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Acoustic Radiation by Point- or
Line-Excited Laminated Plates
This paper presents an elasticity theory solution for computation of acoustic radiatio
a point- or line-excited fluid-loaded laminated plate, which may consist of a stack o
arbitrary number of different isotropic material layers. A one-side water-loaded thr
layer sandwich plate, which consists of a hard rubber core sandwiched between two
plates of equal thickness, was used as an example of the laminated plates. The ap
mated equivalent sandwich plate solutions were compared with the elasticity theor
lutions. These results show that the approximated solutions are, as expected, valid o
frequencies much lower than the coincidence frequency. The numerical result also
that, even at about one-tenth of the coincidence frequency, the approximated sol
suffer substantial error. The differences between the dry-side- and the wet-side-e
radiated fields of a single-layer uniform plate and a sandwich plate were investigated
compared, and found to be significantly different at frequencies above the coincid
frequency.@S0739-3717~00!01803-1#
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Introduction
The forced responses and acoustic radiation by a point- or l

excited fluid-loaded infinite plate have been investigated by
thors such as Heckl@1#, Thompson and Rattayya@2#, Maidanik
and Kerwin@3#, Feit @4#, Crighton and Innes@5#, and many others
using either the classic thin plate or Timoshenko-Mindlin pla
theory. It is well known that the classic thin plate theory is on
applicable at frequencies much lower than the coincidence
quency. Using the Timoshenko-Mindlin plate theory has show
considerable improvement of the classic theory, especially at
near the coincidence frequency@6#. Elasticity theory was used by
Gur and Leehey@7# to solve for the far-field radiated sound pre
sure and the near-field displacement of an elastic plate, treate
a layer of elastic medium~slab!, subject to a point- or line-force
From this analysis, they have discussed the upper frequency
for the validity of the classic thin plate theory. Elasticity theo
was also used by Pathak and Stepanishen@8# for acoustic radiation
from a fluid-loaded infinite elastic plate subject to a general a
trary loading, with numerical examples given for the far-fie
pressure patterns radiated from a plate driven by a line forc
low, intermediate, and high frequencies. The above studies h
facilitated both the approximated and exact solutions for acou
radiation by a fluid-loaded single-layer uniform plate.

Due to the increased usage of multilayer composite system
structural and noise control engineering, this paper addre
acoustic radiation by a point- or line-excited plate that may con
of a stack of an arbitrary number of different isotropic mater
layers. In order to have a wide variety of applications at a bro
range of frequencies, elasticity theory is used. Each layer of
plate can be either very thin or very thick, i.e., the thickness
any layer can be larger than the characteristic wavelengths in
layer. Therefore, this method will be applicable to a lamina
fiber-reinforced composite plate if both the fiber and matrix lay
of the composite are, or are approximately, isotropic. Fluid on
side of the plate may be different from that on the other side
one side may be a vacuum. In the case of a one-side water-lo
plate, elasticity theory allows one to assess the differences
tween the radiated pressure field caused by dry-side excitation
that caused by wet-side excitation. In the classic thin plate
Timoshenko-Mindlin plate theories, these differences canno
distinguished. Because these theories involve the addition of fl
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impedance to the plate impedance against the drive force, the
consistent with the elastic theory formulation in which force
placed on the wet side.

