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Abstract In this article, by using an integral identity
together with both the Holder, Power-Mean integral
inequalities and Hermite-Hadamard’s inequality, we
establish several new inequalities for n-time differentiable
s-convex and s-concave functions in the second sense.
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1. Introduction

In this paper, by using some classical integral inequalities,
Holder and Power-Mean integral inequality, we establish
some new inequalities for functions whose nth derivatives in
absolute value are s-convex functions in the second sense.
For some inequalities, generalizations and applications
concern convexity see [1]-[11]. Recently, in the literature
there are so many papers about n-times differentiable
functions on several kinds of convexities and s -convex
functions. In references [5]-[8], readers can find some results
about this issue. Many papers have been written by a number
of mathematicians concerning inequalities for different
classes of convex and s-convex functions in the second
sense see for instance the recent papers [12]-[19] and the
references within these papers. There are quite substantial
literatures on such problems. Here we mention the results of
[1]-[29] and the corresponding references cited therein.

Definition 1.1: A function f:1 € R — R is said to be
convex if the inequality

flx+ A=ty <tf(x)+ A -f()

is valid for all x,y €I and t € [0,1]. If this inequality
reverses, then f is said to be concave on interval I # @.
This definition is well known in the literature.

Definition 1.2: A function f:R* - R, where R* =
[0,00), is said to be s-convex in the second sense if

flax+By) < a’f(x) + Bf(y)

for all x,y €[0,0),a,8=0 with a+8=1 and for
some fixed s € (0,1]. This class of s-convex functions is
usually denoted by K2. It can be easily seen that for s = 1,
s-convexity reduces the ordinary convexity of functions
defined on [0,). In the paper [20], some properties of
s-convex functions in both senses are considered and various
examples and counterexamples are given.

The following Hermite-Hadamard type inequality for
s-convex functions in the second sense was demonstrated in
[21]. Let f:[0,00) = [0,00) be a s-convex function in the
second sense for s € (0,1] andlet b > a = 0. If f € L[a,b],
then

251 (a +b
2

If f is s-concave, then the above inequalities are
reversed.

Throughout this paper we will use the following notations
and conventions. Let | =[0,0) € R = (—o0,4+), and
a,b €] with 0 <a < b and f' € L[a,b] and

+b
A(a,b)=a2 ,

f(a)+ f(b)
s+1

b
)Sleaff(x)de

bp+1 _ ap+1

P
Lp(a,b)=< )> ,axbpeRp+—-10

P+ —-a
be the arithmetic, geometric, generalized logarithmic mean
for a,b > 0 respectively.

We will use the following Lemma [10] for we obtain the
main results:

Lemma 1.1: Let f:1 € R —= R be n-times differentiable
mapping on I’ for neN and f®™ €L[a,b], where
a,b € I’ with a < b, we have the identity
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n-1 b 1
OB — O (@)ak! "
;’(_1)’(( (k+ 1)! > - !f(x)dx S% f XM dy f [ f(n)(b)|
b a a
= (_1)| fx”f(”) (x)dx. . a
J b—x ™ q
+(5=3) Irowr|as

Especially, we want to note that the results obtained in this
article for s = 1 coincide with the results in [10].

? o)
! jx"”dx |f (b)| j(x a)sdx

2. Main Results "\
1
Theorem 2.1. For vn € N; let f:1 c[0,00) » R be |f(n)(a)| 1
n-times differentiable function on I° and a,b € I’ with f(b
a<b. If |f®|"€eLlab] and |[f®|* for ¢>1 is
s-convex function in the second sense on [a,b], then the 1[5+ — B (b — a) z
following inequality holds: == (OIATK ™ a)]?
g1neq Y b n'[ np+1 ] [s+1 (|f (b)| +|f (a)| )]
n-1
(k) b)pk+1 — (k) k+1 1
Z(_l)k<f . (k+f)l @ >_jf(x)dx L ap—ai (-
k=0 ' 2 = (b~ @) _a)q(s+1)
1 1
1 2 \a 1 x L% (a,b)Aa([f™ @) [F™ ®)|
<—0- ) (=) t@na(o@l o o) (@ DA @] I l)
n! s+1 . ) 1 .
q =
where £ +2 =1, = =0 -0 (=) By@bar (fO@[" [F ™ ®))
Proof. If |f™|? for ¢ > 1 is s-convex function in the  This completes the proof of theorem.
second sense on [a, b], using Lemmal.1, the Holder integral Corollary 2.1. Under the conditions Theorem 2.1 for
inequality and n = 1 we have the following inequality:
- b—x \|? b
™7 = [ (" a ) (b - f(a)a 1
ol =|rm (= + 7 —a PO [ fooax

