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Abstract

This paper presents a robust algorithm for calibration and system registration of endoscopic
imaging devices. The system registration allows us to map accurately each point in the world 
coordinate system into the endoscope image and vice versa to obtain the world line of sight 
for each image pixel. 

The key point of our system is a robust linear algorithm based on singular value decomposi-
tion (SVD) for estimating simultaneously two unknown coordinate transformations. We show 
that our algorithm is superior in terms of robustness and computing efficiency to iterative pro-
cedures based on Levenberg-Marquardt optimization or on quaternion approaches. The al-
gorithm does not require the calibration pattern to be tracked.

Experimental results and simulations verify the robustness and usefulness of our approach.
They give an accuracy of less than 0.7 mm and a success rate >99%. We apply the cali-
brated endoscope to the neurosurgical relevant case of red out, where in spite of the com-
plete loss of vision the surgeon gets visual aids in the endoscope image at the actual posi-
tion, allowing him/her to manoeuvre a coagulation fibre into the right position.

Finally we outline how our registration algorithm can be used also for standard registration
applications (establish the mapping between two sets of points). We propose our algorithm
as a linear, non-iterative algorithm also for projective transformations and for 2D-3D-
mappings. Thus it can be seen as a generalization of the well-known Umeyama registration 
algorithm.
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1. Introduction
Image processing and image analysis play an important role in advanced surgery (CAS: 
computer aided surgery). Much work is devoted to 3D-reconstruction from CT-, MRI- or other 
volume data or to 3D-registration between different image modalities and the actual scene in 
the operating theatre. 3D-registration is an important prerequisite for navigation support sys-
tems which allow, for example, the surgeon to follow a predefined path during a surgical in-
tervention.

Visual navigation in neuroendoscopy is a special kind of navigation employing only endo-
scopic images for navigational  purposes. This technique can be utilized alone or in addition 
to conventional navigation systems based on magnetic resonance imaging (MRI)  or com-
puter tomography (CT) (Dorward et al., 1999; Rhode et al., 1998; Rhoten et al., 1997). 

There is a large body of work in the area of virtual endoscopy (Bartz, 2005; Lemke et al., 
2004) where radiological data (CT or MRI) are used to create virtual endoscopic views or 
movies, but those systems cannot react directly to observations made or situations happen-
ing in the operation theatre. An example is the case of red out, where a complete loss of vi-
sion in the endoscopic view due to bleeding occurs. With our system it is possible to give the 
surgeon precise visual aids in the endoscopic view to control a coagulation fibre (see Section 
5.2) and stop the bleeding.

Digital image processing and image overlay within (real) endoscopic images, with the aim to 
provide the surgeon with navigational aids and/or measuring/tracking 3D-structures, has
been addressed so far only by relatively few authors. Kosaka et al. (2000), Akatsuka et al.
(2000) and later also Kawamata  et al. (2002) and Shahidi et al. (2002) describe augmented 
reality systems in which previously recorded CT- or MRI-data (e.g. 3D-data of a tumour) can 
be overlaid to the actual endoscopic image. Camera calibration and system registration
(physical-to-image-space registration) are vital building blocks for those systems. Koppel et 
al. (2002,2004) describe real-time tracking in endoscopic images which is used to estimate 
the "up" vector of the camera and to adjust the display for the surgeon. Camera calibration 
and measurement of the endoscope 3D-position is not part of the system.

The main roadblocks which prevent a wider range of applications for image processing and 
3D-measurements within endoscopic images lie in our opinion (a) in the difficulty to provide 
robust algorithms for calibration and extraction of useful 3D-information from multiple images 
of a moving camera, (b) in strong distortions caused by the wide-angle endoscope lens sys-
tem and (c) in close-to-real-time requirements for any of the image processing tasks.

We developed a new and robust algorithm for topic (a), the calibration and physical-to-
image-space registration (system registration) of the endoscope. In this paper we describe 
this algorithm in detail and compare it to other algorithms and connect it to the somewhat 
different standard registration approaches, with the aim to share this knowledge with a wider 
audience and to bring endoscopic registration to more routine use in the operating theatre.  

Topic (b) and (c) have been addressed in (Dey et al., 2002; Kawamata et al., 2002; Shahidi 
et al., 2002) as well as by us (Konen et al., 1997, 1998). We plan to describe more of our 
recent findings, laid out also in a patent application (Konen et al., 2006) in a follow-up paper 
(Konen et al., 2007).

Medical image registration is a very active research field due to its broad applicability to 
many imaging modalities; a recent overview is given by (Hill, 2001; Maintz and Viergever, 
1998). The standard task of registration (or alignment) is to find the transformation T which 
transforms a set of points pi as well as possible into a corresponding set of points qi. In the 
case of rigid-body transformations the problem can be solved with methods from linear alge-
bra, as it was first done by Green (1952), while Schoenemann (1966) was the first to use 
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singular value decomposition (SVD) for this problem. Later Arun et al (1987) rediscovered 
this method. Independently Farrell (1966) provided a solution that guaranteed a proper rota-
tion, an idea which was rediscovered by Umeyama (1991). If the set of points is large, it may 
be too complex to set up the correspondence mapping manually. An automated method is 
the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Zhang, 1994), which can 
also be used to match a set of points to a free-form curve.

The problem of iterative algorithms is their starting value dependence which might result in a 
solution far away from the true solution. Koppel et al. (2002) describe a non-iterative, linear 
SVD-based solution, however for a somewhat different endoscope application where no po-
sitioning measurement system for the endoscope is used. With such a positioning system, 
the system registration contains 4 or 5 coordinate transformations, where 2 or 3 of them are 
unknown and have to be estimated simultaneously. The works of (Kosaka et al., 2000, Aka-
tsuka et al., 2000; Kawamata et al., 2002) incorporate such a system registration, but do not 
describe which methods (iterative nonlinear vs. direct linear) are used. Shahidi et al. (2002) 
use a second tracking unit for a separately registered calibration pattern. Schwald et al. 
(2004) describe a linear method for solving the registration with 4 coordinate systems, which 
requires however a nonlinear quaternion mapping to ensure orthogonality of the rotation ma-
trices. In this paper we describe a new direct linear method for system registration and com-
pare it to other iterative possibilities, including a quaternion approach.

