
Symbolic Tree Automata

Margus Veanes, Nikolaj Bjørner

Microsoft Research, Redmond, WA, USA

Abstract

We introduce symbolic tree automata as a generalization of finite tree automata with a parametric alphabet over
any given background theory. We show that symbolic tree automata are closed under Boolean operations, and that the
operations are effectively uniform in the given alphabet theory. This generalizes the corresponding classical properties
known for finite tree automata.

Keywords: tree automata, automata algorithms, logic, satisfiabilitymodulo theories

1. Introduction

Finite word automata and finite tree automata pro-
vide a foundation for a wide range of applications in
software engineering, from regular expressions to com-
piler technology and specification languages. Despite
their immense practical use, explicit representations are
not feasible in the presence of finite large alphabets.
They require each transition to encode only a single ele-
ment from the alphabet. For example, string characters
in standard programming languages (such as thechar

type in C#) use 16-bit bit-vectors, an explicit represen-
tation would thus require an alphabet of size 216. More-
over, most common forms of finite automata do not sup-
port infinite alphabets.

A practical solution to the representation problem is
symbolic tree automata. They are an extension of clas-
sical tree automata that addresses this problem by al-
lowing transitions to be labeled with arbitrary formulas
in a specified label theory. While the idea of allowing
formulas is straightforward, typical extensions of finite
tree automata often lead to either undecidability of the
emptiness problem, such as tree automata with equality
and disequality constraints [1], or many extensions lead
to nonclosure under complement, such as the general-
ized tree set automata class [1], finite-memory tree au-
tomata [2] that generalize finite-memory automata [3] to

Email addresses:margus@microsoft.com (Margus Veanes),
nbjorner@microsoft.com (Nikolaj Bjørner)

URL: http://research.microsoft.com/~margus (Margus
Veanes),http://research.microsoft.com/~nbjorner
(Nikolaj Bjørner)

trees, or unranked data tree automata [4]. We show that
this is not the case for symbolic tree automata. The key
distinction is that the extension here is with respect to
charactersrather than adding symbolicstatesor adding
constraints over wholesubtrees.

The symbolic extension is practically useful for ex-
ploiting efficient symbolic constraint solvers when per-
forming basic automata-theoretic transformations: it
enables a separation of concerns. The solver is used
as a black box with a clearly defined interface that ex-
poses the label theory as an effective Boolean algebra.
The chosen label theory can be specific to a particular
problem instance. For example, even when the alpha-
bet is finite, e.g., 16-bit bit-vectors, it may be useful for
efficiency reasons to use integer-linear arithmetic rather
than bit-vector arithmetic when the solver is more effi-
cient over integers and when only standard arithmetic
operations (and no bit-level operations) are being used.
Recent work [5, 6] on symbolic string recognizers and
transducers takes advantage of this observation.

We here investigate the case of the more expressive
class of symbolictree automata. Even though a sym-
bolic tree automaton is a finite object, a key point is that
the number of interpretations for symbolic labels does
not need to be finite. For example, as a consequence of
our main result (Theorem 2) a label theory may itself be
the theory of symbolic tree automata (over some basic
label theory).

In order to use classical tree automata algorithms, it
is possible to reduce a symbolic tree automatonA into a
classical finite tree automaton whose alphabet is given
by all of the satisfiable Boolean combinations of guards
that occur inA. However, such a transformation is in

Preprint submitted to Information Processing Letters October 30, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357380239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

general not practical because it introduces an exponen-
tial increase in the size of the automaton before the ac-
tual algorithm is applied. Moreover, when more than
one automaton are involved, this has to be done up front
for all predicates that occur in all the automata in order
to define the common alphabet. A concrete example of
such a blowup is given in [7, Example 2].

2. Definition of symbolic tree automata

We introduce an extension of tree automata with an
effective encoding of labels by predicates that denote
setsof labels, rather than individual labels. We assume
a countablebackground universeB . A predicateϕ over
B is a finite representation of a subset [[ϕ]]B of B ; we
write [[ϕ]] whenB is clear from the context. We assume
given an effectively enumerable set of predicatesΣ such
that, for each elementa ∈ B there isâ ∈ Σ such that
[[â]] = {a}, ⊤,⊥ ∈ Σ such that [[⊤]] = B and [[⊥]] = ∅,
andΣ is effectively closed under Boolean operations:
for all ϕ, ψ ∈ Σ, we haveϕ ∧ ψ ∈ Σ, ϕ ∨ ψ ∈ Σ, ¬ϕ ∈ Σ,
where [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]],
and [[¬ϕ]] = B \ [[ϕ]]. We write ϕ ≡ ψ for [[ϕ]] = [[ψ]].
We say that (Σ, [[·]]B) (orΣ, when [[·]]B is clear from the
context) is aneffective Boolean algebra overB . We say
thatΣ is decidableif the problem of decidingϕ ≡ ⊥ for
ϕ ∈ Σ is decidable.

