
NeuroImage 108 (2015) 292–300

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
Connectivity in the human brain dissociates entropy and complexity of
auditory inputs☆
Samuel A. Nastase a,c,⁎, Vittorio Iacovella a, Ben Davis a, Uri Hasson a,b

a Center for Mind/Brain Sciences (CIMeC), The University of Trento, 38123 Mattarello, Italy
b Department of Psychology and Cognitive Sciences, The University of Trento, 38122 Trento, Italy
c Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
☆ This workwas supported by the European Research C
starting grant program (European Research Council Starti
⁎ Corresponding author at: Department of Psychologica

College, Hanover, NH 03755, USA.
E-mail address: sam.nastase@gmail.com (S.A. Nastase

http://dx.doi.org/10.1016/j.neuroimage.2014.12.048
1053-8119/© 2014 The Authors. Published by Elsevier Inc
a b s t r a c t
a r t i c l e i n f o
Article history:
Accepted 16 December 2014
Available online 20 December 2014

Keywords:
Complexity
Simplicity
Entropy
Generative model
Prediction
Uncertainty
Complex systems are described according to two central dimensions: (a) the randomness of their output,
quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators.
Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity
science is that signals with very high or very low entropy are generated by relatively non-complex systems, while
complex systems typically generate outputs with entropy peaking between these two extremes. In understanding
their environment, individualswould benefit from coding for both input entropy and complexity; entropy indexes
uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract
representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a
template for generalization and rapid comparisons between environments. Using functional neuroimaging, we
demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the
human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain
regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity
between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity.
These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively
models their environmental generators.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Theoretical and experimental work in the fields of psychology and
complexity science has arrived at two separate approaches for describ-
ing how stimuli may be encoded and what constitutes a complex
stimulus (see Shiner et al., 1999). The first aims at explaining to what
extent a specific stimulus can be considered “simple” from the perspec-
tive of amachinewhose goal is to veridically encode and reproduce that
stimulus (e.g., Chater and Vitanyi, 2003). For example, the stimulus
ABCDABCD is quite simple because it can be represented as “repeats
ABCD twice,” whereas ACDDBADC is substantially more complex
because it requires more memory to encode. Within this framework,
simple stimuli are therefore those that contain noticeable patterns;
they permit compressed representation, are easy to manipulate and
provide a basis for predicting future states. Importantly, from this
perspective, “complexity” scales monotonically with stimulus disorder
ouncil under the 7th framework
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(entropy), as more disordered inputs are less compressible—that is, in-
creasingly random stimuli require more memory in order to be
veridically reproduced.

On the other hand, the second, more recent view (e.g., Crutchfield,
2012) holds that simplicity/complexity depends on how demanding it
is to model the underlying system that generated a particular stimulus
or signal via the interactions of its states. From this perspective, there
is a convex, inverse U-shaped relation between disorder and complexi-
ty. This is because highly ordered and highly disordered signals are
typically generated by succinct, easily describable systems, whereas
more sophisticated, or complex, systems generally convey intermediate
levels of entropy.1 Note that in this latter approach, complexity does not
capture howdifficult it is to veridically encode or reproduce any specific
stimulus or signal, but rather how computationally demanding it is to
model the systemor source generating that signal. As can be appreciated,
the two views described above are independent, and graphs depicting
1 For instance, ABCDABCD can be thought of as generated by a system (e.g., a transition
matrix) that transitions between four states deterministically (a simple explanation),
while a random stimulus can be characterized by a system where all state transitions
are equally likely (a similarly simple explanation).
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2 To illustrate, a model that represents a system as “transitioning between four states
deterministically” is consistent with 24 possible instantiations of actual low-entropy out-
puts (e.g., ABCDABCD… or DBCADBCA…). Conversely, a random source that generates a
continuous series of four tokens can be represented as, “all state transitions are equally
likely.” These concise descriptions are insufficient for lossless compression or veridically
reproducing any specific stimulus generated by a system, but are indeed sufficient for de-
tecting a change from an ordered to a random environment. Most importantly, although
the systems generating these series vary greatly in the expected conditional entropy of
their output streams (2 bits in the random case, 0 in the deterministic case), both share
concise descriptions when specifying state transitions. In contrast, an output such as
ABCDAABCDABCD… has a conditional entropy somewhere between the random and de-
terministic cases above, but the system generating this series itself is more challenging
to specify, e.g., “generatesABCDconsecutivelywith the exception that Amay repeat itself,”
and therefore can be considered more complex than the random or deterministic case.
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monotonic vs. convex complexity–entropy relations are the subject of
ongoing theoretical discussion (e.g., Feldman et al., 2008).

There has been substantial theoretical and behavioral support, as
well as some validation from neuroimaging studies, for the importance
of entropy in sensory and cognitive processing, as detailed below.
However, there is as yet little evidence that the human brain codes for
environmental inputs in a way consistent with the second view arguing
for a convex relation. The current study wasmotivated by the hypothe-
sis that, from a cognitive perspective, these two properties are comple-
mentary. In the following, we argue that the human brain tracks both
disorder (the degrees of freedom in sensory data) and complexity
(quantified, e.g., by the degrees of freedomorminimummessage length
specifying a model of those data; Spiegelhalter et al., 2002; Wallace,
2005). This sort of dual encoding model suggests that neural sensitivity
to uncertainty may vary both linearly and convexly in response to
stimuli of increasing entropy. We then present a functional MRI study
addressing this hypothesis.

Sensitivity to entropy is crucial for compression (Barlow, 1961; Borst
and Theunissen, 1999; Brady et al., 2009; Buiatti et al., 2009; Olshausen
and Field, 1996), prediction (Kiebel et al., 2008) and guiding adaptive
behavior (Ashby, 1947; Friston, 2010). Prior neuroimaging studies
have documented neural systems whose activity monotonically tracks
the degree of uncertainty in sensory inputs, particularly in lateral
temporal cortex (Bischoff-Grethe et al., 2000; Tobia et al., 2012), the an-
terior cingulate (Harrison et al., 2006, 2011), and the hippocampus
(Strange et al., 2005), even in the context of passive listening (Tobia
et al., 2012; Tremblay et al., 2012) or passive viewing (Nastase et al.,
2014). Behavioral work has shown that humans track parameters relat-
ed to entropy, such as token frequency (Shannon entropy; e.g., Berlyne,
1957; Vitz, 1966, 1964), transition constraints (Markov entropy;
e.g., Falk and Konold, 1997; Saffran et al., 1996) and chaotic patterns
underlying nonlinear systems (e.g., Smithson, 1997). Chater (1996)
and Chater and Vitanyi (2003) adopt a monotonic entropy–complexity
relation, suggesting that this sort of pattern sensitivity is grounded in a
basic cognitive principle: people search for the simplest (i.e., sparsest,
most compressed) representation of a given input. This approach
operationalizes sparseness or compressibility of a stimulus in terms of
Kolmogorov complexity (Kolmogorov, 1965), an information theoretic
construct reflecting the length of the shortest computer program that
can encode and reproduce the stimulus (e.g., Chater and Vitanyi,
2003). Falk and Konold (1997) provide convincing behavioral support
for this perspective in showing that series that are subjectively
perceived as more disordered take longer to memorize and are more
difficult to copy. Antrobus (1968) furthermore demonstrated that audi-
tory series of greater entropy are associated with fewer task-unrelated
thoughts.