This paper is organized as follows: In Sec. 2 we will first present our system setup and for-
mulate the general registration problem for endoscopic imaging. We will then develop in Sec. 
3 different algorithms for solving the physical-to-image-space registration (some mathemati-
cal details are deferred to Appendix A and B). Sec. 4 presents results both from simulations 
and real registration experiments to verify the robustness and usefulness of our method, 
while Sec. 5 discusses the applicability to other registration task and shows some endoscopy 
medical applications.

2. The Registration Problem

2.1. System Setup
The rigid endoscope (outer diameter 5.9 mm, Camaert/Wolf GmbH) used in this work con-
sists of a circular tube (6 mm diameter) where a colour CCD-camera at the rear end captures 
the image from the tip of the endoscope through a special lens system (distance tip - rear 
end: 380 mm). We developed a special device (see Konen et al. (1997) and Figure 1) 
mounted on the shaft of the endoscope which holds 3 infrared LEDs (light-emitting diodes). 

The positions of the LEDs are measured 
continuously by the OPMS (optical position-
ing measurement system) which is a part of 
the EasyGuideTM Neuro navigation system. 
(Philips Medical Systems, Best, The Nether-
lands). The OPMS basically consists of a 
stereo camera rig, stationary in the operat-
ing theatre. The system measures the 3D-
position of the LEDs and determines the 6 
degrees of freedom of the rigid endoscope 
in the coordinate system of the camera rig. 
The OPMS achieves a differential spatial 
resolution of 0.4-0.8 mm and an overall ac-
curacy of 1-1.5 mm within its volume of op-
eration. 

The endoscope images were continuously 
registered at a frequency of 8 images per second, digitized on a frame grabber and stored as 

Figure 1: Rigid endoscope with LED-device
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a computerized dataset including the OPMS position data of the endoscope. We have re-
ported results with this system concerning virtual image navigation (Scholz et al., 2000) and 
ergonomic aspects (Scholz et al., 2005, 2005b).

2.2. Camera Calibration
We briefly review our camera calibration procedure, which has been described in more detail 
in Konen et al. (1997, 1998).

The basic camera calibration procedure estimates 11 or 12 parameters: the 6 extrinsic pa-
rameters {R, t} which map a point from the world coordinate system into the camera coordi-
nate system, the 4 intrinsic parameters of a camera (focal length f, piercing point (u,v), pixel 
scaling factor sx) and finally 1 or 2 image distortion parameters (1 or 1, 2). When the cam-
era is moved, only the extrinsic parameters change, while the intrinsic and the distortion pa-
rameters remain constant.

We use the well-known camera calibration 
procedure from Tsai (1987) which provides a 
versatile and robust estimation of the camera 
parameters. As a calibration pattern we use 
a plane of rings placed on a regular lattice 
with 1.25 mm ring-to-ring distance (Figure 2). 
The algorithm of Tsai (1987) [31] is able to 
compute first order radial distortion correc-
tion (1) which is highly necessary for the 
endoscope camera as Figure 2 shows. In 
Konen et al. (1997, 1998) also the inclusion 
of a higher order 2-term was tested, but the 
improvements were found to be negligible for 
an endoscope camera system. Thus our 
initial full camera calibration procedure deliv-
ers 11 parameters in total. Subsequent ex-
trinsic camera calibrations as they will be 
used in Sec. 2.3 deliver only the 6 extrinsic 
parameters, they assume the intrinsic and 
distortion parameters to be the same. The 
overall calibration accuracy is better than 0.2
mm over the whole field of view.

2.3. Physical to Image Space Registration
Figure 3 depicts schematically the 4 different coordinate systems involved in our setup. Two 
of them, W and O, are at rest in the operating theatre: The world coordinate system W is 
attached to the patient (during surgery) or to the calibration pattern (during the registration
process);  the OPMS coordinate system O is attached to the stereo camera rig (Sec. 2.1). 
Obviously the relation between both coordinate systems remains fixed as long as stereo 
camera rig and calibration pattern (patient) are not moved, a prerequisite we assume to be 
valid during the registration process (and later during surgery). 

Then there are two other coordinate systems which are usually moving in the operating thea-
tre: The endoscope coordinate system E, whose origin is attached to the LED device (Sec. 
2.1) and the camera coordinate system C, whose origin is attached to the camera centre 
and whose z-axis is pointing along the optical axis of the camera. Again, both coordinate 
systems are connected by a fixed relation, i.e. they move together – at least as long as nei-

Figure 2: The calibration pattern as viewed 
through the endoscope (distorted image). The 
straight lines are not part of the image but 
superimposed to show the distortion effects.
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ther the camera or the LED device is detached from the endoscopic shaft. But the relation is 
initially unknown.

Points in different Cartesian coordinate systems can be mapped into each other by a rotation 
followed by a translation (rigid body transform, a special case of affine transform). That is, if 
rW is a point in W, represented by a 3x1 column vector, then its representation in O is given 
by

(1) )( WOOWOO rDtrRr 

where RO is a 3x3 rotation matrix, tO is the 3x1 translation vector (pointing from the O-origin 
to the W-origin) and DO is just an abbreviation for this affine transformation. Likewise, the 
other coordinate transformations can be written as

(2) )( OEEOEE rDtrRr 

to map the O-representation into the E-representation and

(3) )( ECCECC rDtrRr 

to map the E-representation into the C-representation. Note that if rC=(x,y,z)T is a point in the 
camera coordinate system C, then it will appear at location ( (x/z)f, (y/z)f ) on the camera 
target at focal length f, as follows from simple projective geometry. Likewise, if (X,Y) is a po-
sition on the camera target, it corresponds to 3D-points z(X/f,Y/f, 1)T for any depth value z.