b—a

X — a\’s
< €] q
- (b - a)s |f (b)| 1
b—=x\"\ oy, 9 2 \a 1
+(pmg) @I < (=) L@ @P. 1 B,
Proposition 2.1. Let a,b € (0,1] with a<b, g>1
we have and s € (0,1], we have the following inequality:
n-1 b
f(k)(b)bk+1 _f(k)(a)ak+1 s s ps 1
Z(—nk( - [ rooax ) < (S
L (k + 1)! ) Ls, (@b)=\—757) Lp(ab)

Proof. Under the assumption of the Proposition, let

b
1 f 4
< — | x| o) dx :
1 _q +1
nJ fO =5t tefo1]

1 1
b 5 b E Then

1 s
<l Jeas | { [Irocorax Fol=t0

a a
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is s-convex on [0,1] and the result follows directly from

Corollary 2.1.
Theorem 2.2. For vne N; let f:1 c [0,00) - R be

n-times differentiable function on I° and a,b € I’ with
a<b. If |f®™|"eLlab] and |[f®|* for g =1 is
s-convex function on [a, b], then the following inequality
holds:

n-1 b
f(k) (b)bk“ _ f(k)(a)ak“
;(—1)k< ) - j Fedx

<lo- a)l_TL [|f<n> (b)| P(n,s,x)
n!

@ Qs O
Where %+%= 1 and p>1 and
b
P(n,s,x) = f x™(x —a)’dx

a
b

Q(n,s,x) = fx”(b — x)%dx.

Proof. From Lemmal.l and Power-mean integral
inequality, we obtain

n-1 b
f(k)(b)bk+1 _ f(k)(a)ak“
;(—1)k< Eay ) - [ reax
L b
< ij"|f(")(x)|dx
1 ‘ ‘11
<= fx”dx f [ |f(n>(b)|
b—x\° %
=) vowf]e
1 fxm) RO nix— a)d
“al\nrif boay ) ¥ xmardx
|f(n)(a)|q b ) ) q
+W x™(b — x)%dx
B 1 [pntl — gntl 1_E |f(n)(b)|q
_E< n+ 1 > (b—a)’ P(n,s,x)
) a
+— |f (a)| Q(n,s,x)

(b—a)

bn+1 n+1 1_%
ar [( n+1)(b-a)

@) 4 q
E_ElQM&@l

|f(")(b)|
[ ys P2+ 508

= l(b —~ a)l_TL [|f<n> M| P(n,s,x)
n!

1

+|f™ @] e, s, 0]

Theorem 2.3. For vne N; let f:1 c [0,00) - R be
n-times differentiable function on I’ and a,b € I with
a<b. If |f®|"eLab] and |[f®|* for ¢>1 is
s-convex function on [a, b], then the following inequalities
hold:

b
(_3 f X" F (x)dx <—(b—a) 0

a

x [[f™®)|*s(n,s,q, ) + |fP (@] T(ns,q,%)]°

b
(_1)n+1 1 1_S+1
nen) —(p —
n! fx ™ (x)dx Sn!(b a). 4 L,(a,b)

a

x [I[F™ 1)K (n,s,q,%) + |[f™ (@) L(n,s,q,%)]"
b s+1

_1 n+1 b _ 11—

D j X" FO (x)dx b 7, Z)' Lt (ab)

a

x [[f™ )| M(s,q,%) + |[f™(@)|'N(s,q,0]7

(_gmf nFO (x)dx <—(b—a)< 2 )%

+1

a

x LI (a, b)Aa([f@ @) | F™ 1))

