, it seems wise to choose an adjustment set for the propensity score model that is
both sufficient to remove confounding bias and that produces maximal overlap between
the distributions of the estimated propensity scores for the treated and control units. Con-
versely, one would want to choose an adjustment set for the outcome regressions that is
sufficient to control confounding bias and that minimizes the residual variance in the
regression models. Such a strategy of using a minimally sufficient set of adjustment var-
iables for the propensity score model and a maximally sufficient set of adjustment var-
iables for the outcome regressions should result in lower sampling variability for the
AIPW estimator.

Of course, in many situations, one is not entirely sure of the causal process that gen-
erated the data under study. In these settings, the proper specification decisions are much
less clear. Here, the standard approach of considering multiple sets of plausible causal
assumptions and looking at a number of estimates across all these assumptions remains
reasonable. The key advantage of the AIPW estimator (and other more advanced double-
robust estimators [Robins et al. 2007]) in such a situation is that it will continue to perform
well as long as either the propensity score model or the outcome regressions are properly
specified.

Appendix A. Statistical Properties of the AIPW Estimator

A.1 Unbiasedness and consistency of the AIPW estimator

If we assume that the true propensity scores and regression functions are known, then the
AIPWestimator can be shown to be unbiased for the ATE. This is easiest to demonstrate by
first showing the in-sample unbiasedness of the IPW estimator and then showing that the
adjustment term of the AIPW estimator has in-sample expectation of zero.

E½ dATEIPW�5 1

n

Xn
i5 1

�
E

�
XiYi
pðZiÞ

�
2E

�
ð12XiÞYi
12pðZiÞ

��
5

1

n

Xn
i5 1

�
Yið1Þ
pðZiÞ

E½Xi�2
Yið0Þ

12pðZiÞ
E½ð12XiÞ�

�
5

1

n

Xn
i5 1

�
Yið1Þ
pðZiÞ

pðZiÞ2
Yið0Þ

12pðZiÞ
12pðZiÞ

�
5

1

n

Xn
i5 1

fYið1Þ2Yið0Þg:

Therefore the IPW estimator is unbiased for the in-sample ATE. Unbiasedness in the
population can be established by iterated expectation. Given this result, we can establish
the in-sample unbiasedness of the AIPWestimator by showing that the adjustment term has
expectation zero.
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Again the unbiasedness of this estimator in the population can be established by iterated
expectation. Consistency follows because the AIPW estimator is a sample average.

A.2 Double robustness of the AIPW estimator

The following proof of the double robustness of the AIPW estimator is directly from
Chapter 13 of Tsiatis (2006). In order to facilitate exposition, we will introduce slightly
different notation than was used in the body of this paper. Here, we write the propensity
score as

PrðX5 1jZÞ5 pðZ;wÞ;

where w is a finite dimensional parameter that governs the propensity score function.
Similarly, we write the outcome regressions as

EðYjX5 1;ZÞ5 lðX5 1; Z; nÞ

and

EðYjX5 0;ZÞ5 pðX5 0;Z; nÞ;

where n is a finite dimensional parameter that governs the conditional expectation function
of the outcome regression. With the new notation, the estimated propensity score function
in a sample of size n is given by pðZ; ŵnÞ and the estimated outcome regression function
in a sample of size n is given by lðX;Z; nˆ nÞ. It is assumed that ŵn converges in probability
to some value w* and that nˆ n converges in probability to some value n* as sample size goes
to infinity. When w* 5 w0 we will say the propensity score model is correctly specified.
Similarly, when n* 5 n0 we will say that the outcome regression is correctly specified.

Assume that the assumptions of SUTVA and strong ignorability of treatment assign-
ment given Z hold. We wish to show that dATEAIPW is consistent for ATE if either w* 5

w0 or n* 5 n0.
The AIPW estimator given by equation (3) can be rewritten as
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Because this is a sample average, dATEAIPW converges in probability to
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Using SUTVA and simple algebra we can write

XY

pðZ;w�Þ5
XYð1Þ

pðZ;w�Þ5 Yð1Þ1½X2pðZ;w�Þ�Yð1Þ
pðZ;w�Þ ðA2Þ

and

ð12XÞY
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ð12XÞYð0Þ
12pðZ;w�Þ5 Yð0Þ1½X2pðZ;w�Þ�Yð0Þ

12pðZ;w�Þ ; ðA3Þ

where Y(1) denotes the potential outcome under treatment of a randomly chosen unit and
Y(0) denotes the potential outcome under control of a randomly chosen unit.

Next, we substitute equations (A2) and (A3) back into equation (A1) to get

E½Yð1Þ2Yð0Þ� ðA4Þ

1E

�
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12pðZ;w�Þ

�
: ðA6Þ

Note that equation (A4) is the definition of ATE. Thus, in order to prove that dATEAIPW

is consistent for ATE if either w*5 w0 or n*5 n0, it is sufficient to show that expectations
(A5) and (A6) equal zero if either w* 5 w0 or n* 5 n0.

First consider the case where the w* 5 w0 (the propensity score model is correctly
specified). Using the law of iterated conditional expectations one can write expectation
(A5) as

E

�
fE½XjYð1Þ;Z�2pðZ;w0ÞgfYð1Þ2lðX5 1;Z; n�Þg

pðZ;w0Þ

�
: ðA7Þ

Conditional ignorability implies that

E½XjYð1Þ;Z�5E½XjZ�5 pðZ;w0Þ:
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Substituting p(Z, w0) in for E[XjY(1), Z] in expectation (A7), we see that expectation
(A5) is equal to zero when w* 5 w0. Directly analogous calculations can be used to show
that expectation (A6) is also equal to zero whenw*5w0. Thus, dATEAIPW is consistent for
ATE when the propensity score model is correctly specified and the outcome regressions
are misspecified.

We now turn our attention to the situation where n* 5 n0 (the outcome regressions are
correctly specified). Using the law of iterated conditional expectations one can write ex-
pectation (A5) as

E

�
fX2pðZ;w�ÞgfE½Yð1ÞjX;Z�2lðX5 1;Z; n0Þg

pðZ;w�Þ

�
: ðA8Þ

The strong ignorability assumption allows us to write

E½Yð1ÞjX;Z�5E½Yð1ÞjX5 1;Z�

and SUTVA allows us to write

lðX5 1;Z; n0Þ5E½YjX5 1;Z�5E½Yð1ÞjX5 1;Z�:

Thus, we can substitute l(X 5 1, Z, n0) in for E½Yð1ÞjX;Z� in expectation (A8). Doing this
we see that expectation (A5) is equal to zero when n* 5 n0. Similar calculations can be
used to show that expectation (A6) is also equal to zero when n*5 n0. Thus, dATEAIPW is
consistent for ATE when the outcome regression models are correctly specified and the
propensity score model is misspecified. This completes the proof of double robustness.
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