To complete our transformation ring, the affine transformation

(4) )( WWC rDtRrr 

maps a world point rW directly into the C-representation (see Figure 3). Obviously this is 
equivalent to the concatenation of the above three transformations, i.e.

(5)       OEC DDDD

Our goal is to be able to transform 3D world points into the camera coordinate system or vice 
versa to map points from the camera view into the corresponding lines of sight in the world 
coordinate system. The 3D world points are usually expressed in the OPMS coordinate sys-
tem O. The 3D points may come for example from preoperative CT-data which have been 
transformed into the OPMS coordinate system. We have shown above all the equations 

Figure 3: Coordinate systems for the system registration. The transform D is 
equivalent to the concatenated transform DCDEDO.
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needed to transform between these coordinate systems, but unfortunately most of the pa-
rameters (rotation matrices, translation vectors) are unknown so far. It is the purpose of the 
system registration process, also termed "physical to image space registration", to find these 
parameters.

More specifically we note:

o DE is known for each time instance, since the data (RE,tE) are delivered by the OPMS.

o DC is the unknown transformation of primary interest, since it allows together with DE

to transform points from the camera coordinate system into O, a coordinate system at 
rest in the operating theatre. DC is constant in time1, thus it can be estimated before-
hand in the registration process and then used during surgery.

o D and DO are unknown, but only needed as auxiliary variables during system registra-
tion to find DC. (Future applications might also use DO, which is constant in time as 
long as the stereo camera rig and the calibration pattern (patient) are not moved, but 
currently we use only DE and DC in our applications.)

The important point is that the parameters of D, i.e. the rotation matrix R and the translation 
vector t, can be obtained by observing with the camera a calibration pattern of known ge-
ometry. This is the process of extrinsic camera calibration (Sec. 2.2) as it is described in 
more detail in Tsai (1987). Basically it means that a camera picture of the known calibration 
pattern and the known intrinsic properties of the camera are sufficient to determine where the 
camera is in relation to the calibration pattern (world) coordinate system W.

This gives us the following strategy for physical-to-image-space registration: The extrinsic
camera calibration from Sec. 2.2 is used to get the transformation D from the calibration pat-
tern to the camera system (Figure 3). The transformation DE between the OPMS and the 
LEDs of the endoscope is delivered by the OPMS. Now we use the fact of Eq. (5) that a point 
in the calibration pattern coordinate system W can be transformed into the camera coordi-
nate system C either by D or by the combined transformation DCDEDO. The system registra-
tion process now proceeds as follows: 

 Put the calibration pattern at a fixed point in space. That is, the transformation DO be-
tween calibration pattern and the camera rig of the OPMS remains constant during 
registration. 

 Take images i=1,...,n of the calibration pattern with the endoscope from different en-
doscopic viewpoints.  Obtain the transformations D(i) (extrinsic camera calibration)
and DE

(i) (OPMS) for each viewpoint. 

 For each measurement the functional identity of Eq. (5) holds. This gives us a system 
of functional equations

(6)

     

     



O
n

EC
n

OEC

DDDD

DDDD

)()(

)1()1(

  

which we need to solve for the unknown transformations DO and  DC.

We will describe in Sec. 3.1 how this set of functional equations (6) can be reduced quite 
easily to a set of usual equations. Also, Sec. 3 will give different methods to solve these 
equations in more detail.

To summarize we have outlined in this section a method to determine the unknown, constant 
transformations DC (and DO) in a registration process which needs to be done only once be-
fore the surgical intervention. Thus all potentially time-consuming measurements and calcu-

                                               
1 as long as the connections between LED device, camera and endoscope remain tight
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lations can be done before surgery. During surgery we only use the constant DC and the 
time-varying DE (delivered by the OPMS) to map points from C to O and vice versa – a calcu-
lation which can be done in real time for many points.

2.4. Difference from Usual Registration Procedure
Our problem is thus somewhat different from the usual medical image registration proce-
dures (e.g. the orthogonal Procrustes problem, see Hill (2001) for an overview), and the dif-
ference can be traced back to the fact that we perform here a markerless registration. In 
usual registration procedures (e.g. from CT system to the intraoperative system IO), a set of
fiducial points (the markers) is traced in both systems, giving two sets of points {rCT

(i)|i=1,..,N} 
and   {rIO

(i)|i=1,..,N}. The goal is then to find the transformation DCT which minimizes 

  
i

i
IOCT

i
CT

2)()(2 rDr

Many solutions to this problem exist in the literature, the most well-known of them being the 
algorithms by Arun (1987) and Umeyama (1991) which are rediscoveries of solutions pub-
lished earlier by Green (1952), Schoenemann (1966) and Farrell et al. (1966).  In our case 
we map calibration points rC

(i) = DC(DE
(i)(rO)) = DC(rE

(i)), but we do not know during the regis-
tration process, what the coordinates rO are, we only know that some fixed transformation rO

= DO(rW) relates them to the world coordinate system of the calibration pattern. Contact to the 
above notation can be made by 

  
i

i
EC

i
C

2)()(2 rDr

but the difference is that the vectors rE
(i)= DE

(i)(DO(rW)) are themselves subject to an optimiza-
tion in the unknown DO. This would be different if the calibration points (which are all the
rings in the calibration pattern) were tracked by the OPMS: then we had for each calibration 
point a known vector rO. But there are 20-50 rings needed for the camera calibration. Thus to 
know each vector rO it would required to build a calibration pattern containing 20-50 LEDs. 
These LEDs  were measured simultaneously by the OPMS and the camera. But such a de-
vice is difficult to build and many OPMS can not handle the measurement of 20-50 LEDs 
simultaneously. In an alternative aproach, Shahidi (2002) has mounted one separate tracking 
unit on the calibration pattern. But then there still remains the problem of establishing the 
transformation between the grid of calibration rings and the tracking unit, a system registra-
tion in its own. 

We therefore stay with the system of functional equations (6) and seek efficient methods to 
solve it in the following section.

