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Abstract

Describing an object in two ways or shifting the vocabulary of the same concept is Redescription. Not a
new problem, Redescription Mining premise had resulted the subsets of objects that afford multiple
definitions, in a given Universal set of the same, and a collection of features to describe them. Now-a-days,
huge amounts of data available either to classify or to categorize leads us to ambiguous state as it is
accomplished with complementary and contradictory ways. Hence data has to be reduced. This involves
cataloging, classification, identifying rules among the data, segmentation or partitioning of the data. The
Learning algorithms of data mining techniques on this data can often be viewed as a further form of data
reduction. This Sine-qua-non data has been characterized by the multitude of descriptors. In a way, these
descriptors are also made equivalent and hence reduced. The methodology of redescriptions can be
obtained in scores of data mining techniques. In this paper we overview how  data mining functionalities
like classification, clustering and Association rule mining achieve the goal of redecsriptions.
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1. Introduction

Redescription mining comes in to the category of data mining problem which is not a new one [3]
. This aims at finding the subsets of data that afford multiple definitions. The input to this
problem will generally have universal set of objects of some domain and some features or
vocabulary to describe them. We try to give the subsets of objects that afford at least two
definitions as output. For example, given the Natural Hazards as descriptors and the affected
cities as objects, we can find the subsets of cities described in another way by including, set
theoretic expressions between hazards. This can be accomplished by finding the association rules
and closed itemsets between them, by classification rules as expressions by constructing decision
trees  the classes obtained as objects from them, by clustering where the objects defined by
similar descriptors are grouped in to a cluster. The table below shows the records according to
United Nations Environment Programme the hazards as descriptors and the affected cities as
objects in Table 1. Redescriptions can also be considered as a useful way to reason about
overlaps, similarities and differences in the given vocabulary [4]. The example below shows the
Natural Hazards as descriptors and the most affected countries of Asia-Pacific regional countries
as objects. We list the most affected countries of each natural hazard considered. This data if we
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take as an input to Redescriptions we generate an output with a changed vocabulary for the subset
of  countries.

Table 1. An example input to Redescription mining.

Cyclones
Philippines,(Ph) Bangladesh,(B) Vietnam,(V) Pacific Islands(PI), Solomon

islands(SI)

Earthquakes Japan(J), Philippines(Ph), India(I)

Volcanoes, Philippines,(Ph), Indonesia (I), Japan (J), New Zealand(NZ), Solomon Islands(SI)

Tsunamis Japan (J), Philippines(Ph), India(I)

Droughts Philippines(Ph), Thailand (T), Australia (A), Pacific Islands (PI).

Floods India (I), Bangladesh(B)

In a simple way of set related expressions, we can generate the same result with two equivalent
statements. To see how, consider the hazards and the countries affected shown in Table 1.
‘Countries with Earthquakes history’ ⇔ ‘Countries with Tsunamis’. Here the redescription
involves a subset definable in two ways. The result of this is 3 countries, Japan, Philippines,
India. So these countries satisfy both the descriptors. And hence they can be said to have
redescribed. Similarly, we also have, E ∩ V ⇔ T – F. The strength of this redescription is
measured by symmetric Jaccard’s Coefficient, JC, θ. The goal of redescription mining is to find
equivalence relationships of the form A ⇔ B that hold at or above a given Jaccard’s Coefficient,
θ i.e., | A ∩ B| / | A ∪ B |. Where A and B are set theoretic expressions involving given disjoint
descriptors. Here in our example the strength of the redescription is 1, as it is 3/3 =1. Descriptors
on either side can involve more than one descriptor as well as more than one entity too. In that
case, there can be the values of Jaccard’s coefficient as 0.6 or 0.56 or 0.8 and so on. The
consideration of JC depends on what threshold we give to it. This redescriptions can be obtained
by three primary Data mining functionalities viz., Association Rules, Classification, and
clustering concepts.