While the above studies provide substantial evidence that the brain
is sensitive to input entropy, we hypothesized more specifically that
certain brain systemswould track entropy in a convexmanner, indicat-
ing sensitivity to complexity. Note that entropy captures only a partial
feature of a temporally unfolding environment, namely the uncertainty
in the signal generated by a system, rather than specifying the system
itself. Researchers in the field of complexity science have quantified
“complexity” in terms of the sophistication of a system's underlying
structural configuration, whereas entropy captures the randomness or
uncertainty associated with a system's output (e.g., Crutchfield, 2012).
This formulation of complexity has roots in early work by Huberman
and Hogg (1986), which framed complexity in terms of the diversity
of interactions amongelements of a systemacross all levels of a system's
structural hierarchy.More recent treatments of complexity have follow-
ed a similar trajectory: Bialek et al. (2001) emphasized the generaliz-
ability of the predictive information captured by models. Crutchfield's
structural complexity (Crutchfield, 2012; Feldman et al., 2008) reflects
themodel sophistication required to specify a system's underlying con-
figuration. Bayesianmodel selection accounts for complexity in terms of
model evidence or marginal likelihood (see Spiegelhalter et al., 2002).
The evidence for a generative model relies on a tradeoff between fit
and complexity, where complexity effectively measures the degrees of
freedom, in terms of model parameters, needed to provide an accurate
explanation of the data. In this sense, entropy represents the degrees
of freedom in the data, while complexity captures the degrees of
freedom used by the model to explain those data. This resonates with
current neurocomputational theories of free energy minimization,
where approximate Bayesian inference (e.g., via predictive coding)
serves to maximize model accuracy and minimize complexity (Clark,
2012; Friston, 2010). These theories are consistent with the hypothesis
that the brain encodes both accuracy and complexity.

Independent of the formal details, these latter approaches to
complexity converge on a central principle: systems generating either
highly structured or randomoutputs can often be specified in a relatively
concise way — that is, in terms of a model with fewer parameters or
succinct schema—while systems characterized bymore intricate under-
lying structural interactions tend toward producing outputs of interme-
diate entropy and require more sophisticated models. Consequently,
there is a convex relationship between entropy and complexity such
that complexity isminimal in systems generating outputswith extreme-
ly low or high entropy, but is maximal somewhere between these
extremes (Gell-Mann, 1995; Huberman and Hogg, 1986; Lopez-Ruiz
et al., 1995; Shiner et al., 1999).

The above discussion does not constitute theoretical hairsplitting, as
it offers a more detailed account of how the human brain may process
sensory inputs of varying disorder. For example, neural sensitivity to
varying complexity (a curvilinear response to entropy) may reflect the
brain's maintenance of a generative model useful for predicting incom-
ing sensory stimuli by inferring their underlying causes (e.g., Dayan
et al., 1995; Friston, 2010). This abstract model of the environment's
structural configuration provides a succinct template useful for general-
ization and for detecting changes between environmental states.2

Interestingly, behavioral work has shown that stimuli with intermedi-
ate levels of randomness are often considered attention-grabbing, or
judged as more interesting, aesthetically appealing or otherwise
“complicated” (Berlyne, 1971; Loewenstein, 1994; Vitz, 1966). Abdallah
and Plumbley (2009) formally demonstrated that series in which each
discrete stimulus reduces a relatively large amount of prior uncertainty
are characterized by intermediate levels of disorder; this provides a
computational explanation for why such stimuli are perceived as highly
engaging.

Given thismotivation,we hypothesized that the degree of functional
integration within specific networks of the human brain would vary
according to both the entropy of an ongoing sensory input as well as
the complexity of the system generating that input. To test this hypoth-
esis, we used functional MRI to model the whole-brain connectivity
networks of several seed regions while participants passively listened
to four 2.5 min auditory series. Each series was characterized by a
different level of entropy as determined by the transition constraints
between tones. We then used planned contrasts to probe for specific
entropy-dependent changes in the regression coefficients of the seed
time series.
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Seed regions used in the connectivity analysis were selected based
on numerous prior studies implicating both the anterior cingulate
cortex (ACC) and hippocampal formation (HF) in tracking statistical
regularities across several modalities and paradigms. The ACC has
been reported to track statistical constraints (Harrison et al., 2006;
Nastase et al., 2014), as well as mediate implicit expectation (Aarts
et al., 2008; Berns et al., 1997; Ursu et al., 2009). The HF has been impli-
cated in coding for statistical properties of stimulus series (Harrison
et al., 2006, 2011; Strange et al., 2005), particularly probabilistic associ-
ations between sequence elements in statistical learning paradigms
(Schapiro et al., 2012, 2014; Turk-Browne et al., 2009, 2010). However,
several studies quantifying hippocampal responses to different levels of
regularity (Nastase et al., 2014), changes in regularity (Tobia et al.,
2012), or violations of regularity in different domains (Bubic et al.,
2011) have failed to find hippocampal involvement. Connectivity anal-
ysis serves as an alternative tool for probing how the brain processes
sensory uncertainty that may capture phenomena not amenable to
activation mapping, as mean activity in a region may remain invariant
even while connectivity between regions changes across conditions.

Materials and methods

Participants

Twenty right-handed adults (mean age = 29.9 years; standard
deviation = 9.6 years; 12 male) participated in the study. Participants
reported no history of psychiatric illness, substance abuse, or hearing
impairments, and underwent an interview with a board-certified
medical doctor prior to scanning to evaluate other exclusion criteria.
Data from one participant who completed the study were excluded
from further analysis because of excessive movement during the scan.
The ethical review board of the University of Trento approved the study.

Design and stimuli

The design consisted of one factor (input entropy) with four levels.
In a single MR session, participants were presented with four auditory
series, each 2.5 min in length. Tones within the series were presented
at a rate of 3.3 Hz. After each series, there was a 22.5 s silent period to
allow the hemodynamic response to return to baseline. Series were
constructed by sampling from four tone tokens (262 Hz, 294 Hz,
330 Hz, and 394 Hz), controlled for relative token frequency (25%)
and the number of self-repetitions (25%). Each auditory serieswas char-
acterized by one of four levels of Markov (conditional) entropy ranging
from random (no constraints) to highly ordered (strong transition
constraints). This resulted in four series, each governed by a different
level of statistical constraints: random, low, medium, and high. The
actual Markov Entropy levels of the four series were 0.81, 1.35 1.56,
and 2 (see Fig. 1). Each participantwas assigned a different arrangement
of series so that therewas no relationship between the entropy level of a
series and its position in the scanning session. The sounds generated by
the EPI sequence were constant across the different conditions and the
volume level was adjusted for each subject so that the tones could be
heard comfortably over the scanner noise.