3. Methods
A robust solution of Eq. (6) which works well in practical surroundings is not an easy task due 
to the following factors

 many variables (2x12 = 24 variables, 9 rotation matrix elements and 3 translation vec-
tor elements in both DO and  DC)

 nonlinear optimization, since the elements of DO and  DC are coupled

 constrained optimization problem, since there are only 2x6 = 12 independent degrees 
of freedom within the 24 variables.

We show in Sec. 3.1 how to decompose Eq. (6) from a nonlinear problem with 24 unknowns 
into a linear 6-variable problem plus a nonlinear 18-variable problem. To solve the latter we 
show in Sec. 3.2 an iterative, unconstrained solution method, while in Sec. 3.3 we use qua-
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ternions representation to get another iterative method with fewer variables. However, all 
these methods have the drawback that a good starting value is needed in order to obtain a 
solution, a severe drawback for a registration procedure which should run ideally fully-
automated to the best solution. A new method from linear algebra (Sec. 3.4) shows that the 
problem can be solved by linear methods without iterations and thus without need for a start-
ing value. 

3.1. Decoupling translation from rotation
If the functional Eq. (6) is valid for any rW, namely 

(7)      WOECW
i rDDDrD )1()(  ,

then the coefficient multiplying rW and the constant term have to be the same on both sides of 
the equation. By substituting Eqs. (1)-(4) into Eq. (7) and comparing terms we obtain for 
i=1,...,n endoscopic viewpoints:

(8) O
i

EC
i RRRR )()( 

(9) O
i

EC
i

ECC
i tRRtRtt )()()( 

If all rotation matrices are known, we get the unknown translation vectors tC and tO from rear-
ranging terms in Eq. (9)

(10)   









O

Ci
EC

i
EC

i

t

t
RRtRt 1 )()()(

This is one of n linear equation systems with 3 equations in 6 unknowns x=(tC,tO). For n>2 
we seek a solution for 3n equations in the least square sense

(11)










































)()(

)1()(

)(

)1(

22

,

.

n
EC

n

EC

n
EC

EC

Min

tRt

tRt

b

RR

RR

1

1

L

bLx

1

       

     with

A robust solution for such a minimization problem is the well-known singular value decompo-
sition (SVD) (see Press et al. (1992) for a good description)

Thus only the reduced problem in the rotation matrices

(12)

O
n

EC
n

OEC

RRRR

RRRR

)()(

)1()1(





  

(i=1,...,n endoscopic viewpoints) remains to be solved. This is a problem with 9n equations 
for 18 unknowns (the matrix elements of RO and  RC), but only 6 independent degrees of 
freedom. Once we have a solution for Eq. (12), the solution to the full problem is easily 
achieved with the help of Eq. (11). 

In order to simplify our notation, we will use from now on the following abbreviations:

o )()( ii RA   and )()( i
E

i RB  for the known matrices (i=1,...,n measurements),
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o CRX    and  ORY        for the unknown matrices.

3.2. Iterative nonlinear optimization
A standard method for solving the nonlinear Eq. (12) is to transform it to a least square prob-
lem

(13)  
b,a

2
ab

2

i

2)i()i(2 M     with.Min MYXBA

and solve for the unknowns X and Y by Levenberg-Marquardt optimization, a standard least 
square optimization technique (Press et al., 1992). This iterative method has a fast conver-
gence on many nonlinear optimization problems, however it needs a good starting point and 
is not likely to escape from local minima.

Applied to our problem, the results in Sec. 4.1 show, that in about 25-35% of all cases the 
algorithm fails to find the global solution and gets stuck in a local minimum far away from the 
true solution, a clearly unacceptable result for a robust registration procedure. How can we 
improve on this?

An obvious criticism to the above Eq. (13) is that it does not include the orthogonality con-
straints which we have to impose on the matrices X and Y in order to make them proper rota-
tion matrices. Therefore the optimization problem has more variables than necessary and is 
therefore more likely to get trapped in local minima. 

3.3. Iterative quaternion optimization
A way to deal with the constraints is to change the representation of rotations: Instead of 
working with rotation matrices we can also work with unit quaternions. Unit quaternions are 
4-dimensional vectors with norm 1 and they can be used to represent rotations. The advan-
tage is that they have only 4 variables (with one constraint) instead of 9 variables (with 6 
constraints), so the unconstrained optimization space is much smaller in the quaternion case. 

The basic properties of quaternions are reviewed in Appendix A, showing that the quaternion 
vector product a.b is basically equivalent to the concatenation of rotation matrices. Given 
quaternions a(i), b(i), x, y corresponding to the matrices A(i), B(i), X, Y, resp., and given the 
quaternion representation R(q) of a rotation matrix, Eq. (19), we can reformulate Eq. (13) in 
the form

     .)()()()(
2)()(2 Minybxa

i

ii   RRRR

and solve this again by Levenberg-Marquardt optimization.2 The derivatives needed for 
Levenberg-Marquardt are given by (xq is the q-th component of quaternion x)

                                               

2  Why do we not solve an optimization problem .Minybxa
i

2)i()i(2   ..  in the quater-

nion space directly? – Because the twofold ambiguity of quaternions makes the optimization functional 
discontinuous which leads to complications during iterative optimization.
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 

 
q

ii

q

i

q

i

q

y

y
bxybx

y

yb
x

x
ybx

x















)(
)()()()()(

)()(
)(

)()()(

)()(

)()(

R
RRRRR

RR
R

RRR

Again we need a starting value for x and y. Although one might think that a lower dimen-
sional optimization space (8 instead of 18 dimensions) should increase the success rate, the 
results in Sec 4.1 will show an even lower success rate of about 50%. 

3.4. Direct linear algorithm
The question arises whether there is a way to avoid the nonlinearities altogether when solv-
ing Eq. (12). We can use to our advantage the fact that the true solution {X,Y} consists of two 
orthogonal matrices, i.e. XTX =YTY=1, and thus we can rewrite Eq. (12) in the form

(14)

0

0

)n(T)n(

)1(T)1(





XBYA

XBYA



This can be transformed to a linear system 

(15)  3311331211
T yyxxx

    and  matrix 18)(9n    with  0





z

CCz

where the 18-element vector z is the concatenation of all rows from X and Y. The structure of 
matrix C is shown in Appendix B. This homogeneous system has of course the trivial solution 
z=0, but we are seeking non-trivial solutions from the nullspace of C with boundary condition 
||z||2=6. This necessary (but not sufficient) boundary condition is due to the fact that the true 
solution should represent two orthogonal matrices, i.e. z should be the concatenation of six
3D vectors, each having norm 1. 