2. Redescriptions with Classification

With Classification, according to [3] a typical approach has been introduced to mine patterns like
set theoretic expressions. Initially, a tree will be constructed based on one set of descriptors as
features and the other set as classes. Here the descriptors should be unique. Next, the tree is fixed
and the second iteration takes by considering the classes as features and vice-versa. The property
of redescription space exploits them in pairs. For example, if A ⇔ B then  B ⇔ A co-exists. The
properties of the trees are when exploiting are specified as, if the nodes in the tree correspond to
Boolean membership variables of the given descriptors, then we can interpret paths to represent
set intersections, differences, or compliments; Unions of paths would correspond to disjunction, a
partition of the path in the tree corresponds to a partition of objects. These properties are
employed in CARTWheels which grows trees in two different directions so that they are joined at
leaves as shown in Fig 1.
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Fig: 1. CARTWheels tree merging at leaves. The coincided leave paths can be considered as redescriptions.

One tree grows with the partition of one subsets of objects and the other tree is grown in opposite
direction to match this partition using other subset of objects. If partition correspondence is
established, then the paths that join can be read off as redescriptions. These trees are regrown
alternatively by changing features to classes and classes to features. By suitably configuring this
alternations and matchings, we aim to get the redescriptions of the dataset if they exist with non
zero probability. From the above example, the two alternating trees merge at leaves.
Redescriptions can be constructed from the paths where they meet. If we consider the Universal
set of Objects as O, and the subsets as A,B,C,D,E and F, then the redescriptions from Fig 2 are,
O-A-C ⇔ O-F-E. Similarly, A-B ⇔ F-D. The sequence of steps involved in CARTWheels are
given as below:

The search for redescriptions in CARTWheels can be viewed as a problem of identifying
correlated random variables. The inputs to the algorithm  are the Universal set of objects, O
and descriptor sets {A} and {B}.Output will be Redescriptions, R which are nothing but the set
expressions. The parameters considered are θ for Jaccard’s coefficient, ρ for number of class
participations allowed and η for maximum number of consecutive unsuccessful alternations.

The initializations are as follows:
Set answer set Redescriptions, R = { }
Set class participation counts for all {A} , {B} = 0
Set feature set F = {B}; set classes C = {A} Set dataset D= construct_dataset(O,F,C)
Set tree t = construct_tree(D,d)  C = paths_to_classes(t) Flag = false, count = 0

The methods that are used are:

Impurity(t, l) : To assign the second best class label to the chosen leaf, l This is to maintain
impurity.
Eval(t, θ)       : This returns redescriptions satisfying the Jaccard’s threshold, θ.
Construct_dataset(D, d) : Constructs dataset from objects, features and classes.
Construct_tree(D, d) : Constructs tree from the above dataset, D and depth of the tree

given by d.
Paths_to_classes(t) : Identifying paths from the tree constructed.

For tree alternation:

Initially set Universal set G to classes, X
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Repeat Until the limit for alternations is permitted

• Change features to classes and vice- versa based on flag setting
• Construct dataset, D
• Construct tree, t
• Impurify tree if all leaves have the same class Else
• return redescriptions if θ is satisfied
• If there are no Redescriptions yet, Increment counter as it is unsuccessful,

Else
• Let the counter be zero
• Check for all, whether a class(path from tree) is in some redescription
• Collect those descriptors containing that classes,
• For each descriptor, D increase its participation count
• If it’s count is greater than ρ , remove it from Universal G
• Get R by adding with the old ones
• Change flag value, not(flag)
• Get Classes to paths, C(t)

The important tunable parameter is ρ, controlling tradeoff between redundancy and exploration.
A participation count is incremented each time a given descriptor appears in a redescription in
its role as part of class, and when this reaches ρ, the descriptor is removed from consideration.
The parameter specifies the maximum of number of alternations that CARTWheels can go
through without mining any redescriptions.