Image acquisition and procedure

All data were acquired using a 4T Bruker/Siemens system. Two
structural scans per participant were acquired with a 3D T1-weighted
MPRAGE sequence (TR/TE = 2700/4 ms, flip angle = 7°, isotropic
voxel size= 1mm,matrix= 256 × 224; 176 sagittal slices). Functional
scans were acquired with a single-shot EPI sequence (TR/TE = 1500/
33 ms, flip angle = 75°, voxel size = 4 × 4 × 4.8 mm3, matrix =
64 × 64 mm; 25 interleaved slices parallel to AC/PC, slice skip factor =
0.2, 471 volumes, 706.5 s overall scan time). During the fMRI scan, car-
diac and respiration data were acquired using a photoplethysmograph
and a respiration belt (Bruker), respectively. Participants lay passively
while observing a fixation cross and were instructed to remain wakeful
and listen to the auditory stimulus as if they were listening to music at
home.

Preprocessing and generation of ROIs

Thefirst 15 EPI volumeswere discarded to ensure stabilization of the
signal, leaving 456 volumes of functional data. Four 100-volume (150 s)
time series corresponding to the 2.5 min of auditory presentation for
each of the four conditions were spliced from the single functional
run. The functional time series were de-spiked and the cardiac and re-
spiratory data were used for physiological noise correction according
to the RETROICOR procedure (Birn et al., 2006; Glover et al., 2000;
implemented in AFNI). Motion correction was applied to each of the
four time series using AFNI's 3dvolreg utility. Head motion parameters
for each subject were visually inspected, their derivatives calculated,
and functional volumes with motion in excess of 1 mmwere censored
in the subsequent regression—this accounted for approximately 1.5%
of the data. A 6 mm spatial smoothing kernel was applied to increase
the signal-to-noise ratio of the time series.

Participants' structural scans were processed via FreeSurfer (Fischl
et al., 2002). First, the two structural scans were averaged to increase
the quality of the anatomical image. FreeSurfer's automatic parcellation
functionality was used to derive anatomical parcellations of the cortical
surface and subcortical regions for each participant. This procedure
uses a probabilistic labeling algorithm that incorporates the anatomical
conventions of Duvernoy et al. (1991) and is thus based on
macroanatomical landmarks, not cytoarchitectonic maps. The anatomi-
cal precision of this method is high, approaching that of manual
parcellation (Desikan et al., 2006; Fischl et al., 2002, 2004). Using this
procedure, bilateral ACC and HF anatomical regions were delineated
for each participant. These were verified manually, and then down-
sampled from the original structural resolution to the functional resolu-
tion to serve as anatomical masks. As an additional check, we projected
the location of these seed regions to common (Talairach) space in order
to inspect the anatomical consensus. Overlap was high across all sub-
jects, indicating good delineation of the anatomical structures. The
mean time series of the functional data in the ACC and HF (bilaterally)
were then extracted for the purpose of generating whole-brain connec-
tivitymaps. Thiswas done in each participant's native acquisition space.

Generation of whole-brain connectivity maps

Prior to conducting the whole-brain connectivity analysis, we
evaluated the degree of correlation between the two ACC and two HF
time series. Strong correlation between homologous seed time series
(as previously documented for resting state data, e.g., Stark et al.,
2008) would obviate independent analyses for each seed region. For bi-
lateral ACC, the mean correlation (Pearson's r) across participants
exceeded 0.8 in all conditions (mean/SD in the four conditions: 0.83/
0.17; 0.86/0.08; 0.84/0.11; 0.86/0.08). Given this high correlation
(which exceeded 0.9 in some participants), we used the left ACC time
series as a proxy to avoid redundancy. Connectivity between HF homo-
logs was lower (mean/SD in the four conditions: 0.66/0.25; 0.71/0.15;
0.69/0.20; 0.72/0.20); thus the right and left HF seeds were examined
separately. Correlations between ACC and HF time series were low,
not exceeding 0.5 in any case.

At the individual-participant level, whole-brain connectivity maps
were constructed by using a seed region's time series as the regressor of
interest in a multiple regression implemented via AFNI's 3dDeconvolve
utility. In addition to the seed time series, nuisance regressors included
a linear trend regressor for modeling scanner drift and six motion
parameters. On the individual-participant level, connectivity in each
condition was quantified as the regression coefficient (beta parameter)
for the seed time series for a given voxel, after accounting for the



Fig. 1.Markov chains used to construct the four tonal series used in the study. Markov en-
tropy defines the overall degree of transition constraints, with higher entropy indicating
weaker constraints. The series consisted of a repeated sampling of four tones, presented
according to such constraints. For a four-state series, Markov entropy of 2 is maximal.
Strength of transition constraints is indicated via line types under each graph. The propor-
tion of self-repetitions was maintained at 25% across all conditions and the marginal fre-
quency of each state was held at 25% across conditions as well. Thus, the conditions
differed only in their transition structure.
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nuisance regressors (see Friston, 1994, Friston et al., 1997, for a similar
approach). The connectivity analysis returned 12 whole-brain connec-
tivity maps per participant: 4 entropy levels × 3 seed regions. These
maps were aligned to a common template space for group level analysis
as follows. First, each participant's structural image was aligned to the
same spatial reference point as the participant's functional scans
(using AFNI's align_epi_anat.py function). The resulting aligned struc-
tural image was then aligned to the MNI 152 template in Talairach
space using a 12-parameter affine transformation. The transformation
matrix generated in this last step was applied to the participant's statis-
tical maps. All spatial registration steps were inspected and manually
adjusted if needed.

For the group level analysis, connectivity maps for each seed region
were analyzed separately. For each seed region, each voxel's data were
analyzed using planned contrast coefficients (linear-polynomial and
quadratic-polynomial; Büchel et al., 1998; sometimes referred to as
“trend analysis”). The linear contrast weights were −3, −1, 1, 3 and
the quadratic contrast weights were −1, 1, 1, −1. This is a standard
procedure for testing specific hypotheses using contrast weights (see
Quinn and Keough, 2002, Ch. 8), where the sum of squared error (SS)
for the group (SSGroup) is partitioned into SSLinear, SSQuadratic and so on,
each with one degree of freedom. For each voxel, the procedure
returned a t-value for each contrast reflecting its statistical significance.
The single voxel threshold for these t-statistic maps was set at p b .005,
corrected for multiple comparisons (family-wise error alpha level =
.05) using cluster-extent thresholding (Forman et al., 1995). We could
thus identify clusters where the strength of connectivity with a given
seed showed a statistically significant linear trend or quadratic trend
across the four entropy conditions. We did not test for a cubic trend as
we had no a priori hypothesis corresponding to this contrast. Note
also that these two contrasts are not mutually exclusive and a single
cluster might exhibit statistically significant t-values for both linear
and quadratic contrasts, although this did not occur in practice.
Results