Each non-trivial solution is a vector in the nullspace of matrix C. A basis of the nullspace is 
readily found by SVD which decomposes

(16) C U V  diag w j
T( )

with orthogonal matrices U and V. It is shown in Press et al. (1992) that the columns j in ma-
trix V with their wj = 0 span the nullspace of C. We can distinguish three cases:

1. no wj=0, the nullspace has dimension zero: then the measurements are inconsistent 
and do not allow a registration solution

2. exactly one wj=0, the nullspace has dimension one: this should be the normal case 
for a sufficient number of measurements

3. more than one wj=0, the nullspace has dimension two or more: there is no unique so-
lution to the problem, this happens usually when there are too few (n3) or too redun-
dant measurements.3

In the case of real measurements there will be noise, which prevents Eq. (15) from having 
exact solutions (beside the trivial one), thus no wj is exactly zero. However,  there will be in 

                                               
3 Measurements are redundant if the endoscope looks at the calibration pattern from virtually the same 
viewing angle. We found out in our experiments that changing the viewing angle by about 150 to 300 is 
usually good enough to have non-redundant measurements.
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case 2 one linear independent solution z having Cz  much smaller than for other z of the 

same length, corresponding to a wj which is much smaller than all other wi. Thus SVD robus-
tly solves the problem in the best possible way: It returns that solution among all z with 

||z||2=6 which fulfils .MinCz 4. We refer to this solution somewhat incorrectly as being in 

the "nullspace" of C, although C has strictly speaking no nullspace but only a space with 

Cz (much) smaller than in any other direction. We give in Sec. 4.1 an empirical definition of 

this approximate "nullspace" for our case.

One might think at first glance, that a non-trivial solution z in Eq. (15) is very unlikely to fulfil
the constraints of orthogonal matrices since they are not incorporated in Eq. (15), but the 
results in Sec. 4.1 show, that the contrary is usually the case: If we are in case 2 (nullspace 
has dimension 1, the normal case), then the solutions with the right length ||z||2=6 will auto-
matically fulfil XTX=YTY=1.

The following argument shows that such a behaviour can indeed be expected: If we are 
given a set of consistent measurements, it means that they must be in agreement with a cer-
tain (but unknown) solution {Xtrue,Ytrue}. Thus {Xtrue,Ytrue} is in the nullspace of C. If the null-
space is only 1-dimensional (case 2), then there is only (up to a minus sign) one vector z with 
||z||2=6, and it must therefore coincide with the set of orthogonal matrices {Xtrue,Ytrue}.

To summarize, we have the following direct linear algorithm:

1. Set up matrix C acc. to Eqs. (15) and (21)

2. Make its SVD decomposition acc. to Eq. (16) and pick the column vj of matrix V cor-
responding to the smallest singular value wj. 

3. Set j6vz   and extract from z the solution matrices {X,Y}. Check for the right sign 

of det(X) and det(Y).

It has the big advantage that it does not need a starting value, which means that the solution 
– if it exists – will be found with a success rate of 100%.

4. Results

4.1. Comparing the algorithms
We want to compare the 3 different algorithms of Sec. 3.2, 3.3 and 3.4 with respect to the 
following factors:

o robustness against start value variation

o robustness against measurement noise

o quality improvement with more measurements 

o performance

We name the three algorithms of Sec. 3.2, 3.3 and 3.4 as "iterative", "quaternion" and "direct 
linear", resp., keeping in mind that the "quaternion" algorithm is of course also an iterative
algorithm.

                                               
4 Proof: If jv is the column of V corresponding to the smallest singular value wj of C, then jvz 6  is 

the desired solution, since jjjjjj
T

i wwwwdiag 6666)(
2222  UUvVUCz  is 

smaller than ||Cz||2 for any other z with the same length.
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The evaluation procedure is as follows: We configure a registration problem by choosing ro-
tation matrices B(i),true, Xtrue,Ytrue and calculating A(i),true= XtrueB(i),trueYtrue, where i=1,...,n de-
notes the number of measurements.  To simulate the effects of measurement noise, we per-
turb the measurement matrices with  A(i)= A(i),true (,,) where each  (,,) is an inde-
pendently drawn random rotation matrix. We obtain (,,) by drawing Euler angles  ,,
independently from the normal distribution N(0,noise). The perturbed measurement has a 
slightly different true solution {Xtrue,Ytrue} which is found by a quick least-square optimization 
of 

 
i

2)i(true)i(true2 AYBX

given the unperturbed {Xtrue,Ytrue} as starting point.

For the iterative algorithms we choose also for each run starting values  X(0), Y(0), which are 
independently drawn random rotation matrices (with flat distribution in the Euler angles).

Figure 4: Robustness of the three different registration algorithms. The percentage of suc-
cesses is shown as a function of threshold , the maximum allowable deviation between solu-
tion vectors and true vectors, see Eq. (17). Left: noise-free measurements, right: measure-
ments with angular noise standard deviation noise=2o. Based on 200 simulation runs, each 
with n=4 measurements. For the two iterative algorithms a random start value is also chosen
for each run. It is clearly seen that the direct linear algorithm outperforms the two iterative 
algorithms.

Then we pass the input { A(i), B(i)| i=1,...,n}  into each of the three algorithms5 (plus the start 
matrices X(0), Y(0) in the case of the iterative algorithms) which in turn respond with solution 
matrices Xsol,Ysol. Each column xsol

i, i=1,..,3  of matrix Xsol is the image of the unit vector i 
under the rotation transform. The quality of the solution can be quantified by looking at the 
norm of the column difference vectors

(17)
)d,d,dmax(

d

321

true
i

sol
iii



 xxδ

Ideally, each di should be zero, but in the case that the xi are arbitrary unit vectors, di can 
have values up to 2. We term a solution a success, if    where  is an appropriate thresh-
old in the range [0.0, 0.2].