3. Redescriptions with Association rules

Mining frequent patterns or closed item sets or maximal item sets is a fundamental and essential
problem in many data mining applications. The result of this can be the discovery of association
rules, strong rules, correlations, sequential rules, episodes, multidimensional patterns, and
redescriptions.

Take an example with items as Natural hazards and their occurrences as hazardset for every year
where we consider this as transaction period. CHARM is an efficient algorithm, for enumerating
the sets of all frequent closed hazardsets, and CHARM-L is efficient algorithm to generate
frequent closed item set lattice [6]. CHARM performs a search for closed frequent sets which are
item set, HT over a novel HT-tree Fig 2, search space. Each node in the HT-tree, represented by
an hazardset-tidset pair, is an prefix based class. All the children of a given node belong to its
equivalence class since they all share the same prefix. Frequent pattern enumeration is straight
forward in the HT-Tree framework. For a given node or prefix class, we can perform the
intersections of the tidsets of all pairs of elements in a class and check if minimum support is met.
This support counting is parallel with generation of new nodes. Each resulting frequent hazardset
is a class unto itself, with its own elements, that will be recursively expanded. CHARM performs
on this basic enumeration scheme, using the conceptual framework provided by the HT-tree.
Moreover, there are four basic properties of HT-pairs that CHARM leverages for fast exploration
of closed sets. CHARM algorithm by [8], starts by initializing the prefix class of nodes to be
examined to the frequent single items and their tidsets. Next CHARM checks the four properties
of  each combination of HT- pairs appearing in the prefix class. For each HT-pair, it combines
with other HT-pairs, that come after it according to a specific order given. This routine will
modify the current class by deleting HT-pairs that are already subsumed by other pairs. It also
inserts the new HT pairs in the new class. It has flexibility to modify the prefix class based on the
properties of  hazardset pairs. We then insert the hazardset in the closed set, provided that the
hazardset is not subsumed by a previously found closed set. This process repeats recursively and
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in a depth-first manner. CHARM finally outputs the closed hazardsets. To generate minimal
redescriptions we need to construct the lattice of descriptor sets. Lattice allows us to efficient
mining of association rules based on closed hazardsets. This results in efficient and effective
method for mining closed hazardsets.. As CHARM does not output the lattice explicitly, this can
be achieved  by an efficient algorithm CHARM-L. This begins as the same as CHARM by
initializing the parent class with the frequent items and find closed hazardsets through satisfying
hazardsets and tidsets/dsets properties. The basic idea is that whenever a new closed set X, is
found, we efficiently determine all its possible closed supersets, S = {Y | Y∈C ∩ X is a subset of
Y}, where C is the closed sets. The minimal elements of S form the immediate supersets or
parents of X in the closed dset/hazardset lattice. It then makes a call to the extension subroutine,
passing it the parent equivalence class and the lattice root as the current lattice node. Though it is
possible to construct the lattice from the set of closed sets, since its time complexity is O(|C|2)
[10] which is too slow for large number of closed sets, CHARM itself is extended to compute
lattice while it generates closed hazardsets in CHARM-L.

3.1    Example

Here we show an example database of Natural Hazards in Fig 1 containing Notation for Natural
hazards, their frequency in any transaction or we can consider those transactions as years and the
HAzardsets with minimum support as 50%. We also show a Hazardset and transaction set tree as
HT-tree.

DISTINCT DATBASE HAZARDS
Earth Quakes Volcanoes Tsunamis Floods Cyclones

E V T F C

DATABASE FREQUENT HAZARDSET WITH MINIMUM SUPPORT= 50%

Transaction Hazards
1
2
3
4
5
6

EVFC
VTC
EVFC
EVTC
EVTFC
VTF

Support Hazardsets
100%(6) V

83%(5) C, VC

87%(4) E,TF,EV,EC,VT,VF,EVC
50%(3) EF,TC,FC,EVF,EFC,VTC,VFC,EVFC

Fig 2.  Example Database showing notation for Hazards, Hazard database and Frequent Hazards.