In light of the above arguments, the radiated pressure b
single-layer steel plate excited by a point-force placed on eit
the dry or wet side of the plate was calculated, and the res
were compared with those of the classic thin plate a
Timoshenko-Mindlin plate theories. In the wet-side drive resu
where the comparison with the latter theories is relevant, the e
ticity theory shows further improvement from the Timoshenk
Mindlin plate theory at the coincidence and higher frequenc
Below the coincidence frequency, there is no difference betw
the dry- and wet-side excitation. Above coincidence frequen
the radiated field produced by the dry-side excitation is stron
than that produced by the wet-side excitation, except at the r
nance frequencies of the thickness-wise compressional mode
those resonant peaks, the radiated field is independent of the
to which the force is applied. A one-side water-loaded three-la
sandwich plate, which consists of a hard rubber core sandwic
between two steel plates of equal thickness, was used as an
ample for the multilayer composite plates. An approximat
equivalent sandwich plate solution@9# was compared to the elas
ticity theory solution. The result shows that the approximated
lution is, as expected, only valid at frequencies much lower th
the coincidence frequency. The differences between the dry-s
and the wet-side-excited radiated fields in a sandwich plate
much more pronounced than those in a single-layer plate. C
trary to that of a single-layer steel plate, the radiated field b
sandwich plate subject to the dry-side excitation is, in gene
weaker than that subject to the wet-side excitation. This differe
may be attributed to the isolation of the dry-side excitation p
vided by the softer rubber core, especially at frequencies abov
fundamental thickness mode.

Mathematical Formalism
For computations of acoustic radiation from a multilayer pla

this study utilized a mathematical formalism derived from t
well-known exact elasticity theory solution for the propagation
plane waves in a multilayer elastic system. This elasticity the
solution was first introduced by Thomson@10# and later described
in detail in a textbook by Brekhovskikh@11#, whose printed errors
were later corrected in a paper by Folds and Loggins@12#. Many
applications of this method followed: for example, Martin@13#
and Jackins and Gaunaurd@14# used it to investigate the flow
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noise reduction by an elastomeric layer and the resonance
acoustic scattering from stacks of bonded elastic plates, res
tively.

This method~described in Refs.@10–12#! was intended for the
analysis of sound transmission across and reflection from
multilayer media subject to an incident plane acoustic wave. T
paper will briefly summarize the method and will then show h
the method may be applied to the analysis of acoustic radia
from a multilayer composite plate subject to a line- or point-for
excitation.

The multilayer system shown in Fig. 1 consists ofN interfacial
surfaces. It thus hasN21 finite layers~layer 2 through layerN! of
various materials, with two semi-infinite fluid media on both sid
of the plate, labeled as the 1st and (N11)th layer. All interfaces
are in thex-y plane and of infinite extent. Stresses and velocit
of plane harmonic waves in any layer, say thenth layer, can be
deduced from the following potential functions:

wn5~Aneianz1Bne2 ianz!ei ~kx2vt !

cn5~Cneibnz1Dne2 ibnz!ei ~kx2vt !J (1)

where w and c are the dilatational and shear wave potentia
(an5@v2/(c( l ,n)

2 (12 ih l)2k2)#1/2 and bn5@v2/(c(s,n)
2 (12 ihs)

2k2)#1/2, c( l ,n) andc(s,n) , andh l andhs , are their corresponding
z-coordinate propagating constants, wave speeds, and loss fa
respectively. The wave number,k, is obviously thex-component
propagating constant shared by all propagating waves. The o
of the coordinates in Eq.~1! may be located at the lower surfac
of the layer~at the interface between layersn andn21!. Veloci-
ties (v) and stresses~Z! can be obtained from the potential fun
tions by differentiation; i.e.,

H vx
n

vz
n

Zz
n

Zx
n
J 53

]

]x
2

]

]z

]

]z

]

]x

i

v S l
]2

]x2 1~l12m!
]2

]z2D 2m i

v

]2

]x]z

m i

v

]2

]x2

m i

v

]2

]z2

4 Hwn

cn
J

(2)

Fig. 1 A multilayer composite plate subject to a point- or line-
force
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wherel andm are the Lame’ constants. The values ofvx
nvz

nZz
nZx

n

at the upper boundary,z5hn ~thickness of thenth layer!, can be
expressed in terms ofAnBnCnDn by substitutions of Eq.~1! into
Eq. ~2!. Similarly, at the lower boundary, the values o
vx

n21vz
n21Zz

n21Zx
n21 can also be expressed in termsAnBnCn and

Dn when evaluated atz50. EliminatingAnBnCn andDn by some
algebraic manipulations, the relationship of velocity and str
between the two bounding surfaces of thenth layer can be estab
lished as follows:

H vx
n

vz
n

Zz
n

Zx
n
J 5F a11

n a12
n a13

n a14
n

a21
n a22

n a23
n a24

n

a31
n a32

n a33
n a34

n

a41
n a42

n a43
n a44

n

G H vx
n21

vz
n21

Zz
n21

Zx
n21
J (3)

The formula for the coefficients,ai j
n , of matrix An that depend on

the physical and geometrical properties of the layer are given
Ref. @12# and will not be repeated here. It can be easily shown t
Eq. ~3! is independent of the location of the coordinate orig
This independence, along with the enforcement of continuity
displacements~or particle velocity! and stresses at all interface
allows us to establish the relationship between theNth and the 1st
interfaces by successive multiplication ofAn, for n52,3, . . . ,N;
i.e.,

H vx
N

vz
N

Zz
N

Zx
N
J 5FA11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

G H vx
1

vz
1

Zz
1

Zx
1
J (4)

where A5ANAN21 . . . An . . . A3A2. Note that the superscript
(n52,3, . . . ) shown above are indices rather than exponents
the matrices.

Thus, in a given multilayer system at a given frequency, Eq.~4!
relates velocities and stresses on the two outer surfaces as a
tion of k. When layers 1 andN11 are inviscid fluids, the shea
stressesZx

1 and Zx
N must be zero. Using these conditions wi

some substitutions, Eq.~4! may be reduced to

H vz
N

Zz
NJ 5FM22 M23

M32 M33
G H vz

1

Zz
1J (5)

where

M225A222A21A42/A41, M235A232A21A43/A41

M325A322A31A42/A41, M335A332A31A43/A41

Equation~5! was used in Refs.@11# and@12# to derive the reflec-
tion and transmission coefficients of a multilayer plate subjec
an incident plane wave in the upper fluid medium~the N11th
layer!. Note that the dependence ofk andv of the above variables
is suppressed for clarity.

Radiation from a Line-Force Excitation
A line harmonic force of root-mean-square amplitudeF0 units

per linear length along they-axis may be represented as a dist
bution in x by F0d(x)e2 ivt, whered(x) is the Dirac delta func-
tion. This line force is assumed to be applied on the outer surf
~the interface between theNth layer and theN11th semi-infinite
fluid space! of the multilayer system. LetZF(k) be the spatial
Fourier transform of the line force; then

F0d~x!e2 ivt5
1

2p E
2`

`

ZF~k!ei ~kx2vt !dk, and ZF~k!5Fo

(6)
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Since the term,F0d(x), has the dimension of force per unit are
~stress!, ZF(k)ei (kx2vt) must have the dimension of stress p
wave number. UsingZF(k)ei (kx2vt) as the forcing function is
therefore compatible with Eqs.~1–5!.

When the exterior fluids, the upper and lower fluid half spa
~the N11th and 1st layer! are present, their corresponding sp
cific impedances as a function ofk andv are

z15r1v/A~k0
1!22k2, zN115rN11v/A~k0

N11!22k2 (7)

wherek0
i 5v/ci , r i andci ~i 51, N11! are the sonic wave num

ber, fluid density and speed of sound, respectively. Using Eqs~5!
and~7!, we find the total impedance~solid and fluid impedances!
at the drive surface to be (M321z1M33)/(M221z1M23)1zN11 .
It follows that the drive surface and the transferred velocity
sponses per unit force,uz

N anduz
1, are

uz
N5

vz
N

F0
5

2~M221z1M23!

~M321z1M33!1zN11~M221z1M23!
(8)

and

uz
15

vz
1

F0
5

21

~M321z1M33!1zN11~M221z1M23!
(9)

respectively. When there is no fluid on one or both sides of
plate, eitherz1 or zN11 or both of them must be zero. Once th
two outer surface velocities are known, the radiated pressure fi
at a given frequency,v, in the upper- and lower-half fluid space
are obviously

pN11~x,z!