Autonomic indices during the scan

There was no indication that the experimental manipulation affect-
ed autonomic (cardiac and respiratory) indices recorded during scan-
ning. The mean heart rate in all condition was 62-63 BPM (mean/SD
for highest to lowest entropy condition: 62.7/9.5; 62.3/8.6; 62.7/10.1;
62.5/92). Heart rate variance was also highly similar across conditions
(arbitrary units, all values within 49–50). The removal of instantaneous
cardiac and respiratory effects from the BOLD data and the fact that au-
tonomic indices were highly similar across conditions strongly suggest
that any differences in connectivitywere not due to potential confounds
between autonomic state and input entropy.
Linear and quadratic connectivity profiles

The contrast analysis applied voxelwise linear and quadratic contrast
weights at the group level to identify voxels showing a linear relation be-
tween connectivity and entropy, and/or a quadratic (curvilinear) rela-
tionship between connectivity and entropy, i.e., differentiating levels of
complexity. Of the four possible connectivity profiles— positive/negative
linear relations and U-shaped/inverse U-shaped curvilinear relations —
only two profiles were reliably identified in the data. These were
(1) stronger connectivity for auditory series of greater regularity (i.e., a
negative linear relation between connectivity and series entropy), and
(2) a convex, inverted U-shaped relation indicating stronger connectivity
for intermediate levels of disorder (increased connectivity for greater
complexity).

The linear relation, which in every case reflected increased connec-
tivity for more structured (lower entropy) series, was associated with
very different connectivity maps for the ACC and HF seed regions, as
might be expected given the relatively low correlations between the
seed time series for these regions. As shown in Fig. 2 and Table 1, for
ACC, the regions identified were a right-hemisphere cluster
encompassing the precentral and postcentral gyri, medial frontal gyrus
and inferior frontal gyrus, a left middle frontal cluster extending to the
postcentral gyrus, bilateral posterior middle temporal clusters, and a
left parahippocampal cluster.

For the left and right HF seed regions (Fig. 2; Tables 2 and 3), the
regions identified by the linear contrast were largely subcortical, with
extensive basal ganglia (lentiform nucleus and putamen) clusters
identified bilaterally for both left and right HF. Contralateral connectiv-
ity between the right HF and the left middle frontal gyrus was also
linearly modulated by input disorder, as well as connectivity with the
right posterior superior temporal gyrus and bilateral cerebellum. Left
HF connectivity scaled linearly with a right inferior parietal cluster, a
left middle frontal cluster, the left insula and the right cerebellum.

Regions exhibiting convex, inverted U-shaped connectivity profiles
were found for all three seed regions (Fig. 2; Table 4). For the left ACC
seed, connectivity was greatest at intermediate levels of entropy for bi-
lateral precuneus clusters. For the rightHF, clusters comprising the right
ACC, left cingulate, left medial frontal gyrus, and right cerebellum ad-
hered to convex connectivity profiles. Finally, the left HF demonstrated
a curvilinear connectivity profile with the contralateral midcingulate.
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Discussion

An emerging theme in current cognitive and neurobiological work is
that the brain codes for uncertainty, or entropy, in sensory data in order
to actively predict forthcoming input and guide adaptive behavior
(Clark, 2012; Friston, 2010). This provides strong motivation for
research paradigms aimed at identifying neural mechanisms coding
for environmental uncertainty. Prior work in psychology has also sug-
gested that algorithmic complexity — which converges with entropy
for increasingly random stimuli —may capture pattern-seeking behav-
ior and how organisms efficiently encode complex stimuli (Chater and
Fig. 2. Linear and quadratic entropy-related connectivity maps, where clusters defined by a sig
significant quadratic (inverted U-shaped) trend are displayed in red. Connectivity maps are
quantified by the regression coefficient of the seed time series in the regression model. Resu
wise threshold was set at p b .005, further corrected for multiple comparisons using cluster-ex
tative clusters are plotted with error bars depicting within-participants standard error around
profiles from two clusters (one linear trend, one quadratic trend) are plotted for each seed reg
Vitanyi, 2003). The current study contributes to this line of work by
showing that connectivity among a variety of brain regions not only
tracks uncertainty, but also varies in a manner consistent with a curvi-
linear relation between entropy and structural/model complexity.
These findings provide support for our hypothesis that the human
brain tracks both the entropy of environmental signals, and the
complexity of the system generating those signals.

Beyond demonstrating that the brain tracks these orthogonal
features of an input, a striking result was that, of the four possible con-
nectivity profiles relating uncertainty to connectivity, only two occurred
reliably. Thesewere a negative linear relation between connectivity and
nificant linear trend (connectivity profile) are displayed in green and clusters defined by a
plotted for each of the three seed regions, left ACC, right HF, and left HF. Connectivity is
lts are projected to the cortical surface in cases where this aids visualization. The voxel-
tent constraints (FWE b .05). In the bottom panel, connectivity profiles from six represen-
the mean regression coefficient across subjects (Loftus and Masson, 1994). Connectivity
ion.

Image of Fig. 2


Table 1
Left ACC seed region. Clusters (labeled according to center of mass) where connectivity
decreases monotonically with increasing input entropy.

Talairach coordinates
(center of mass)

Volume (mm3) T (max.)

x y z

Left ACC
R precentral gyrus 35.3 −18.2 48.0 9016 −4.885
L middle frontal gyrus −29.1 −13.1 47.1 5543 −5.117
R postcentral gyrus 49.0 −7.9 19.8 1800 −4.282
L middle temporal gyrus −43.2 −60.9 3.0 940 −4.640
R middle temporal gyrus 45.9 −64.1 4.0 938 −4.509
R precentral gyrus 55.9 7.1 8.7 863 −4.806
R medial frontal gyrus 6.2 −3.1 51.4 859 −4.265
R inferior frontal gyrus 48.4 25.1 19.6 676 −4.667
L parahippocampal gyrus −20.4 −18.6 −16.6 665 −5.060

Table 3
Left HF seed region. Clusters where connectivity decreases monotonically with increasing
input entropy.

Talairach coordinates
(center of mass)

Volume (mm3) T (max.)

x y z

Left HF
L lentiform/putamen −26 −12 13 3242 −5.15
R lentiform/putamen 25 −15 7 1401 −4.72
R inferior parietal lobule 33 −26 27 1286 −5.34
L insula −29 13 17 1001 −4.64
L middle frontal gyrus −26 −3 44 760 −4.31
R cerebellum 8 −64 −28 645 −4.64
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input entropy (stronger connectivity associated with greater statistical
regularity), and an inverse U-shaped profile indicating increased con-
nectivity for intermediate levels of disorder. Another observation is
that each of the seed regions concurrently displayed both linear and
convex connectivity profiles with certain brain regions. This suggests
that both the ACC and HF discriminate entropy and complexity levels
via their connectivity with other structures.