Example 1. An example of a decidable effective
Boolean algebra is (LA(x), [[·]]Z) where [[·]]Z is the stan-
dard interpretation of integer arithmetic with , andLA(x)
is an effectively enumerable set of all quantifier free
integer-linear arithmetic formulas, with one fixed free
variablex, e.g., [[0< x∧x+1 < 3]] = [[0 < x]] ∩[[x+1 <
3]] = {1}. ⊠

In this paper we focus onbinary trees. This will keep
the notational overhead at a minimum, while the results
can be generalized to non-binary trees through standard
encoding techniques.T (B) is the smallest set such that
the empty treeǫ ∈ T (B) and if a ∈ B and t1, t2 ∈
T (B) thent = 〈a, t1, t2〉 ∈ T (B), wherea is the label
of t, denotedlabel(t), t1 is theleft subtreeof t, denoted
left(t), andt2 is theright subtreeof t, denotedright(t).

For example〈1, 〈−2, ǫ, 〈3, ǫ, ǫ〉〉, 〈4, ǫ, ǫ〉〉 ∈ T (Z).

Definition 1. A symbolic tree automaton (STA) Ais a
tuple (Σ,Q,Ql,Qr,∆) whereΣ is an effective Boolean
algebra called thelabel theoryof A, Q is a finite set of
states, Ql ⊆ Q is a set ofleaves, Qr ⊆ Q is a set ofroots,
and∆ ⊆ Q× Σ × Q× Q is a finite set oftransitions.

We useA as a subscript to identify a component, un-
lessA is clear from the context. We writeSTA(Σ) for
an effectively enumerable set of all STAs overΣ. Let
A = (Σ,Q,Ql,Qr,∆) ∈ STA(Σ) be fixed. Given a tran-
sitionρ = (p, ϕ, q1, q2) ∈ ∆, let lhs(ρ), γ(ρ), andrhs(ρ),
denote, respectively, theleft-hand-side p, theguardϕ,
and theright-hand-side(q1, q2) of ρ. We use ¯q as an
abbreviation for (q1, q2).

Definition 2. The language of A for q∈ Q, denoted by
L (A, q), is the smallest subset ofT (B) such that: ifq ∈
Ql thenǫ ∈ L (A, q); if (q, ϕ, q1, q2) ∈ ∆, a ∈ [[ϕ]], and,
for i ∈ {1, 2}, ti ∈ L (A, qi), then〈a, t1, t2〉 ∈ L (A, q).
The language of Ais L (A)

def
=
⋃

q∈Qr L (A, q).

Two STAsA and B areequivalent, denotedA ≡ B,
whenL (A) = L (B).

Let ⊥STA(Σ)
def
= (Σ, ∅, ∅, ∅, ∅). ThusL (⊥STA(Σ)) = ∅.

The following example illustrates a representation of
valid Unicode character sequences as an STA that uses
UTF16 encoding of surrogate pairs.1

The particular feature of the representation is that the
trees preserve the length of the original Unicode strings
as the length of the rightmost branch. The leftmost
branch from any node in the tree is either the node it-
self when the node is not a surrogate, or a surrogate pair
otherwise, and encodes thus a single Unicode symbol.

Example 2. Let BV16 stand for quantifier free 16-bit
bit-vector arithmetic; BV16 is isomorphic to quantifier
free integer linear arithmetic modulo 216. We use a sin-
gle fixed free variablex in predicatesϕ over BV16, thus
[[ϕ]] is the set of all valuesa such thatϕ[x/a] is true. Let

HighSurr
def
= 0xD800 ≤ x ≤ 0xDBFF,

LowSurr
def
= 0xDC00 ≤ x ≤ 0xDFFF,

Let A = (BV16, {qok, qls, qǫ}, {qok, qǫ}, {qok},∆), where

∆ =

(qok,¬LowSurr∧ ¬HighSurr, qǫ , qok),
(qok,HighSurr, qls, qok),
(qls, LowSurr, qǫ , qǫ)

For example, the tree

0x266D

ǫ 0xD834

0xDD35 0x266E

ǫ ǫ ǫ ǫ

1Complete Unicode alphabet has over one million characters,
UTF16 encoding is used to encode the alphabet with 16-bit bit-
vectors, where surrogate pairs are used for encoding characters in the
upper Unicode range.