F0
5

rN11v

2p E
2`

` uz
N

aN11 ei ~kx1aN11~z2H !!dk (10)

and

p1~x,z!

F0
52

r1v

2p E
2`

` uz
1

a1 ei ~kx2a1z!dk (11)

whereH is the total thickness of solid layers,a i5A(k0
i )22k2; i

51, N11.
In a multilayer system, the variablesuz

N and uz
1 in the above

integrands are too complicated to be handled analytically. Eq
tions ~10! and~11! are numerically integrable as long as the po
of the integrands do not lie on the real axis, which is possibl
non-zero loss factors for the fluid and solid layers are given. T
far-field solutions of the above equations at (R,u) can be obtained
by the stationary-phase integration method@6#, i.e.,

pN11~R,u!

F0
5

rN11v

A2pk0
N11R

uz
N~k0

N11 sinu!ei ~k0
N11R2p/4! (12)

and

p1~R,u!

F0
5

r1v

A2pk0
1R

uz
1~k0

1 sinu!ei ~k0
1R2p/4! (13)

whereuz
1(k0

1 sinu) anduz
N(k0

N11 sinu) are the values ofuz
1 anduz

N

evaluated atk equals tok0
1 sinu andk0

N11 sinu, respectively. The
radiated sound powers into theN11th and 1st fluid media,
PN11(v) and P1(v), respectively, are then determined b
evaluating

PN11~v!

F0
5

rN11v

2p E
2k0

N11

k0
N11 uuz

Nu2

aN11 dk (14)

and

P1~v!

F0
5

r1v

2p E
2k0

1

k0
1 uuz

1u2

a1 dk (15)
Journal of Vibration and Acoustics
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Again, these radiated powers must be obtained by performing
numerical integration along the real axis.

Radiation by a Point-Force Excitation
A point harmonic force of the root-mean-square amplitudeF0

may be represented by,F0d(x)d(y)e2 ivt, which shows a distri-
bution of the force in thex-y plane. Taking the 2-D spatial Fou
rier transform of this point force yields

ZF~kx ,ky!5F0 (16)

whereZF(kx ,ky) is the transformed point-force that has the d
mension of stresses as a function of wave vector, (kx ,ky). In this
case, the potentials of the wave functions in any layer,wn andcn ,
and the exterior surface velocities per unit point forc
uz

N(kx ,ky ,v) and uz
1(kx ,ky ,v), can be described using the pre

vious corresponding equations by simply replacing (kx) and (k2)
with (kxx1kyy) and (kx

21ky
2), respectively. Thez-direction

propagation factors that were a function ofk2 in Eq. ~1! are now
a function ofg25(kx

21ky
2), i.e.,

an5F v2

c~ l ,n!
2 ~12 ih l !

2g2G1/2

and

bn5F v2

c~s,n!
2 ~12 ihs!

2g2G1/2

.

Similar to Eqs.~10! and ~11!, the radiated pressure fields on th
upper and lower media are

pN11~x,y,z!

F0
5

1

~2p!2 E
2`

`

zN11~kx ,ky ,v!uz
N~kx ,ky ,v!

3ei ~kxx1kyy1aN11~z2H !!dkxdky (17)

and

p1~x,y,z!

F0
5

1

~2p!2 E
2`

`

z1~kx ,ky ,v!uz
1~kx ,ky ,v!

3ei ~kxx1kyy2a1z!dkxdky (18)

respectively, where z15r1v/A(k0
1)22g2, zN11

5rN11v/A(k0
N11)22g2. The pressure field induced by a poin

force is more conveniently expressed in the cylindrical coor
nates (r ,f,z). Since the field has no angular dependency onf in
the x-y plane, the radiated pressure field that is transformed
the cylindrical coordinates becomes

pN11~r ,z!

F0
5

rN11v

2p E
0

` uz
N11~g,v!

A~k0
N11!22g2

3eiA~k0
N11!22g2~z2H !J0~gr !gdg (19)

and

p1~r ,z!

F0
5

r1v

2p E
0

` uz
1~g,v!