                                               
5 In the case of the quaternion algorithm the start matrices are converted to quaternions via Eq. (20)
and the results, which are quaternions, are converted back to rotation matrices via. Eq. (19).
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We show in Figure 4 the results of 200 simulated runs on the three algorithms. Both iterative 
algorithms have a success rate of 60% or below for all shown thresholds, while only the di-
rect linear algorithm has a 100% success rate. It is clear that all solutions {X,Y} from the di-
rect linear algorithm must fulfil the orthogonality constraints XTX=YTY=1 nearly to perfection, 
since otherwise they were not all successes even for small thresholds .

The success rate for the iterative optimization algorithm based on rotation matrices (red 
curve in Figure 4) is surprisingly low for small thresholds. A closer inspection of the results 
revealed the following reason for this: If {Xtrue,Ytrue} is the true solution, the optimization prob-
lem as stated in Eq. (13) is invariant against the change 

k/,k truetrue YYXX 

for every scalar value k0. This is because the unconstrained optimization problem does not 
take into account the orthogonality constraints, thus leading to determinants deviating from 1: 

1)det(although,k/1)det(,k)det( 33  XYYX

This behaviour was found to be true for many (approx 75%) of the cases in the iterative op-
timization algorithm. The cure for this is quite simple, namely take the "normalized" solutions

(18)
33 )det(

))sgn(det(,
)det(

))sgn(det(
Y

Y
YY

X

X
XX 

which brings the determinant of both X and Y to 1 (although the matrices become not neces-
sarily orthogonal). 

Figure 5: Same as Figure 4, but with an improved iterative algorithm acc. to Eq. (18). Noise lev-
els are noise=2o (left) and noise=4o (right), the results for noise=0o are very similar to the left pic-
ture. Now the iterative algorithm based on rotation matrices has a better success rate (70-75%) 
than the iterative quaternion algorithm (50-60%). All algorithms degrade quite gracefully in the 
presence of noise.

With this extra step in the first algorithm we get the results shown in Figure 5, much better 
than before for the red curve. All algorithms reach now very quickly a certain plateau, mean-
ing that the solution is either a complete success or a complete failure. A complete failure is 
the typical behaviour we expect when an iterative algorithm gets trapped in a wrong local 
minimum, far away from the true solution. The direct linear algorithm shows a very robust 
behaviour: For reasonable large thresholds  we get a 100% success rate, since the problem 
of local minima does not occur in this case. In other words: not a single complete failure was 
observed for the direct linear algorithm.
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Both iterative algorithms have a failure rate of 25-50%. This can indeed be traced back to the 
starting point problem: If we had given them a starting point sufficiently close to the true solu-
tion, nearly all runs would have been successes. But the starting point is unknown in the real 
case, and a complete registration failure or "multiple guessing" would pose severe problems 
for the practical application in the operating theatre.

Note that after the improvement of Eq. (18),  the first algorithm outperforms the quaternion 
algorithm (dashed black curve in Figure 5). We thus are led to the conclusion that the num-
ber of variables and the neglect of the orthogonality constraints are not the principal problem 
for finding a robust convergence behaviour. The quaternion algorithm reduces the dimension 
in optimization space (from 18 to 8), but the price for this is that the optimization function has 
a higher degree of nonlinearity which makes obviously the "basins of attraction" smaller.
Thus the chance for getting trapped in a local minimum increases.

The direct linear algorithm is also superior when we compare performance (computing time): 
All three algorithms were implemented in MATLAB and executed on a Pentium 1500 MHz.
As Table 1 shows, the direct linear algorithm is 600-700 times faster than the quaternion al-
gorithm and 60-80 times faster than the iterative rotation matrices algorithm. The reason that 
the quaternion algorithm is eight times slower than the iterative algorithm lies in the fact that 
it needs much more iterations in the Levenberg-Marquardt algorithm.

Table 1: Execution times and success rates for the different algorithms when solving the regis-
tration problem of Eq. (12) for different n (numbers of endoscopic viewpoints). Results are ob-
tained for =0.1 and noise=4o.

Algorithm

n iterative (Sec. 3.2) quaternion (Sec. 3.3) direct linear (Sec. 3.4)

4 106 ms 886 ms 1.27 ms

6 123 ms 940 ms 1.66 msexecution time

8 119 ms 1216 ms 2.02 ms

4 71% 51% 100%

6 82% 47% 100%success rate

8 83% 41% 100%

Increasing n, the number of measurements (number of endoscopic viewpoints), leads to a 
roughly linear increase in execution time for the direct linear algorithm (Table 1). For the it-
erative algorithms there is considerable variation in the execution time for a single run, de-
pending on the number of iterations needed. The success rate does not change very much, 
we have a saturating increase for the first iterative algorithm, and – surprisingly – a decrease 
for the quaternion algorithm as n grows. Why would the success rate of the quaternion algo-
rithm decrease with growing n? The quaternion optimization function has a higher degree of 
nonlinearity of its optimization parameters (quartic terms instead of quadratic terms in Eq. 
(13), the iterative solution). We suspect that with growing n each additive term i in the 2-
function contributes many local minima to the optimization surface. This can outperform the 
effect that the true minimum becomes deeper. The net effect may be that the "basin of attrac-
tion" of the true minimum becomes smaller.

Can we tell just from looking at the singular values (SV) of C in the direct linear algorithm 
whether we have a good solution or not? The situation is depicted in Figure 6 where the re-
sults from 200 simulated registrations for n=3 and and 200 for n=4 are shown: With n=4 
measurements we have always a good solution with small errors, log10()  -1.8. For n=3 we 
have a large fraction (34%) of bad solutions with log10() >-1.0.
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Figure 6: Error  vs. 2nd smallest SV 2. For 2/max

> 6% we can expect a good solution (<0.01).