CHARM performs a search for closed frequent sets over a novel HT-tree search space, shown in
Fig 3. Each node in this tree represents an hazardset-tidset pair, X × t(X), is in fact a prefix based
class. All the children of a given node X belongs to its equivalence class since they all share the
same prefix X. We denote an equivalence class as [P] = {l1, l2….ln}, where P is the parent node
and each li is a single item, representing the node, Pli × t(Pli). A class member represents one
child of the parent node. A class represents items that the prefix can be extended with to obtain a
new frequent node. Obviously no subtree  of an infrequent node has to be extended. The power of
the equivalence class approach is that it breaks the original search space in to independent
subproblems.

3.2 Findidng out Frequent Patterns

To find out frequent pattern enumeration for a given node or prefix class, one can perform
intersections of the tidsets of all pairs of elements in a class and check if minimum support is met,
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where support counting is simultaneous with generation. Each resulting frequent itemset in a class
unto itself, with its own elements, that will be recursively expanded. This approach goes in a
depth first exploration of the HT-tree for all frequent patterns. CHARM improves upon this basic
enumeration scheme, using the conceptual framework provided by the HT-tree.

Fig 3.  HT-tree: Hazardset- transaction set search tree.

3.3 Lattice generation by CHARM-L

CHARM-L starts in the same way as CHARM by initializing the parent class with the frequent
items. It then makes a call to the extension procedure, CHARM-L-EXTEND passing it the parent
equivalence class and the lattice root as the current lattice node. This extension procedure takes as
input the current lattice node, and an equivalence class of IT-pairs. Whenever CHARM-L
generates new closed itemset, it assigns it a unique closed itemset identifier, called cid. In
CHARM-L, each element has associated with it a cidset, which is the set of all cids of closed
itemsets that are supersets of that particular element. CHARM-L enumerates all closed sets which
are not subsumed, but in addition it also generates a new Lattice Ln, for the new closed set and
inserts it in the appropriate place in the closed itemset Lattice, L. This new Lattice becomes the
current node in the next recursive call of the extension subroutine. Since the list of closed
supersets of an element, may change whenever a new closed itemset is added to the lattice a
check is made to update cidset, of that element for each remaining element in the class.
CHARM-L shares the optimizations for computing length 2 itemsets. To check if a new itemset,
P is closed or not, a new method subsumption-check-lattice-gen is called. This routine takes
current lattice node, the new itemset X, and the cidset (X) as input. It then checks if X is
subsumed. That is consider all itemsets, S which are supersets of X. If X has the same support as S
then X is subsumed and we return. Else, the new lattice node is initialized as Ln = X. Each node
maintains a list of parents which are immediate subsets and children which are list of immediate
supersets. We now add Ln as the child of current node, Lc and Lc as the parent of Ln. Out of all the
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closed supersets of Ln, minimal supersets, Smin are found. Each minimal superset becomes a
parent of Ln. For every child of the superset,CS if the child is a subset of the new lattice node Ln

generated, then its parents pointers have to be adjusted; remove the identified superset from the
CS’s parent link. Finally return new lattice node, Ln. Once the set of all closed dsets, for a given
dataset has been found using CHARM-L, to get redescriptions we next need to generate minimal
generators, MG(X) for each dset X belongs to . A minimal generator Z of a closed set X is a
minimal dset that is a subset of X, but not a subset of any other X’s immediate closed subsets in
the closed dset lattice, L.