A~k0
1!22g2

e2 iA~k0
1!22g2zJ0~gr !gdg

(20)

Following the procedure of the stationary-phase method descr
by Junger and Feit@6#, we obtain the following far-field solutions

pN11~R,u!

F0
5

irN11veik0
N11R

2pR
uz

N~k0
N11 sinu! (21)

and

p1~R,u!

F0
5

ir1veik0
1R

2pR
uz

1~k0
1 sinu! (22)
JULY 2000, Vol. 122 Õ 191
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Fig. 2 Radiated pressures by a uniform plate subjected to a wet-side point-
force
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Since the laminated plate is homogeneous in the (x,y) plane,
uz

1(g) anduz
N(g) are independent of the polar angle,f, and they

may be evaluated, without loss of generality, along thex-axis
whereky50 andg5kx5k. Therefore,uz

1(g) anduz
N(g) can be

evaluated directly from Eqs.~8! and ~9!, respectively.
Similar to the case of a line excitation, the sound powers ra

ated into the 1st andN11th fluid media,P1(v) andPN11(v),
respectively, are

PN11~v!

F0
5

1

2p E
2k0

N11

k0
N11 uuz

N11~g,v!u2

zN11~g,v!
gdg (23)

and

P1~v!

F0
5

1

2p E
2k0

1

k0
1 uuz

1~g,v!u2

z1~g,v!
gdg (24)

As discussed earlier, as long as loss factors for any of the m
rials are not zero, Eqs.~23! and ~24! are numerically integrable
because the poles ofuz

1(g) anduz
N(g) will not occur on the real

axis.

Numerical Examples
The above equations for computing radiated power and p

sure fields are applicable to the following combinations of flu
media on both sides of the plate:~1! both sides loaded with heav
fluid such as water,~2! both sides loaded with light fluid such a
air, ~3! one side with heavy fluid but the other with light fluid, an
~4! one side with fluid while the other is a vacuum~the latter will
be the dry side, with zero fluid impedance, if the other side
water!. The force of excitation in the last case may be placed
either the dry- or wet-side of the plate. Since the drive force
always placed on theNth surface, theN11th layer must be a
vacuum in the case of dry-side excitation; similarly, the first lay
must be a vacuum in the case of wet-side excitation. This ela
ity theory formulation thus allows one to assess the differen
between the radiated pressure field caused by the dry-side ex
2000

edigitalcollection.asme.org on 06/30/2019 Terms 
di-

ate-

es-
id

s
d

is
on
is

er
tic-

ces
cita-

tion and that caused by the wet-side excitation. When using
classic thin plate and Timoshenko-Mindlin plate theories, the
differences cannot be distinguished.

In the plate theories~thin and Timoshenko-Mindlin plates!,
fluid impedance is added to the plate impedance against the d
force. This classic approach is consequently consistent with
elastic theory formulation, in which force is placed on the w
side. In light of the above arguments, the radiated pressure b
single-layer~5 cm! steel plate excited by a point-force placed o
either the dry- or wet-side of the plate is calculated, and the res
are compared with those of the classic thin plate and Timoshen
Mindlin plate theories~calculated using the formula presented

Fig. 3 Radiated pressures by a uniform plate subjected to a
wet-side point-force, at uÄ0
Transactions of the ASME
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Fig. 4 Radiated pressures by a sandwich plate subjected to a wet-side point-
force

Fig. 5 Radiated pressures by a sandwich plate subjected to a dry- or wet-side
point-force
nd Acoustics JULY 2000, Vol. 122 Õ 193
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Ref. @6#!. The loss factor of steel is assumed to be 0.005 in th
calculations. Figure 2 shows the normalized far-field pressu
p(R,u)(2pR)/k0F0 , subject to a wet-side point-excitation a
various normalized frequencies,f / f c , wheref c is the coincidence
frequency of the plate. At frequencies much below the coin
dence frequency, sayf / f c;0.1, there is no difference which
theory is used. This figure also shows the differences between
result of the thin plate theory and that of the exact elasticity the
at higher frequencies. As expected, the result from Timoshen
Mindlin theory~which is a substantially improved theory from th
thin plate theory! lies between the two.