2

is in L (A) and encodes the Unicode string"♭c♮"
of musical symbols, wherec is the symbol “cut
time” encoded by the surrogate pair (0xD834,0xDD35).
The sequence would be represented by a string
"\u266D\uD834\uDD35\u266E" (of length 4) in stan-
dard programming and scripting languages. ⊠

Example 3. We illustrate an STA A that accepts
integer-labeled binary trees

A = (LA(x), {qroot, q−, q0, q+, qǫ}, {qǫ}, {qroot},∆),

where∆ consists of the transitions

(qroot, x=0, q−, q+), (q0, x=0, q+, q−),
(q−, x<0, q−, q0), (q+, x>0, q0, q+),
(q−, x<0, qǫ , qǫ), (q0, x=0, qǫ , qǫ), (q+, x>0, qǫ , qǫ)

The transitions can be understood as a recursive con-
straint system. Theroot has label 0, its left son is a
‘ -’-node and its right son is a ‘+’-node. Every ‘-’-node
has a negative label and is either a leaf or its left son is
a ‘-’-node and its right son is an ‘0’-node. Similarly for
the other cases. For example, the tree

0
−1 6

−2 0 0 5
ǫ ǫ 3 −4 ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ

is in L (A). ⊠

Classical tree automata theory distinguishes be-
tweentop-down(or root-to-frontier) andbottom-up(or
frontier-to-root) recognizers. This classification relates
to the intendeddirection of the transitions for accept-
ing or recognizing a tree. The results of the paper are
independent of this classification.

A fundamental subclass of STAs is the following, that
generalizes the corresponding subclass of deterministic
bottom-up (frontier-to-root) tree recognizers [8, Defini-
tion 2.1(p. 60)].

Definition 3. A is deterministic(DSTA) when|Ql| = 1
and, for allρ1, ρ2 ∈ ∆, if rhs(ρ1) = rhs(ρ2) andγ(ρ1) ∧
γ(ρ2) . ⊥ thenlhs(ρ1) = lhs(ρ2).

For example, the STA in Example 3 is deterministic be-
cause the only transitions with equal right-hand-sides
are the last three transitions and their guards denote mu-
tually disjoint sets of labels. The STA in Example 2 is
not deterministic because|Ql| > 1 (although it istop-
down deterministic: |Qr| = 1 and, for allρ1, ρ2 ∈ ∆, if
lhs(ρ1) = lhs(ρ2) andγ(ρ1) ∧ γ(ρ2) . ⊥ thenrhs(ρ1) =
rhs(ρ2), but it can be converted to a DSTA.

For q̄ ∈ Q × Q let γA(q̄) denote the disjunction of
guards of all transitions inA whose right-hand-side is ¯q:

γA(q̄)
def
=
∨

{γ(ρ) | ρ ∈ ∆A, rhs(ρ) = q̄}

Observe that, if there is no transition inA whose right-
hand-side is ¯q thenγA(q̄) is the empty disjunction or⊥
(by definition). We use the following subclass of STAs.

Definition 4. A is total if, for all q̄ ∈ Q×Q, γA(q̄) ≡ ⊤.

The STA A in Example 3 is not total because, e.g.,
γA(q0, q0) ≡ ⊥. However, any DSTAA can be made
total as follows. First, extendA to A1 by adding a new
stateqsink. Second, extendA1 to A2 by adding the new
transition (qsink,¬γA1(q̄), q̄) for eachq̄ ∈ QA1 × QA1. It
follows that A2 is a total DSTA and, for allq ∈ QA,
L (A, q) = L (A2, q), and thusL (A) = L (A2).

The following basic properties follow for STAs, by
structural induction over trees. Let

QA(t)
def
= {q ∈ QA | t ∈ L (A, q)}.

Lemma 1. If A is a DSTA then|QA(t)| ≤ 1 for all t ∈
T (B).

Lemma 2. If A is total then |QA(t)| ≥ 1 for all t ∈
T (B).

We writeTDSTAfor total DSTA. The construction

∁(A)
def
= (ΣA,QA,Q

l

A,QA \ QrA,∆A)

defines what thecomplementof a TDSTA A is. For,
X ⊆ T (B), let ∁(X)

def
= T (B) \ X.

Lemma 3. If A is a TDSTA thenL (∁(A)) = ∁(L (A)).

Proof. By using Lemmas 1 and 2. ⊠

STAs withε-moves.An STA A can be extended with a
set ofε-moves∆ε ⊆ Q×Q as an additional (sixth) com-
ponent. Withε-moves, the definition ofL (A, q) (Defi-
nition 2) is extended to include the conditionL (A, q) ⊆
L (A, p) for all (p, q) ∈ ∆ε.