These two connectivity profiles lend themselves to distinct function-
al interpretations. Neural systems in which connectivity linearly tracks
input entropy are interpreted to be involved in coding for statistical reg-
ularities in the input itself or in filtering stochastic input in the context
of predictive or efficient coding strategies (e.g., computing prediction
error). Conversely, numerous theoretical treatments have suggested
that complexity is a measure of the model sophistication required to
specify a system's behavior (Bialek et al., 2001; Crutchfield et al.,
2009; Huberman and Hogg, 1986; Rissanen, 1986; Spiegelhalter et al.,
2002). Accordingly, we suggest that neural systems inwhich connectiv-
ity is greatest for intermediate levels of entropy may mediate the
passive, online maintenance of an internal model of a stimulus' genera-
tor(s), i.e., a generative model used to predict incoming sensory data
(Friston, 2010; Gentner and Stevens, 1983; Johnson-Laird, 1983; Roger
and Ashby, 1970). This connectivity profile reflects the increased
computational demands typically associated with modeling systems of
intermediate entropy.

The finding that connectivity strength tracks input complexity is
consistent withMEGwork by Patel and Balaban (2000), whomeasured
magnetoencephalographic signals while participants listened to series
of tones ranging in statistical structure from random to deterministic
scale-like sequences. Synchronization between MEG sensors was
shown to be generally weaker in the random condition and exhibited
an inverse U-shaped coherence profile, such that the strongest interre-
gional synchrony was found for the more melodic fractal (1/f and 1/f 2)
patterns. In relatedwork at the interface of complexity science and com-
putational music analysis, Abdallah and Plumbley (2009) proposed a
Table 2
Right HF seed region. Clusters where connectivity decreases monotonically with increas-
ing input entropy.

Talairach coordinates
(center of mass)

Volume (mm3) T (max.)

x y z

Right HF
R putamen 25 −4 9 4114 −5.47
L lentiform/putamen −25 1 16 3581 −5.43
R middle frontal gyrus 32 45 22 2498 −5.13
R cerebellum 32 −36 −30 1783 −5.33
L cerebellum −32 −46 −35 1117 −5.22
R thalamus 10 −28 0 877 −4.71
R superior temporal gyrus 44 −54 17 747 −4.1
measure called predictive information rate (PIR) to account for convex
responses to entropy. This metric, which is closely related to previously
mentioned measures of complexity (Abdallah and Plumbley, 2011),
quantifies the additional amount of predictive information provided
by a stimulus at time t about what may occur at t + 1 in comparison
to what could have been predicted about t + 1 based on t − 1 alone.
This “additional amount of information” conveyed by the present stim-
ulus is minimal in completely random and completely deterministic
contexts—thus preserving both the curvilinear relation between
entropy and complexity and capturing the commonly found inverted
U-shaped relation between entropy and subjective judgments of
aesthetic value or appeal (Berlyne, 1971). PIR, when used to analyze
samples of minimalist musical pieces by Philip Glass, was highly consis-
tent with structural analyses by expert human listeners. This work
provides a compelling framework in which to interpret our findings
and highlights the possibility that neural substrates sensitive to system
complexity may also be linked to such qualitative human judgments as
melodic quality or aesthetic appeal (Vitz, 1966; see Kintsch, 2012, for a
recent theoretical review).

Beyond the implications of our results for theories of complexity and
the coding of disorder, our findings have specific implications for the
current understanding of ACC and HF function. These seed regions
were selected based on a literature documenting their differential activ-
ity in response to manipulations of statistical regularity (e.g., Harrison
et al., 2006; Turk-Browne et al., 2009). Importantly, our results demon-
strate that the degree towhich these regions are functionally coupled to
particular networks varies with sensory uncertainty. Prior work has
shown that ACC connectivity fluctuates in tandemwith external conflict
demands and has implicated a highly similar network of regions to
those found here (Fan et al., 2008). Fan et al. (2008) examined whole-
brain connectivity of rostral ACC during performance of a congruent or
incongruent flanker task, revealing increased functional connectivity
between ACC and numerous regions during the incongruent, conflict-
inducing condition. The regions identified by Fan et al. (2008) are highly
consistent with the regions in our study showing increased correlation
Table 4
Clusters where connectivity tracks complexity for left ACC, left and right HF.

Talairach coordinates
(center of mass)

Volume (mm3) T (max.)

x y z

Left ACC
R precuneus 36.3 −69.5 37.0 1626 −4.264
L precuneus −10.2 −59.9 51.3 1472 −3.932

Left HF
R cingulate gyrus 15 −27 38 791 −4.64

Right HF
R anterior cingulate 13 40 0 1510 −4.33
R cerebellum 18 −63 −44 1371 −4.34
L cingulate gyrus −17 −12 41 725 −4.60
L medial frontal gyrus −8 54 1 722 −4.09
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with ACC for series with greater statistical constraints (see Table 1). Fan
et al. (2008) suggested that this connectivity pattern reflects response
facilitation in the presence of conflicting flanker stimuli. Our results
however suggest that this connectivity profile reflects endogenous sen-
sitivity to the predictability of a stimulus, given the lack of exogenous
conflict or response evaluation in our paradigm. In series with greater
statistical structure, each element was highly informative of the follow-
ing element, thus licensing predictive processing. This predictive coding
account is supported bywork showing that ACC activitymay be directly
linked to preparatory activity occurring prior to target presentation
(Schulz et al., 2011), and suggests that the “prediction of response-
outcome”model of medial prefrontal cortex should be expanded to in-
clude implicit perceptual inference, where no explicit response is re-
quired (Alexander and Brown, 2011; Ferdinand et al., 2012).

For both left and right HF seed regions, increased connectivity with
large portions of bilateral putamen was found in response to series
with stronger statistical constraints. These results are consistent with
reports that both medial temporal lobe structures and the basal ganglia
are involved in implicit sequence learning and artificial grammar learn-
ing (Forkstam and Petersson, 2005; Rauch et al., 1997; Schendan et al.,
2003). Furthermore, recent work suggests that the putamen codes for
probabilistic associations (in reinforcement learning paradigms;
Haruno andKawato, 2006) and temporal predictions in the auditory do-
main (Geiser et al., 2012; Grahn and Rowe, 2013). While determining
which of the two regions drives the other was outside the scope of the
current work, our results suggest that statistically structured inputs
spontaneously synchronize these structures. Importantly, regions
whose effective connectivity with the HF adhered to this connectivity
profile were very distinct from those associated with HF resting state
functional connectivity (Vincent et al., 2006). Whether HF and ACC
mediate similar functions for non-auditory inputs is an open question,
as our prior work suggests that different systems code for statistical
features of inputs in different sensory modalities (Nastase et al., 2014).

Of particular interest is the finding that connectivity between ACC
and bilateral precuneus clusters tracked environmental complexity.
The precuneus has been implicated in the maintenance of internal rep-
resentations (Cavanna and Trimble, 2006; Fletcher et al., 1995; Wagner
et al., 2005; Wolpert et al., 1998), while connectivity between ACC and
posterior midline structures correlates with working memory perfor-
mance (Hampson et al., 2006). Increased connectivity between HF
seed regions and ventromedial prefrontal cortex, midcingulate and
medial frontal gyri was found for series of intermediate disorder. Impor-
tantly, these areas overlap with both the default mode network
(Buckner et al., 2008; Greicius et al., 2003; Raichle et al, 2001) and re-
gions involved in prospective simulation (Buckner and Carroll, 2007).
Our findings inform this line of work by demonstrating that, in the ab-
sence of any explicit task, the connectivity of these default regions is
spontaneously modulated by the degree of structure in the sensory mi-
lieu. Some advocates of the default mode hypothesis have suggested
that correlated, task-independent activity in the precuneus and ACC —

in addition to other typical default mode structures— reflects themain-
tenance of an internal, probabilistic model of the environment (Raichle
and Gusnard, 2005; Rogers et al., 2010). Our findings suggest that
changes in thewhole-brain connectivity of ACC andHF reflect a passive,
rudimentary modeling operation in which internal representations
are maintained or refined online, separate from low-level sensory
processing.