The y-axis of Figure 6 shows an important aspect about the spectrum of C. As said in Sec. 
3.4 we never get an exact nullspace of C in the presence of noise. We only expect the small-
est singular value (SV) 1  to be much smaller than all the others, especially smaller than the 
2nd smallest SV 2. We use the following empirical definition: C has an approximate "null-
space" of dimension one if (a) 1   2% max AND 2  6% max, where max is the largest SV 
of C. Table 2 shows that 1   2% max is on average valid for all n. But we see in Figure 6 a 
clear gap in 2: For n=3 we have 2<6% max and we cannot separate good from bad solu-
tions by just looking at 2. But for n=4 the value of 2 is considerably larger. If 2  6% max

we can be quite sure to have a good solution.

4.2. Spin-Me-Around Accuracy
We performed several system registrations of the real endoscope (camera calibration al-
ready done) based on n=4 measurements. The calibration pattern is a plate with concentric 
rings which were automatically detected in the endoscopic image. The main result of the sys-
tem registration is the transformation DC. With DC we can map any point from the OPMS co-
ordinate system into the endoscopic camera view for arbitrary positions of the endoscope, 
using the time-varying DE from the OPMS. We can assess the quality of the system registra-
tion by the following spin-me-around test: We manually mark a certain landmark r in at least 
k=2 different camera views. Knowing the k camera positions from the OPMS, we can obtain 
the 3D-representation rO in the OPMS-system using standard triangulation techniques 
(Longuet-Higgins, 1981). For any subsequent endoscopic view, we map rO into the actual 
camera view and overlay it onto the endoscope image. If camera and system registration are 
correct, the overlaid mark will be always on top of the landmark r, no matter how we "spin 
around" the endoscopic viewpoint or where the landmark r appears in the endoscope image. 
Table 3 shows that the residual error <f>0.7 mm is in the order of  the intrinsic error of the 
OPMS (> 0.5mm), i.e. the accuracy of the registration is close to its theoretical limit. 

Note that it is very important to have an accurate distortion model in order to achieve this 
accuracy. If we neglect distortion effects (by setting 1=0) and if r is far away from the pierc-
ing point, the error goes up to 3.5 mm instead of 0.7 mm.

Table 2: Average of the two small-
est singular values (SV) in percent 
of the largest SV max for the direct 
linear algorithm. Averaging is 
based on 200 measurements.

n=3 n=4 n=5

smallest SV 0.7% 0.8% 0.9%

2nd smallest 
SV 2

3.7% 8.7% 15.1%

max 2.44 2.82 3.16
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Table 3: Average error <f> as residual distance between r and the overlay mark in the live 
endoscope image. Averaging based on 10 images where the landmark r appears at various 
distances from the piercing point. s is the approximate movement of the camera between the 
k multiple views to determine rO. fOPMS is the observable jitter of the overlay mark when the 
endoscope is fixed. This jitter stems from noise in repeated OPMS measurements and gives a 
lower bound on the intrinsic OPMS error. System registration done by direct linear algorithm.

k s [mm] <f> [mm] fOPMS [mm]
2 5 0.74 0.5
3 5 0.62 0.5
2 10 0.71 0.5
3 10 0.72 0.5

How often do we need to make a system registration? The transformation DC remains con-
stant as long as the elements {endoscope, LED-device, camera} stay together. DC can 
change, when (a) the LED-device is detached from the endoscope shaft or (b) when the 
camera is detached from the endoscope shaft. In daily routine, however, it turns out that (a) 
is nearly never necessary (sterilization can be done with LED-device attached) and (b) that,
after detaching and re-attaching the camera, the old DC is still valid. Thus, we usually perform 
many surgical interventions with the same system registration.

Further results with the real system concerning tracking accuracy and 3D measurement ac-
curacy will be given in a follow-up paper (Konen et al., 2007).

5. Applications

5.1. Applicability for standard registration
Is the direct linear algorithm also of use for standard registration tasks?

In standard registration procedures (cf. Sec. 2.4) we have two sets of points x(i) and y(i), 

i=1,…,n and seek a transformation T  T  which minimizes  
i

)i()i( )( yxT . If T  T  is 

drawn from the set of affine mappings, we have the case of Procrustes or rigid-body trans-
formation, where the well-known algorithms of Schoenemann (1966) or Farrell (1966), later 
rediscovered by Arun (1987) and Umeyama (1991), provide a versatile and fast solution for 
the 2D-2D and 3D-3D-case.

But in many applications the modalities have different dimensions, e.g. 2D-3D, or the trans-
formations must be drawn from a more general set of transformations, e.g. projective or bi-
linear. In these cases the mappings can be still expressed in matrix form with homogeneous 
coordinates, but the algorithm of Umeyama (1991) is no longer applicable. The direct linear 
algorithm will be still applicable to all these cases, and we show this for the example of the 
2D-2D projective mapping (the other cases work similarly). Such a projective mapping is 
easiest to write down in homogeneous coordinates where each 2D-point (x1,x2)

T is embed-
ded in 3D by (hx1,hx2,h)T with a new parameter h. This allows a wider class of transforms to 
be expressed by linear maps. The projective mapping T should fulfil
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This is linear in the terms tij (although it is not linear in xi and not linear in yi), so it can be writ-
ten in a form similar to Eq. (15), namely

(8')  321211
T t...tt

    and  matrix 8)(2n    with  0





z

CCz

with a certain matrix C containing elements from x(i) and y(i). Eq. (8') can be solved with the 
same method as in Sec. 3.4.

Thus we have outlined a general registration method, which may work for a wider class of 
transformations (affine, projective, bilinear, 2D-2D, 2D-3D, 3D-3D) in the same robust man-
ner. So far we have only applied it to our special 3D-3D-case of Sec. 3 and 4 above. Further 
research should be done to verify the applicability to the other cases mentioned here. Espe-
cially it should be investigated under which conditions the requirement is met that only one 
singular value (see Sec. 3.4,4.1) is approximately zero. 