Similar to finite tree automata,ε-moves can be effec-
tively eliminated and do not affect the expressive power
of STAs. The algorithm forε-moves elimination is in-
dependent of the symbolic labels and the standard al-
gorithm for finite tree automata case (see [1, Theorem
1.1.5]), also applies to STAs. However,ε-moves may
have practical value because they can increase succinct-
ness among equivalent STA representations, which may
improve performance in symbolic analysis, similar to
the observations made in [5] regarding the case of SFAs.

3

3. Determinization of symbolic tree automata

Similar to the case of deterministic frontier-to-root
tree recognizers, DSTAs have the same expressive
power as general STAs. We lift the classical powerset
construction of nondeterministic Rabin-Scott recogniz-
ers to STAs. Let℘(X) denote the powerset of a setX.2

We write p
ϕ
→ q̄ for the rule (p, ϕ, q̄).

Definition 5. Let A = (Σ,Q,Ql,Qr,∆). Thepowerset
STA of Ais:

℘(A)
def
= (Σ, ℘(Q), {Ql}, {q ∈ ℘(Q) | q ∩ Qr , ∅},

{lhs(S)
µ(S,∆(q̄)\S)
→ q̄ |

q̄ ∈ ℘(Q)×℘(Q), S ⊆ ∆(q̄)})

where ∆(q1, q2)
def
= {ρ | ρ ∈ ∆, rhs(ρ) ∈ q1 × q2}

µ(S,S′)
def
=
∧

ρ∈S γ(ρ) ∧
∧

ρ∈S′ ¬γ(ρ)
lhs(S)

def
= {lhs(ρ) | ρ ∈ S}

Note that the role of the state∅ in the powerset STA is
similar to the role ofqsink mentioned after Definition 4.

We obtain the following generalization of [8, Theo-
rem 2.6(p. 65)].

Theorem 1. For all STAs A:
(a)℘(A) is a TDSTA;
(b) for all t, {QA(t)} = Q℘(A)(t);
(c) ℘(A) ≡ A;
(d) |Q℘(A)| = 2|QA|;
(e) |∆℘(A)| = O(22|QA|+|∆A|).

Proof. Proof of (a). To show that℘(A) is total, fix a
q̄ = (q1, q2) ∈ ℘(Q) × ℘(Q). We need to show that
γ℘(A)(q̄) ≡ ⊤. The empty conjunction is, by definition,
⊤, and thus, whenq1 = ∅ or q2 = ∅ then∆(q̄) = ∅,
µ(∅, ∅) = ⊤, and (∅,⊤, q̄) ∈ ∆℘(A), and thusγ℘(A)(q̄) ≡
⊤. Assume thatq1 , ∅ andq2 , ∅. Let ∆(q̄) = {ρi}i∈I
and letϕi = γ(ρi) for i ∈ I . We have that

γ℘(A)(q̄) ≡
∨

{µ(S,∆(q̄) \ S) | S ⊆ ∆(q̄)}
≡
∨

J⊆I (
∧

i∈J ϕi ∧
∧

i∈I\J ¬ϕi) ≡ ⊤

where the last equivalence follows from DeMorgan’s
laws and simplifications, sinceall possible Boolean
combinations of truth assignments ofϕi are included in
the disjunction.

To show that℘(A) is deterministic, let̄q ∈ ℘(Q) ×
℘(Q) and letS1,S2 ⊆ ∆(q̄) be such thatS1 , S2. Let
S′i = ∆(q̄) \ Si . It suffices to show thatµ(S1,S′1) ∧

2Recall that℘(∅) = {∅}.

µ(S2,S′2) ≡ ⊥, which follows fromS1 , S2 and the
definition ofµ(S,S′): there exists a transitionρ ∈ ∆(q̄)
such that [[µ(S1,S′1)]] ⊆ [[γ(ρ)]] and [[µ(S2,S′2)]] ⊆
[[¬γ(ρ)]], where, wlog,ρ is such thatρ ∈ S1 \ S2.

Proof of (b). It follows from (a) and Lemmas 1 and
2 that, for all t, |Q℘(A)(t)| = 1. We prove (b) by in-
duction over trees. The base caset = ǫ follows im-
mediately from the definitions since{QA(ǫ)} = {Ql} =
Q℘(A)(ǫ). For the induction case supposet , ǫ and as
IH assume that,{QA(left(t))} = {q1} = Q℘(A)(left(t))
and {QA(right(t))} = {q2} = Q℘(A)(right(t)). Let q̄ =
(q1, q2). The following statements are equivalent by us-
ing the definitions and the IH for the equivalence be-
tween 2 and 3. Letp ∈ Q.

1. p ∈ QA(t)
2. There exists (p, ϕ, q̄) ∈ ∆ for someq̄ ∈ q1 × q2 s.t.

label(t) ∈ [[ϕ]].
3. There existsS ⊆ ∆(q̄) s.t.

label(t) ∈ [[µ(S,∆(q̄) \ S)]] and p ∈ lhs(S).
4. There existsq ∈ ℘(Q) s.t. p ∈ q andQ℘(A)(t) = {q}.