We used a listening paradigm that lacked an observable behavioral
component, a decision motivated by evidence that explicitly tracking
sequential structure fundamentally affects both learning and neural re-
sponses, including functional connectivity (Fletcher et al., 2005). We
opted for this approach with the intention of isolating a perceptual, or
“background” process that operates by default, in absence of any partic-
ular behavior or task. This approach also allows our results to better
interface with findings in the resting state functional connectivity liter-
ature. For this reason, these data cannot directly speak to the impact of
sensory regularities on behavior per se, or how our stimuli affected at-
tentional demands. As explanatory constructs, attention, expectation
and prediction are tightly linked (Summerfield and Egner, 2009; Zhao
et al., 2013). From a phenomenological perspective, it could be that au-
ditory series at certain levels of entropy were simply more interesting,
thus drawingmore attention. That is, attention could be amoderator ac-
counting for part of the variance in either the monotonic or quadratic
relations (though by definition not both) observed between stimulus
entropy and the strength of connectivity. This interpretation would be
consistent with early work reporting fewer task-unrelated thoughts
in the context of greater-entropy auditory stimulation (Antrobus,
1968), indicating an effect of sensory regularity on either attentional
deployment or systems mediating mind-wandering.

Futureworkmay also investigate the relationship between input en-
tropy and effective connectivity in lower-level auditory areas. This par-
ticular topic of inquiry is complicated by the substantial functional
heterogeneity of primary and secondary auditory cortices.We have pre-
viously shown that small, adjacent regions of the supratemporal plane
have highly divergent response profiles to input entropy (Tremblay
et al., 2012). Presently, our choice of ACC and HF as seed regions in the
current studywas based on repeated demonstrations that these regions
serve in tracking uncertainty or predictive processing.

Summary

To conclude, theway inwhich ACC andHF interfacewith other brain
areas suggests two functionally distinct operations taking place concur-
rently. Interactions between the hippocampus and basal ganglia, aswell
as a network including ACC and bilateral precentral regions, track input
entropy directly. On the other hand, the inverse U-shaped connectivity
profile associated with midline, default mode structures suggests that
their function, though related to input statistics, is more abstract: this
connectivity profile does not translate into a direct relation with input
disorder and cannot be said to track the mean predictability of series
elements or the degree towhich they license prediction. Instead, consis-
tentwith current approaches in complexity science,we suggest that this
systemmay be involved in spontaneously constructing andmaintaining
an internal probabilistic model of the environmental configuration
driving sensory input rather than tracking the input per se. While the
random and highly structured conditions are trivial to model, inputs
of intermediate entropy are more computationally demanding to
model and thus engage these midline structures to a greater extent.
Specifying the detailed computations carried out in the regions identi-
fied here, as well as expanding the scope of the stimuli that drive
these operations, are well-defined research questions for future studies.

Acknowledgments

We thank an anonymous reviewer for helpful observations.

References

Aarts, E., Roelofs, A., van Turennout, M., 2008. Anticipatory activity in anterior cingulate
cortex can be independent of conflict and error likelihood. J. Neurosci. 28, 4671–4678.

Abdallah, S.A., Plumbley, M.D., 2009. Information dynamics: patterns of expectation and
surprise in the perception of music. Connect. Sci. 21, 89–117.

Abdallah, S.A., Plumbley, M.D., 2011. A measure of statistical complexity based on predic-
tive information with application to finite spin systems. Phys. Lett. A 376, 275–281.

Alexander, W.H., Brown, J.W., 2011. Medial prefrontal cortex as an action-outcome
predictor. Nat. Neurosci. 14, 1338–1344.

Antrobus, J.S., 1968. Information theory and stimulus-independent thought. Br. J. Psychol.
59, 423–430.

Ashby, W.R., 1947. Principles of the self-organizing dynamic system. J. Gen. Psychol. 37,
125–128.

Barlow, H.B., 1961. Possible principles underlying the transformation of sensory
messages. In: Rosenblith, W.A. (Ed.), Sensory Communication. MIT Press, Cambridge,
pp. 217–234.

Berlyne, D.E., 1957. Conflict and information-theory variables as determinants of human
perceptual curiosity. J. Exp. Psychol. 53, 399–404.

Berlyne, D.E., 1971. Aesthetics and Psychobiology. Appleton-Century-Crofts, New York.

http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0005
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0005
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0010
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0010
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0015
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0015
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0020
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0020
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0025
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0025
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0030
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0030
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0035
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0035
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0035
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0040
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0040
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0045


299S.A. Nastase et al. / NeuroImage 108 (2015) 292–300
Berns, G.S., Cohen, J.D., Mintun, M.A., 1997. Brain regions responsive to novelty in the
absence of awareness. Science 276, 1272–1275.

Bialek,W., Nemenman, I., Tishby, N., 2001. Predictability, complexity, and learning. Neural
Comput. 13, 2409–2463.

Birn, R.M., Diamond, J.B., Smith, M.A., Bandettini, P.A., 2006. Separating respiratory-
variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
Neuroimage 31, 1536–1548.

Bischoff-Grethe, A., Proper, S.M., Mao, H., Daniels, K.A., Berns, G.S., 2000. Conscious and
unconscious processing of nonverbal predictability in Wernicke's area. J. Neurosci.
20, 1975–1981.

Borst, A., Theunissen, F.E., 1999. Information theory and neural coding. Nat. Neurosci. 2,
947–957.

Brady, T.F., Konkle, T., Alvarez, G.A., 2009. Compression in visual working memory: using
statistical regularities to formmore efficient memory representations. J. Exp. Psychol.
Gen. 138, 487–502.

Bubic, A., von Cramon, D.Y., Schubotz, R.I., 2011. Exploring the detection of associatively
novel events using fMRI. Hum. Brain Mapp. 32, 370–381.

Büchel, C., Holmes, A., Rees, G., Friston, K., 1998. Characterizing stimulus–response
functions using nonlinear regressors in parametric fMRI experiments. Neuroimage
8, 140–148.

Buckner, R.L., Carroll, D.C., 2007. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57.
Buckner, R.L., Andrews‐Hanna, J.R., Schacter, D.L., 2008. The brain's default network. Ann.

N. Y. Acad. Sci. 1124, 1–38.
Buiatti, M., Pena, M., Dehaene-Lambertz, G., 2009. Investigating the neural correlates of

continuous speech computation with frequency-tagged neuroelectric responses.
Neuroimage 44, 509–519.