4. Redescription Mining with Conceptual clustering

One of the datamining tasks, clustering comes in to unsupervised classification. According to [5]
,the approach to clustering which clusters objects in to groups representing a priori defined
conceptual entities is called conceptual clustering. Conceptual clustering generates an unique
concept description for the obtained classes. Most of the conceptual clustering methods are
capable of generating hierarchical category structures. The conceptual clustering differs from data
clustering by not only forming cluster structures of the data but also, the data description
language which is available to the learner. Thus, a statistically strong grouping in the data may
fail to be extracted by the learner if the prevailing concept description language is incapable of
describing that particular regularity. Now to justify the redescriptions with conceptual clustering
we need to derive at least two concepts for a cluster. This gives two descriptions for a cluster. The
obtained descriptions for a single cluster can be called as redescriptions. The primary goal of
conceptual clustering is not a simple generation of mathematical function of cluster but a more
abstract notion of cluster describability [6]. Clusters are chosen with a more favor of ease with
given vocabulary.

Fig 4: A conceptual cluster : Some intersected points in both the clusters share some property from the
entire set of given data set. These points belong to both the clusters.

The input to conceptual clustering is typically a dataset, along with a set of features for labeling
clusters. Concepts that characterize the output clusters from conceptual clustering are usually
conjunctions between relations for variables that describe the entities. In the fig 4, there are two
intervened circles and the areas where they have intervened can be described by the concepts of
both the circles. Conceptual clustering is motivated towards making the results of clustering
techniques describable and hence produces results that are similar to redescriptions. However,
redescription mining imposes a stricter requirement that few objects in a  cluster be describable in
two ways i.e., by another cluster concept.
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5. Related work

Redescription Mining has been proposed and implemented in different ways by many authors.
The concept has utilized the important data mining tasks. Initially this was developed by N.
Ramakrishnan et al. [3]. They have presented CARTWheels algorithm based on learning
decission trees. CARTWheels had a limitation to the depth of the tree and the variables in the
formulae. Zaki and Ramakrishnan[7] gave an algorithm to find exact minimal conjunctive
descriptions. While Parida and Ramakrishnan [3] gave algorithms for finding exact and
approximate monotone redescriptions in CNF and DNF. Parida and Ramakrishnan studied the
space of redescriptions, identified impossibility as well as strong possibility of when
redescriptions are feasible and presented several scenarios to custom build redescription mining
solutions for various scenarios. Gallo and Pauli [1] considered 0-1 dataset for redescriptions.
They searched for pairs (α, β) of Boolean formulae such that  α → β and β → α both hold with
high accuracy, provided α and β are different. They have introduced Greedy algorithm and MID,
Mining Interesting Descriptors algorithms. These algorithms are heuristic search methods that try
to form useful pairs or tuples of queries. Greedy algorithm prunes its search space can lead to
suboptimal results because the algorithm can prune initial pairs that could be used to create good
descriptions. Also the algorithm prunes the level-wise search tree in a way that can yield to
pruning of items that could be used later.

Deept Kumar extended [2] redescription mining framework to another interesting task as
storytelling algorithm, where the goal is to find the consecutive redescriptions that relate
completely disjoint elements. In Gallo, the goal is to find the m-tuples of formulae, while in
storytelling, the similarities between descriptions next to each other is required to be high, but the
similarity between first and last formulae must be zero.

M J. Zaki and N. Ramakrishnan [7] obtained redescriptions by reasoning about sets. They viewed
redescriptions as generalizations of association rule mining from finding implications to
equivalences; Also, redescriptions as a form of conceptual clustering, where the goal is to identify
clusters that afford dual characterizations. And also as a form of constructive induction to build
features based on given descriptors that mutually reinforce each other. Zaki and Ramakrishnan
presented an algorithm CHARM-L , to mine all minimal redescriptions underlying a dataset using
notions of minimal generators of closed itemsets. They also show the use of the algorithms in an
interactive context, supporting constraint-based exploration and querying.

6. Conclusions

We have gathered how redescription mining can be developed with three different data mining
functionalities. We have considered the merits and demerits of the algorithms mentioned. The
enhancements to this work can be the development of a model where we can embed CHARM and
Storytelling to get more efficient results.
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