The equivalence of 1 and 4 for allp implies that
{QA(t)} = Q℘(A)(t), that proves (b). Finally, (c) follows
from (b) by definition ofQr℘(A), and (d) and (e) follow
from definitions ofQ℘(A) and∆℘(A). ⊠

Example 4. Recall that⊥STA(Σ) = (Σ, ∅, ∅, ∅, ∅), so

℘(⊥STA(Σ)) = (Σ, {∅}, {∅}, ∅, {(∅,⊤, ∅, ∅)})
∁(℘(⊥STA(Σ))) = (Σ, {∅}, {∅}, {∅}, {(∅,⊤, ∅, ∅)})

ThusL (∁(℘(⊥STA(Σ)))) = T (B). ⊠

Similar to the case of classical tree automata, the
powerset construction enables us to effectively deter-
minize, and thus complement, STAs.

Determinization of STAs, i.e., Definition 5, can be
implemented with bottom-up depth first search. The
same basic technique that is used for SFAs [9], that
uses minterm generation, has been extended for STAs
in [10]. Observe that, in Definition 5,µ(S,S′) (when
feasible), defines, at the propositional level, aminterm
that corresponds intuitively to a nonempty region of a
Venn diagram overB defined by the guards inS and the
complements of the guards inS′. Infeasible guards are
eliminated eagerly during the bottom-up powerset con-
struction and prune away unreachable left-hand-sides of
rules in the constructed powerset STA.

4. Boolean closure of symbolic tree automata

For complete closure under Boolean operations we
use the following product construction that is a lifting
of the standard product of finite tree automata to STAs.

4

Definition 6. Let Ai = (Σ,Qi ,Qli ,Q
r

i ,∆i), for i = 1, 2,
be STAs. Theproductof A1 andA2 is the STA

A1 × A2
def
= (Σ,Q1 × Q2,Ql1 × Ql2,Q

r

1 × Qr2,
{ρ1 × ρ2 | ρ1 ∈ ∆1, ρ2 ∈ ∆2})

where, fori ∈ {1, 2} andρi = (pi , ϕi , qi, r i) ∈ ∆i ,

ρ1 × ρ2
def
= ((p1, p2), ϕ1 ∧ ϕ2, (q1, q2), (r1, r2))

Lemma 4 implies that we can effectively intersect lan-
guages of STAs. The proof of (a) follows by induction
over trees.

Lemma 4. Let Ai = (Σ,Qi ,Qli ,Q
r

i ,∆i), for i = 1, 2, be
STAs. Then:

(a) for all q1 ∈ Q1, q2 ∈ Q2,
L (A1 × A2, (q1, q2)) = L (A1, q1) ∩L (A2, q2);

(b) L (A1 × A2) = L (A1) ∩L (A2);
(c) |QA1×A2 | = |Q1| · |Q2|, |∆A1×A2 | = |∆1| · |∆2|

We use the following definition for constructing the
union of tree languages. Assume given two STAsA and
B such thatΣA = ΣB andQA ∩ QB = ∅. Thesumof A
andB, denotedA+ B, is the STA

(ΣA,QA ∪ QB,Q
l

A ∪ QlB,Q
r

A ∪ QrB,∆A ∪ ∆B).

Trivially, L (A1 + A2) = L (A1) ∪L (A2).
Assume thepredicatesover the base setSTA(Σ) to

be defined as the least set that includesSTA(Σ), and ifϕ
andψ are predicates overSTA(Σ) then so are¬ϕ, ψ ∧ ϕ
andψ ∨ ϕ, where forA, B ∈ STA(Σ), [[A]]

def
= L (A),

[[¬A]]
def
= L (∁(℘(A))), [[A∧ B]]

def
= L (A× B) , and [[A∨

B]]
def
= L (A+B). The denotation is lifted to all predicates

overSTA(Σ). By slight abuse of notation, we letSTA(Σ)
also denote the extension with predicates.

A transitionρ ∈ ∆A such thatγ(ρ) ≡ ⊥ is calledin-
feasible. The size|ϕ| for ϕ ∈ STA(Σ) is given by the
definitions|ϕ ∧ ϕ′| = |ϕ ∨ ϕ′| = |ϕ| + |ϕ′|, |¬ϕ| = |ϕ| + 1,
|t| is the size of termt, and|A| = 1+ Σρ∈∆A |γ(ρ)|.

The following lemma is used by Theorem 2.

Lemma 5. The emptiness problem of an STA A, has
complexity O(n · f (m)) where f(m) is the complexity of
deciding satisfiability ofΣA for instances of size m and
n = |∆A|.