Cavanna, A.E., Trimble, M.R., 2006. The precuneus: a review of its functional anatomy and
behavioural correlates. Brain 129, 564–583.

Chater, N., 1996. Reconciling simplicity and likelihood principles in perceptual organiza-
tion. Psychol. Rev. 103, 566–581.

Chater, N., Vitanyi, P., 2003. Simplicity: a unifying principle in cognitive science? Trends
Cogn. Sci. 7, 19–22.

Clark, A., 2012. Whatever next? Predictive brains, situated agents, and the future of
cognitive science. Behav. Brain Sci. 36, 181–204.

Crutchfield, J.P., 2012. Between order and chaos. Nat. Phys. 8, 17–24.
Crutchfield, J.P., Ellison, C.J., Mahoney, J.R., 2009. Time's barbed arrow: irreversibility,

crypticity, and stored information. Phys. Rev. Lett. 103, 094101.
Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S., 1995. The helmholtz machine. Neural

Comput. 7, 889–904.
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L.,

Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated
labeling system for subdividing the human cerebral cortex on MRI scans into gyral
based regions of interest. Neuroimage 31, 968–980.

Duvernoy, H.M., Cabanis, E.A., Bourgouin, P., 1991. The Human Brain: Surface, Three-
Dimensional Sectional Anatomy and MRI. Springer-Verlag, Wien.

Falk, R., Konold, C., 1997. Making sense of randomness: implicit encoding as a basis for
judgment. Psychol. Rev. 104, 301–318.

Fan, J., Hof, P.R., Guise, K.G., Fossella, J.A., Posner, M.I., 2008. The functional integra-
tion of the anterior cingulate cortex during conflict processing. Cereb. Cortex
18, 796–805.

Feldman, D.P., McTague, C.S., Crutchfield, J.P., 2008. The organization of intrinsic compu-
tation: complexity–entropy diagrams and the diversity of natural information pro-
cessing. Chaos 18, 043106.

Ferdinand, N.K., Mecklinger, A., Kray, J., Gehring, W.J., 2012. The processing of unexpected
positive response outcomes in themediofrontal cortex. J. Neurosci. 32, 12087–12092.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A.,
Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.,
2002. Whole brain segmentation: automated labeling of neuroanatomical structures
in the human brain. Neuron 33, 341–355.

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E.,
Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M.,
2004. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22.

Fletcher, P.C., Frith, C.D., Baker, S.C., Shallice, T., Frackowiak, R.S., Dolan, R.J., 1995. The
mind's eye—precuneus activation in memory-related imagery. Neuroimage 2,
195–200.

Fletcher, P.C., Zafiris, O., Frith, C.D., Honey, R.A., Corlett, P.R., Zilles, K., Fink, G.R., 2005. On
the benefits of not trying: brain activity and connectivity reflecting the interactions of
explicit and implicit sequence learning. Cereb. Cortex 15, 1002–1015.

Forkstam, C., Petersson, K.M., 2005. Towards an explicit account of implicit learning. Curr.
Opin. Neurol. 18, 435–441.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995. Im-
proved assessment of significant activation in functional magnetic resonance imaging
(fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647.

Friston, K.J., 1994. Functional and effective connectivity in neuroimaging: a synthesis.
Hum. Brain Mapp. 2, 56–78.

Friston, K., 2010. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11,
127–138.

Friston, K.J., Buechel, C., Fink, G.R., Morris, J., Rolls, E., Dolan, R.J., 1997. Psychophysiological
and modulatory interactions in neuroimaging. Neuroimage 6, 218–229.

Geiser, E., Notter, M., Gabrieli, J.D., 2012. A corticostriatal neural system enhances auditory
perception through temporal context processing. J. Neurosci. 32, 6177–6182.

Gell-Mann, M., 1995. The Quark and the Jaguar: Adventures in the Simple and the Com-
plex. St. Martin's Griffin, New York.

Gentner, D., Stevens, A.L., 1983. Mental Models. Erlbaum, Hillsdale.
Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction of

physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–167.
Grahn, J.A., Rowe, J.B., 2013. Finding and feeling the musical beat: striatal dissociations
between detection and prediction of regularity. Cereb. Cortex 23, 913–921.

Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in the
resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad.
Sci. U. S. A. 100, 253–258.

Hampson, M., Driesen, N.R., Skudlarski, P., Gore, J.C., Constable, R.T., 2006. Brain connec-
tivity related to working memory performance. J. Neurosci. 26, 13338–13343.

Harrison, L.M., Duggins, A., Friston, K.J., 2006. Encoding uncertainty in the hippocampus.
Neural Netw. 19, 535–546.

Harrison, L.M., Bestmann, S., Rosa, M.J., Penny, W., Green, G.G., 2011. Time scales of repre-
sentation in the human brain: weighing past information to predict future events.
Front. Hum. Neurosci. 5, 37.

Haruno, M., Kawato, M., 2006. Different neural correlates of reward expectation and
reward expectation error in the putamen and caudate nucleus during stimulus-
action-reward association learning. J. Neurophysiol. 95, 948–959.

Huberman, B.A., Hogg, T., 1986. Complexity and adaptation. Physica D 22, 376–384.
Johnson-Laird, P.N., 1983. Mental Models: Towards a Cognitive Science of Language,

Inference, and Consciousness. Harvard University Press, Cambridge.
Kiebel, S.J., Daunizeau, J., Friston, K.J., 2008. A hierarchy of time-scales and the brain. PLoS

Comput. Biol. 4, e1000209.
Kintsch, W., 2012. Musings about beauty. Cogn. Sci. 36, 635–654.
Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information.

Probl. Inf. Transm. 1, 3–11.
Loewenstein, G., 1994. The psychology of curiosity: a review and reinterpretation.

Psychol. Bull. 116, 75–98.
Loftus, G.R., Masson, M.E., 1994. Using confidence intervals in within-subject designs.

Psychon. Bull. Rev. 1, 476–490.
Lopez-Ruiz, R., Mancini, H., Calbet, X., 1995. A statistical measure of complexity. Phys. Lett.

A 209, 321–326.
Nastase, S., Iacovella, V., Hasson, U., 2014. Uncertainty in visual and auditory series is

coded by modality-general and modality-specific neural systems. Hum. Brain
Mapp. 35, 1111–1128.

Olshausen, B.A., Field, D.J., 1996. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature 381, 607–609.

Patel, A.D., Balaban, E., 2000. Temporal patterns of human cortical activity reflect tone se-
quence structure. Nature 404, 80–84.

Quinn, G.P., Keough, M.J., 2002. Experimental Design and Data Analysis for Biologists.
Cambridge University Press, Cambridge.

Raichle, M.E., Gusnard, D.A., 2005. Intrinsic brain activity sets the stage for expression of
motivated behavior. J. Comp. Neurol. 493, 167–176.

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.,
2001. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98, 676–682.

Rauch, S.L., Whalen, P.J., Savage, C.R., Curran, T., Kendrick, A., Brown, H.D., Bush, G., Breiter,
H.C., Rosen, B.R., 1997. Striatal recruitment during an implicit sequence learning task
as measured by functional magnetic resonance imaging. Hum. Brain Mapp. 5, 124–132.