5.2. Neurosurgical applications
The properly registered endoscope can be used for many purposes: Certain landmarks, ei-
ther from preoperative data (CT,MRI) – e.g. the location of a tumour – or intraoperatively 
marked 3D-points can be displayed as an overlay to the live endoscope image (as well as 
their direction vector when they are outside the field of view). By setting several landmarks it 
is possible to perform 3D-measurments in the live endoscopic image. Ergonomic aspects of 
all those functions have been studied in Scholz et al. (2005).

An important application is the coagulation support in the case of red out (Figure 7). We store 
intraoperatively the endoscopic images together with the 6D-rigid body data of the tracked 
endoscope. In the case of vision loss due to bleeding we can provide the surgeon with im-
ages corresponding to the current position (we display them as grey level images in order to 
make the distinction to the real camera image clear). 

We do not only generate the views, but we also give the surgeon information how deep he 
has to put in the coagulation fibre in order to be close to the tissue surface. How do we get 
this? Assume that a point on the tissue surface has been marked at the beginning of surgery 
with clicks into (at least) two camera views. We do not know the depth yet, we only have 
lines of sight. But by transforming the lines of sight back into the O-system via DE

-1(DC
-1()) we 

can intersect these two (or more) lines and – assuming that they are not all identical – calcu-
late in the O-system the 3D coordinates rO of the landmark. Once established, we can map 
this into any subsequent camera view using rC=DC(DE(rO)), see crosshairs in Figure 8, and 
give the surgeon at the same time hints about how to place the coagulation fibre, e.g. " ad-
vance 4 mm from norm position". As is described in more detail in (Scholz et al., 2000, 2005, 
2005b), the surgeon can now make a coagulation to stop the bleeding. 

Such a system requires accurate 3D physical-to-image-space registration, which is possible 
in a robust manner with  the methods described here. The surgeon watches in general two 
monitors, one monitor always with the live image and one monitor with live or virtual images
and graphic overlays. He can choose active coagulation as an alternative to conventional 
techniques like rinsing or careful suction. Those conventional techniques can disturb pres-
sure, temperature and ional composition of cerebrospinal fluid and bear therefore the risk of
further severe complications.
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Figure 7: Example of a red out situation in a surgical created cavity in the groin of a rat. Left: Start 
of a very slow bleeding after damage of the vein. Right: Complete loss of vision due to red out after 
a few seconds.

Figure 8: Coagulation support for the case of a red out situation. The shown grey level images are 
previously stored images corresponding to the current position. Left: The orange graphic overlay 
of the coagulation fibre is far away from the coagulation point (blue mark). The red alarm signal on
the side shows that the 3D distance is large. Right: The coagulation fibre has been brought into the 
correct depth and right x-y-location, the red alarm signal is low. Coagulation was successful and 
the bleeding stopped.

6. Conclusion
We introduced a new method for the system registration of surgical devices, which provide
2D-projections of the 3D-world seen by the surgeon during interventions, such as endo-
scopes. The registration method is markerless, i.e. it does not need fiducial points (with 
known extrinsic 3D position in the operating theatre), but only observations of a passive cali-
bration pattern with known (intrinsic) geometry. Shahidi et al. (2002) solve the system regis-
tration by placing a second tracker on the calibration pattern. This approach requires, how-
ever, that the transformation between this tracker and the calibration grid is known precisely, 
which amounts to another registration task.

Our method is based on a direct linear algorithm which has been shown to be superior to
other iterative, nonlinear approaches based on quaternions or Levenberg-Marquardt optimi-
zation. The distinctive advantage of the direct linear algorithm is that it does not need a start-
ing value and cannot get trapped in local minima, thus leading to a robust behaviour in the 
calibration process (100% success rate instead of 50% or 70%). The direct linear algorithm is 
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60 times faster than the iterative approach and 600 times faster than the quaternion algo-
rithm.

We have outlined how we expect the direct linear algorithm to work also for registration be-
tween modalities with different dimensions (2D-3D, 3D-3D) and for a wider class of transfor-
mations (namely projective mappings). It is possible that it is a generalization of the (also 
linear) registration algorithms by Schoenemann (1966) and Farrell (1966) . Further research 
should be done to verify this conjecture in real applications of medical image registration. 

Appendix A: Quaternions 
Quaternions (Shoemake, 1985) are 4D-vectors  ),q()q,q,q,q(q 03210 q with norm q

and a conjugated quaternion q defined as 
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A vector product between quaternions, resulting in a new quaternion, is defined as:
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A unit quaternion is a quaternion with norm q =1. Each unit quaternion can be written as
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with a 3D unit vector n,  and since each rotation is uniquely specified by a rotation axis n and 
a rotation angle , the unit quaternion q is a representative for the rotation R(n,). The repre-
sentation is twofold: both q and –q are unit quaternions which represent rotation R(n,).

The formulas relating a quaternion q with the corresponding rotation matrix R are:

Transformation from quaternion to rotation matrix:
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Transformation from rotation matrix to quaternion: By suitable addition / subtraction of diago-
nal elements in Eq. (19) we get
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One of these terms is the biggest, let us assume without loss of generality that it is 4q1
2. We 

get q by using the off-diagonal elements of Eq. (19):
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Here we have used the positive square root for q1. With equal rights we could have taken the 
negative square root, yielding in turn the equivalent unit quaternion –q. 

Appendix B: The structure of matrix C 
The (k,l) matrix element for the ith matrix of Eq. (14) can be written as (i=1,...,n)

 














)i()i(
l

k

l

)i()i(
k

)i(
lkl

)i(
kkl

)i(T)i(

ofcolumnlth:

ofrowkth:

ofrowlth:

ofrowkth:

       with  

Bb

Xx

Yy

Aa

bxyaXBYA

This is equivalent to
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where each entry in matrix C(i) is a 1x3 row vector. Thus, C(i) is a 9x18 matrix corresponding 
to one specific measurement i. The 9n x18 matrix C is the concatenation of all C(i), i=1,…,n. 
Each entry in 18x1 vector z corresponds to a 3x1 column vector.
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