Proof. UsingO(n) calls to the decision procedure forΣ
for formulas of size at mostm we can convertA into an
automaton where all infeasiable transitions have been
removed. The bound on this step isO(n · f (m)).

Next, assume that all transitions inA are feasible and
let G be the set of all guards that occur inA and let

Γ = {cǫ } ∪ {gγ | γ ∈ G} be an alphabet, where eachgγ
is a binary function symbol andcǫ is a constant. Decide
emptiness ofA as a finite tree automaton (FTA) over
Γ where each transition (q, γ, q1, q2) corresponds to the
FTA transitionq→ gγ(q1, q2) and each leaf stateq cor-
responds to the transitionq→ cǫ . If A FTA-recognizes
aΓ-term s, thenL (s) ⊆ L (A), whereL (cǫ) = {ǫ} and
L (gγ(s1, s2)) = {〈a, t1, t2〉 | a ∈ [[γ]]B , t1 ∈ L (s1), t2 ∈
L (s2)}, andL (s) , ∅ because all guards are feasible.
The other direction is immediate: ift ∈ L (A) thenA
FTA-recognizes aΓ-term s such thatt ∈ L (s). Thus,
[[ϕ]] , ∅ iff A FTA-recognizes someΓ-term. Since
checking non-emptiness a tree automata is linear in their
size, the bound follows. ⊠

Theorem 2. STA(Σ) is an effective Boolean algebra. If
Σ is decidable then so isSTA(Σ). If the decision com-
plexity ofΣ is O(f (n)) then the decision complexity of
STA(Σ) is O(2n · f (2n)).

Proof. Givent ∈ T (B) we can effectively construct an
STA t̂ such that [[̂t]] = {t}. The first statement therefore
follows from Lemmas 3 and 4, and Theorem 1.

We now prove decidability and the complexity bound
together. Assume we are given anϕ ∈ STA(Σ), where
ϕ is of the formψ ∧ ψ′, ψ ∨ ψ′, ¬ψ, t, or A, for sym-
bolic automatonA andψ, ψ′ ∈ STA(Σ). We can bringϕ
into negation normalϕ1 form by pushing negations over
conjunctions and disjunctions. The size increase ofϕ is
at mostn. We can remove negations fromϕ1 to formϕ2,
by replacing each occurrence¬A by ∁(℘(A)) in ϕ. The
size increase isO(Σ¬A∈ϕ2|A|), where¬A ∈ ϕ means¬A
occurs inϕ. We can remove conjunctions and disjunc-
tions fromϕ2 by replacingA∨ B by A+ B andA∧ B by
A× B. Let the resulting STA beB.

The size ofB is at mostΠA∈ϕ2|A| = 2ΣA∈ϕ |A| = O(2n).
It follows from Definition 2 thatL (B) = L (B1). Now
check emptiness ofB1. The complexity bound follows
from Lemma 5. ⊠

In our implementation [11] the algorithms for product
and complement use depth first search, where infeasible
guards and unreachable states are never included, e.g.,
in Definition 6 the product transitionρ1 × ρ2 is never
added ifϕ1 ∧ ϕ2 is unsatisfiable. Moreover, all the al-
gorithms are extended to work with arbitrary alphabets,
not just binary trees. The product is currently imple-
mented by using top-down (starting from the roots) style
of traversal. These algorithms are instrumental in the
applications discussed in [10].

5

Example 5. Complementation and determinization of
STAs is needed in the following analysis scenario. Con-
sider a symbolic tree transducerT that is an HTML san-
itizer [10, Figure 2]. It is a program that traverses an
input HTML document and modifies its nodes by re-
moving attributes and values that may cause malicious
code to be executed. The description of what is a safe
HTML document can be given by an STAA, in general
A may be nondeterministic. The sanitizerT is secure for
A if for all valid input treest, T(t) ∈ L (A), where a tree
t is valid if it is accepted by the domain STAdom(T)
of T. The inverse imageof T with respect to an STA
B, InvImg(T, B) is also an STA that can be computed
effectively fromT andB, and is such that

L (InvImg(T, B)) = {t | t ∈ L (dom(T)),T(t) ∈ L (B)}.