Rissanen, J., 1986. Stochastic complexity and modeling. Ann. Stat. 14, 1080–1100.
Roger, C.C., Ashby, W.R., 1970. Every good regulator of a system must be a model of that

system. Int. J. Syst. Sci. 1, 89–97.
Rogers, B.P., Avery, S.N., Heckers, S., 2010. Internal representation of hierarchical

sequences involves the default network. BMC Neurosci. 11, 54.
Saffran, J.R., Aslin, R.N., Newport, E.L., 1996. Statistical learning by 8-month-old infants.

Science 274, 1926–1928.
Schapiro, A.C., Kustner, L.V., Turk-Browne, N.B., 2012. Shaping of object representations in

the human medial temporal lobe based on temporal regularities. Curr. Biol. 22,
1622–1627.

Schapiro, A.C., Gregory, E., Landau, B., McCloskey, M., Turk-Browne, N.B., 2014. The necessity
of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26, 1736–1747.

Schendan, H.E., Searl, M.M., Melrose, R.J., Stern, C.E., 2003. An fMRI study of the role of the
medial temporal lobe in implicit and explicit sequence learning. Neuron 37,
1013–1025.

Schulz, K.P., Bedard, A.C., Czarnecki, R., Fan, J., 2011. Preparatory activity and connectivity
in dorsal anterior cingulate cortex for cognitive control. Neuroimage 57, 242–250.

Shiner, J.S., Davison, M., Landsberg, P.T., 1999. Simple measure for complexity. Phys. Rev.
E. 59, 1459–1464.

Smithson, M., 1997. Judgment under chaos. Organ. Behav. Hum. Dec. 69, 59–66.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A., 2002. Bayesian measures of

model complexity and fit. J. Roy. Stat. Sci. B 64, 583–639.
Stark, D.E., Margulies, D.S., Shehzad, Z.E., Reiss, P., Kelly, A.M., Uddin, L.Q., Gee, D.G., Roy,

A.K., Banich, M.T., Castellanos, F.X., Milham, M.P., 2008. Regional variation in inter-
hemispheric coordination of intrinsic hemodynamic fluctuations. J. Neurosci. 28,
13754–13764.

Strange, B.A., Duggins, A., Penny, W., Dolan, R.J., Friston, K.J., 2005. Information theory,
novelty and hippocampal responses: unpredicted or unpredictable? Neural Netw.
18, 225–230.

Summerfield, C., Egner, T., 2009. Expectation (and attention) in visual cognition. Trends
Cogn. Sci. 13, 403–409.

Tobia, M.J., Iacovella, V., Hasson, U., 2012. Multiple sensitivity profiles to diversity and
transition structure in non-stationary input. Neuroimage 60, 991–1005.

Tremblay, P., Baroni, M., Hasson, U., 2012. Processing of speech and non-speech sounds in
the supratemporal plane: auditory input preference does not predict sensitivity to
statistical structure. Neuroimage 66, 318–332.

Turk-Browne, N.B., Scholl, B.J., Chun, M.M., Johnson, M.K., 2009. Neural evidence of
statistical learning: efficient detection of visual regularities without awareness.
J. Cogn. Neurosci. 21, 1934–1945.

Turk-Browne, N.B., Scholl, B.J., Johnson, M.K., Chun, M.M., 2010. Implicit perceptual
anticipation triggered by statistical learning. J. Neurosci. 30, 11177–11187.

http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0050
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0050
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0055
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0055
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0060
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0060
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0060
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0065
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0065
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0065
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0070
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0070
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0075
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0075
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0075
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0080
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0080
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0085
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0085
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0085
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0095
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0465
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0465
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0100
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0105
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0105
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0110
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0110
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0115
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0115
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0120
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0120
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0125
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0130
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0130
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0135
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0135
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0140
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0470
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0470
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0150
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0150
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0155
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0155
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0155
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0160
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0160
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0160
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0165
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0165
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0170
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0170
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0475
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0175
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0175
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0175
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0180
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0180
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0180
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0185
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0185
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0190
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0190
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0190
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0195
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0195
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0205
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0205
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0200
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0200
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0210
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0210
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0215
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0215
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0220
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0225
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0225
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0230
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0230
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0235
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0235
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0235
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0240
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0240
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0250
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0250
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0245
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0245
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0245
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0255
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0255
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0255
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0260
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0265
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0265
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0270
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0270
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0275
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0280
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0280
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0285
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0285
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0290
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0290
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0295
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0295
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0300
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0300
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0300
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0305
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0305
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0310
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0310
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0315
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0315
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0320
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0320
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0325
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0330
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0330
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0335
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0340
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0340
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0345
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0345
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0350
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0350
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0360
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0360
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0360
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0355
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0355
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0365
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0365
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0365
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0370
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0370
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0375
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0375
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0380
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0385
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0385
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0390
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0390
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0390
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0395
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0395
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0395
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0400
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0400
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0405
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0405
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0410
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0410
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0410
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0415
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0415
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0415
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0420
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0420


300 S.A. Nastase et al. / NeuroImage 108 (2015) 292–300
Ursu, S., Clark, K.A., Aizenstein, H.J., Stenger, V.A., Carter, C.S., 2009. Conflict-related activ-
ity in the caudal anterior cingulate cortex in the absence of awareness. Biol. Psychol.
80, 279–286.

Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., Buckner,
R.L., 2006. Coherent spontaneous activity identifies a hippocampal-parietal memory
network. J. Neurophysiol. 96, 3517–3531.

Vitz, P.C., 1964. Preferences for rates of information presented by sequences of tones.
J. Exp. Psychol. 68, 176–183.

Vitz, P.C., 1966. Affect as a function of stimulus variation. J. Exp. Psychol. 71, 74–79.
Wagner, A.D., Shannon, B.J., Kahn, I., Buckner, R.L., 2005. Parietal lobe contributions to
episodic memory retrieval. Trends Cogn. Sci. 9, 445–453.

Wallace, C.S., 2005. Statistical and Inductive Inference by Minimum Message Length.
Springer, New York.

Wolpert, D.M., Goodbody, S.J., Husain, M., 1998. Maintaining internal representations: the
role of the human superior parietal lobe. Nat. Neurosci. 1, 529–533.

Zhao, J., Al-Aidroos, N., Turk-Browne, N.B., 2013. Attention is spontaneously biased to-
ward regularities. Psychol. Sci. 24, 667–677.

http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0425
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0425
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0425
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0430
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0430
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0435
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0435
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0440
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0445
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0445
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0450
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0450
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0455
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0455
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0460
http://refhub.elsevier.com/S1053-8119(14)01040-4/rf0460

	Connectivity in the human brain dissociates entropy and complexity of auditory inputs
	Introduction
	Materials and methods
	Participants
	Design and stimuli
	Image acquisition and procedure
	Preprocessing and generation of ROIs
	Generation of whole-brain connectivity maps

	Results
	Autonomic indices during the scan
	Linear and quadratic connectivity profiles

	Discussion
	Summary
	Acknowledgments
	References