The differences inp(R,u)(2pR)/k0F0 ~when u50! between
the dry- and wet-side excitation of a uniform steel plate are de
onstrated in Fig. 3, which shows that above the coincidence
quency, the radiated field produced by the dry-side excitation
stronger than that produced by the wet-side excitation, excep
the resonance frequencies of the thickness-wise modes assoc
with the compressional waves. At those resonant peaks, the
ated field is independent of the side to which force is applied. T
smoother curve shown~as a dotted line! in this figure is calculated
from the thin plate theory which basically cannot tell which si
the force is applied.

A one-side water-loaded three-layer sandwich plate, which c
sists of a 3.8 cm hard rubber core~physical properties shown in
Ref. @15#, loss factor50.1 assumed! sandwiched between two
steel plates of equal thickness~1.8 cm!, was used as an exampl
of the multilayer composite plates. Figure 4 show
p(R,u)(2pR)/k0F0 calculated from the elasticity theory solutio
subject to the wet-side excitation and that from the approxima
equivalent sandwich plate solution@9#. The equivalent sandwich
plate solution is essentially a classic thin plate solution using
equivalent bending rigidity of the sandwich plate~Eqs.~2.2! and
~2.3! of Ref. @9#!. This comparison shows, as expected, that
approximated solution is only valid at frequencies substantia
below the coincidence frequency. The differences between
dry-side- and wet-side-excited radiated fields in a sandwich p
are also shown in Fig. 5. These differences are much more
nounced than those in a single-layer steel plate. Figure 6 sh
similar comparisons forp(R,u)(2pR)/k0F0 , except that the
curves shown are plotted as a function off / f c for u50. Contrary
to that of a single-layer steel plate~shown in Fig. 3!, the broadside
radiated field by a sandwich plate subject to dry-side excitation
in general, weaker than that plate subject to wet-side excitat

Fig. 6 Broadside radiated pressures by a sandwich plate sub-
jected to a dry- or wet-side point-force
194 Õ Vol. 122, JULY 2000
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This difference may be attributed to the isolation of the dry-s
excitation provided by the softer rubber core, especially at f
quencies above its fundamental thickness mode.

Conclusion and Future Work
This paper has presented an elasticity theory solution for c

putation of acoustic radiation by a point- or line-excited flui
loaded thin or thick composite plate, which may consist of a st
of an arbitrary number of different isotropic material layers or ju
a single layer uniform plate. The formulation allows for differe
fluids on both sides of the plate, and either side may be a vacu
In the case of a one-side water-loaded plate, the elasticity the
allows one to assess the differences between the radiated pre
field caused by dry-side excitation and that caused by wet-
excitation. In the classic thin plate and Timoshenko-Mindlin pla
theories, these differences cannot be distinguished. The rad
pressure field produced by a single-layer steel plate excited b
point-force placed on either the dry or wet side of the plate w
calculated, and the results show a further improvement from
Timoshenko-Mindlin plate theory at the coincidence and hig
frequencies. Above the coincidence frequency, the radiated
produced by the dry-side excitation is different from that pr
duced by the wet-side excitation.

A one-side water-loaded three-layer sandwich plate, which c
sists of a hard rubber core sandwiched between two steel plat
equal thickness, was used as an example of the multilayer c
posite plates. Comparison of this result and that obtained from
approximated equivalent thin plate solution indicates that the
proximated solutions are, as expected, valid only at frequen
substantially lower than the coincidence frequency. The numer
example shows that the approximated solutions suffer substa
error even at about one-tenth of the coincidence frequency. A
the differences of the radiated fields between the dry- and wet-
excitation in a sandwich plate are much more pronounced t
those in a single-layer plate. Therefore, the methodology show
this paper is recommended for analysis of acoustic radiation
point- or line-excited laminated plates.