We have that

L (InvImg(T, ∁(℘(A))))
= {t | t ∈ L (dom(T)),T(t) ∈ L (∁(℘(A)))}
= {t | t ∈ L (dom(T)),T(t) ∈ ∁(L (A))}
= {t | t ∈ L (dom(T)),T(t) < L (A)}

SoT is secure forA iffL (InvImg(T, ∁(℘(A)))) = ∅. ⊠

Another basic decision problem of STAs is themem-
bershipproblem: givent ∈ T (B) and STAA, decide if
t ∈ L (A). An equivalent formulation isL (t̂)∩L (A) ,
∅, i.e., t̂ × A . ⊥STA(Σ). A more direct and computa-
tionally less expensive method (that avoids the product
construct) is to decideQA(t) ∩ QrA , ∅. The definition
of QA(t) can be given by induction over trees:

QA(ǫ)
def
= QlA

QA(〈a, t1, t2〉)
def
=

⋃

ρ∈∆A
{lhs(ρ) | rhs(ρ) ∈ QA(t1) × QA(t2), a ∈ [[γ(ρ)]] }

When formulated as a depth first search procedure, the
membership problem reduces to a linear number of
membership problems in the label theory.

Theorem 3. The membership problem for STAs, given
t ∈ T (B) and STA A, has complexity O((|t| + |∆A|) ·
f (m)) where f(m) is the complexity of the membership
problem ofΣA for instances of size m.

5. Related work

Our interest in automata and transducers withsym-
bolic alphabets originally surfaced in the context of se-
curity analysis of string sanitization routines [6]. Sani-
tizers transform untrusted data to trusted data as a first

line of defense against cross site scripting (XSS) at-
tacks in web browsers. Symbolic transducers were gen-
eralized to symbolictree transducers (STTs) in [12].
Boolean closure operations of STAs were initially stud-
ied in [13] where preliminary results corresponding to
Theorem 1 and Theorem 2 are stated as [13, Theorem 1]
and [13, Theorem 3], respectively. Explicit complex-
ity bounds are not investigated in [13]. Unfortunately,
some of the results in [13] are unclear and wrong, which
is also noted in [14]. In particular, closure under com-
plement is unclear because unbounded tree ranks are al-
lowed in tree languages in [13]. Also, closure of STTs
under composition [13, Theorem 5] is wrong. Proper-
ties of STTs are studied and analyzed further in [14].

Analysis of string sanitizers is lifted to trees by use of
symbolic tree transducers withregular lookahead, that
are introduced in the context of the Fast project [10, 11].
Many tree transducer analysis algorithms depend on
STA algorithms, some of which require that the STA is
deterministic. Some applications are: HTML Sanitiza-
tion, augmented reality conflict analysis, deforestation,
and CSS analysis. An online tutorial is avilable in [11].
The notion of analternating symbolic tree automaton
is also introduced in [10]. Alternating STAs arise nat-
urally as domain automata of nonlinear symbolic tree
transducers. Alternating STAs must benormalizedto
STAs prior to determinization.

Symbolic generalizations of classical (Rabin-Scott)
word automata have been studied and used in vari-
ous contexts. In the context offinite automata algo-
rithm design, use of predicates is mentioned in [15].
In [16] the motivation comes fromcomputational lin-
guistics. In [17] a variant of symbolic automata, called
M-automata, are studied from amodel-theoreticper-
spective. In [18] the study of SFAs is primarily mo-
tivated bystring analysis. A symbolic extension seems
straightforward at first glance, but raises many challeng-
ing questions about algorithm design [9, 7].

There has been considerable interest in word au-
tomata over infinite alphabets [19], starting with the
work on finite memory automata[3]. Other automata
models over data words arepebble automata[20] and
data automata[21]. Recent work in [22] introducesau-
tomata with group actionsthat, using category theory,
provides a generalization of finite memory automata to
a richer set of alphabet theories.

Generalizations of automata over data words totree
automataover data trees has received quite a bit of at-
tention in XML research, with generalizations such as
finite-memory tree automata [2], and, more recently, un-
ranked data tree automata [4]. The paper [4] includes an
up-to-date overview of the state-of-the-art. Overall, the

6

extensions are largely orthogonal to STAs and address
different problems. Data tree automata in [4] primar-
ily target analysis of satisfiability ofunrankeddata tree
automata with respect to constraints that can, e.g., re-
flect XML integrity, consistency and denial constraints,
while providing an NP upper bound [4, Theorem 4.1] by
reduction to integer linear programming. STAs on the
other hand are defined over arankedalphabet, and are
not tied to any particular label theory, e.g.,B could be
F×Z whereF is a finite labeling alphabet as in data tree
automata. To the best of our knowledge, STAs are the
first extension of tree automata over infinite alphabets
that itself forms an effective Boolean algebra, in par-
ticular, unlike the extensions in [2, 4], STAs are closed
undercomplement. Moreover, this holds uniformly for
all label theories that are Boolean algebras.