where S(n,s,q,x) = fab x™(x —a)Sdx
b
T(n,s,q,x) = fx”q(b —x)%dx

xDa(x — q)Sdx

L(n,s,q,x) = | x®Va(p —x)Sdx

o
/
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b ( 1)n+1 b

N(S, q; x) = qu(b - x)s dx. n] an_le(n) (x)dx
a ' 2
1
Proof: If [f®|* for ¢ > 1 is s-convex function the p/b q

b
second sense on [a,b], using Lemmal.l and the Holder Sl fx(n DDy fxq|f(”)(x)| dx
integral inequality, we have the following inequalities n! 2
respectively:

a

b b
_1 n+1 1
( n)! jx"f(n)(x)dx <— jx(" DPdyx jxq[ f(n)(b)|
b b—x » q ‘
l flpdx nq|f(n)(x)| dx +(b—a> |f( )(a)| ]dx
“n!
b b 1 [b(n—l)p+1 _ a(n—l)p+1]p [|f(n) (b)| y
== (s,q,%)
S—' jl dx jan f(n)(b)| n! n—-Dp+1 Sax
a a ) @l |f(n) (a)| N( )
‘ G-y 7

+(

5 o o) ]dx

15+t 1
(b _ a) q b(n—l)p+1 _ a(n—l)p+1 P

™ (p Y “Dp+1)(b—
- ap [If QI D sn5.0.0 ((n=Dp+1)b-a)
1
L x [|@ (b>|"M<s. q,%) + ™ (@)|'N(s, ¢, 0)]"
|f(")(a)| q
+ﬁ7’(n,$, q,x) q
(b-a) = —(b - @) T L, @ B[P )| M(s, .5)
1 LSt q 1
= E(b —a) «d [|f(n)(b)| S(n,s, q,%) + |f(”)(a)|qN(s,q, x)]q.
’ 1
+ |f(n) (a)|qT(n, s,q, x)]ﬁ The proof of the last inequality in this Theorem is the same
. as the proof of Theorem 2.1. This completes the proof of
(-t Theorem.
oy Jx"f(")(x)dx Theorem 2.4. For vn€ N; let f:1 < [0,00) > R be
B n-times differentiable function on I° and a,b € I’ with
b 5 b a<b. If |f®™|"€Llab] and |[f®|* for ¢>1 is
1 |f™ )| (n-1) s s-concave function in the second sense on [a, b], then the
<—| [ xPd — | x 9(x —a)’dx S .
n! (b—a)s following inequality holds:
a a
n-1 b
b r f(k)(b)bkﬂ _ f(k)(a)akﬂ
FO@" [ e Z(—l)k( )— f fodx
LA n- — S |
+ b= x (b —x)%dx o (k+1)! J
a
1 5= +b
_1(prrearnye (o) <—(b—a)2 71, (a,b) |f<n> (a )|
ni\ pi TED .
L Proof: If |[f™|" for ¢ > 1 is s-concave function the
™ q q second sense on [a,b] , using Lemmal.l, the
+ |f (a)| L(n,s,q,x) Hermite-Hadamard inequality and the HOolder integral
(b—a) inequality, we have the following inequality:
1 _s+1 n-1 ) k+1 _ £(K) k41 b
=F(b_a)1 T L@@ b)[|[fP®)| K s, q,x) Z(_l)k [ (b)b [ (a)a —jf(x)dx
- ) - (k+ D!

+|f™(@)|'L(n, 5,9, 0]
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b
1
< FJ x"|f(")(x)|dx

1
b P b

1
_ ()] 1
< ! jx"”dx J|f" (x)| dx

1
b P 1

S% fx””dx ((b — )25t |f™ (a ; b) q)a

pnp+l _ gnp+l % w (a + b)‘
f 2
a+ b)‘

1 151
:E(b—a)qz q (

np+1

1 s=1
= F(b —a)2 4 Ly,(a,b)

fw(

Corollary 2.2. Under the conditions of Theorem 2.4 for

n = 1, we obtain the inequality

fb)b = f(@a
b—a

s—1

<277 L,(ab) | f’(

b
1
b_aff(x)dx

a+b>|
> .
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