The method presented in this paper will be applicable to a la
nated fiber-reinforced composite plate if both the fiber and ma
layers of the composite are, or are approximately, isotropic. T
fiber layers are, however, mostly orthotropic or anisotrop
Therefore, an extension of this method to accommodate the or
tropic and, perhaps, more general anisotropic material layers
planned for a future work.

Acknowledgment
This work was supported by funding from Office of Naval R

search, Code 334, and administered by Dr. Geoffrey L. Ma
under the 6.2 Structural Acoustics Program~1993-1998! while the
first author was employed at the Naval Surface Warfare Cen
Carderock Division, West Bethesda, MD.

References
@1# Heckl, M., 1959, ‘‘Sound Radiation by Point-Excited Plates,’’ Acoustica,9,

pp. 371–380.
@2# Thompson, Jr., W., and Rattayya, J. V., 1964, ‘‘Acoustic Power Radiated

an Infinite Plate Excited by a Concentrated Moment,’’ J. Acoust. Soc. Am.,36,
pp. 1488–1490.

@3# Maidanik, G., and Kerwin, Jr., E. M., 1966, ‘‘Influence of Fluid Loading o
the Radiation from Infinite Plate below the Critical Frequency,’’ J. Acou
Soc. Am.,40, No. 5, pp. 1034–1038.

@4# Feit, D., 1966, ‘‘Pressure Radiated by a Point-Excited Elastic Plate,’’
Acoust. Soc. Am.,40, pp. 1489–1494.

@5# Crighton, D. G., and Innes, D., 1983, ‘‘Low-Frequency Acoustic Radiati
and Vibration Response of Locally Excited Fluid Loaded Structures,’’
Sound Vib.,91, pp. 293–314.

@6# Junger, M. C., and Feit, D., 1993,Sound, Structures, and Their Interactions,
Acoustical Society of America, American Institute of Physics.

@7# Gur, Y., and Leehey, P., 1992, ‘‘Fluid-Loaded Elastic Slab Excited by Li
and Point Loads,’’ J. Acoust. Soc. Am.,92, No. 4, Pt. 2, p. 2460.
Transactions of the ASME

of Use: http://www.asme.org/about-asme/terms-of-use



m

u
w

atter-

Downloaded From
@8# Pathak, A. G., and Stepanishen, P. R., 1993, ‘‘Acoustic Harmonic Radia
from Fluid-Loaded Elastic Plates Using Elastic Theory,’’ J. Acoust. Soc. A
94, No. 3, Pt. 1, pp. 1700–1710.

@9# Nilsson, A. C., 1990, ‘‘Wave Propagation in and Sound Transmission thro
a Sandwich Plate,’’ J. Sound Vib.,138, No. 1, pp. 73–94.

@10# Thomson, W., 1950, ‘‘Transmission of Elastic Waves through a Stratifi
Medium,’’ J. Appl. Phys.,21, pp. 89–93.

@11# Brekhovskikh, L. M., 1960,Waves in Layered Media, Academic, New York.
@12# Folds, D. L., and Loggins, C. D., 1977, ‘‘Transmission and Reflection
Journal of Vibration and Acoustics

: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/30/2019 Terms 
tion
.,

gh

ed

of

Ultrasonic Waves in Layered Media,’’ J. Acoust. Soc. Am.,62, No. 5, pp.
1102–1109.

@13# Martin, N. C., 1993, ‘‘Fundamentals of Outer Decoupler Design for Flo
Noise Reduction,’’ J. Acoust. Soc. Am.,93, No. 4, Pt. 2, p. 2287.

@14# Jackins, P. D., and Gaunaurd, G. C., 1986, ‘‘Resonance and Acoustic Sc
ing from Stacks of Bonded Elastic Plates,’’ J. Acoust. Soc. Am.,80, No. 6, pp.
1762–1776.

@15# Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 1982,Funda-
mentals of Acoustics, 3rd ed., Wiley, New York.
JULY 2000, Vol. 122 Õ 195

of Use: http://www.asme.org/about-asme/terms-of-use