MONA [23, 24] provides decision procedures for
several varieties of monadic second-order logic and sup-
ports encoding and reasoning over trees. MONA uses
multi-terminal BDDs for encoding of transitions. A
core difference compared toSTA(Σ) is that the label
theoryΣ is not modular but an integrated part of the
MTBDD encoding. VATA is a tool that enables tree
automata analysis [25]. Similar to MONA, transitions
are represented symbolically using BDDs and VATA is
limited to nondeterministic tree automata over finite (al-
though large) alphabets.

References

[1] H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi, Tree
automata techniques and applications, Available on:
http://www.grappa.univ-lille3.fr/tata, release
October, 12th 2007 (2007).

[2] M. Kaminski, T. Tan, Tree automata over infinite alphabets, in:
Pillars of Computer Science, Springer, 2008, pp. 386–423.

[3] M. Kaminski, N. Francez, Finite-memory automata, in: 31st
Annual Symposium on Foundations of Computer Science
(FOCS 1990), Vol. 2, IEEE, 1990, pp. 683–688.

[4] C. David, L. Libkin, T. Tan, Efficient reasoning about data trees
via integer linear programming, in: ICDT’11, ACM, 2011, pp.
18–29.

[5] M. Veanes, N. Bjørner, L. de Moura, Symbolic automata con-
straint solving, in: C. Fermüller, A. Voronkov (Eds.), LPAR-17,
Vol. 6397 of LNCS, Springer, 2010, pp. 640–654.

[6] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, N. Bjorner,
Symbolic finite state transducers: Algorithms and applications,
in: Proceedings of the Symposium on Principles of Program-
ming Languages (POPL’12), 2012.

[7] L. D’Antoni, M. Veanes, Minimization of symbolic automata,
in: POPL’14, ACM, 2014, pp. 541–553.

[8] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiad´o, Bu-
dapest, 1984.

[9] P. Hooimeijer, M. Veanes, An evaluation of automata algorithms
for string analysis, in: VMCAI’11, LNCS, Springer, 2011.

[10] L. D’Antoni, M. Veanes, B. Livshits, D. Molnar, Fast: a
transducer-based language for tree manipulation, in: PLDI’14,
ACM, 2014.

[11] Fast tutorial,http://www.rise4fun.com/Fast/tutorial.
[12] M. Veanes, N. Bjørner, Symbolic tree transducers, in: Perspec-

tives of System Informatics (PSI’11), 2011.
[13] M. Veanes, N. Bjørner, Foundations of finite symbolic tree trans-

ducers, in: Y. Gurevich (Ed.), Bulletin of the EATCS, The Logic
in Computer Science Column, no. 105, 2011, pp. 141–173.

[14] Z. Fülöp, H. Vogler, Forward and backward application of sym-
bolic tree transducers, Acta Informatica 51 (5) (2014) 297–325.

[15] B. W. Watson, Cambridge U. Press, 1999, Ch. Implementing
and using finite automata toolkits, pp. 19–36.

[16] G. V. Noord, D. Gerdemann, Finite state transducers with pred-
icates and identities, Grammars 4 (2001) 263–286.

[17] A. Bés, An application of the Feferman-Vaught theoremto au-
tomata and logics for words over an infinite alphabet, Logical
Methods in Computer Science 4 (2008) 1–23.

[18] M. Veanes, P. de Halleux, N. Tillmann, Rex: Symbolic Regu-
lar Expression Explorer, in: Third International Conference on
Software Testing, Verification and Validation (ICST’10), IEEE,
2010.

[19] L. Segoufin, Automata and logics for words and trees overan
infinite alphabet, in: Z.́Esik (Ed.), CSL, Vol. 4207 of LNCS,
2006, pp. 41–57.

[20] F. Neven, T. Schwentick, V. Vianu, Finite state machines for
strings over infinite alphabets, ACM Trans. CL 5 (2004) 403–
435.

[21] M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin,
C. David, Two-variable logic on words with data, in: LICS,
IEEE, 06, pp. 7–16.

[22] M. Bojańczyk, B. Klin, S. Lasota, Automata with group actions,
in: 26th Annual IEEE Symposium on Logic in Computer Sci-
ence, IEEE, 2011, pp. 355–364.

[23] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige,
T. Rauhe, A. Sandholm, Mona: Monadic second-order logic
in practice, in: Tools and Algorithms for the Construction and
Analysis of Systems, First International Workshop, TACAS ’95,
LNCS 1019, 1995.

[24] N. Klarlund, A. Møller, M. I. Schwartzbach, MONA implemen-
tation secrets, International Journal of Foundations of Computer
Science 13 (4) (2002) 571–586.

[25] O. Lengal, J.Šimáček, T. Vojnar, Vata: A library for ef-
ficient manipulation of non-deterministic tree automata, in:
TACAS’12, Vol. 7214 of LNCS, Springer, 2012, pp. 79–94.

7

