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State College, PA 16804-0030 a point- or line-excited fluid-loaded laminated plate, which may consist of a stack of an
arbitrary number of different isotropic material layers. A one-side water-loaded three-
layer sandwich plate, which consists of a hard rubber core sandwiched between two steel

M. Kim plates of equal thickness, was used as an example of the laminated plates. The approxi-

mated equivalent sandwich plate solutions were compared with the elasticity theory so-
P. J. Zoccola lutions. These results show that the approximated solutions are, as expected, valid only at
frequencies much lower than the coincidence frequency. The numerical result also shows

Naval Surface Warfare Center, that, even at about one-tenth of the coincidence frequency, the approximated solutions
Carderock Division, suffer substantial error. The differences between the dry-side- and the wet-side-excited

West Bethesda, MD 20817-5700 radiated fields of a single-layer uniform plate and a sandwich plate were investigated and

compared, and found to be significantly different at frequencies above the coincidence
frequency[S0739-371700)01803-1

Introduction impedance to the plate impedance against the drive force, they are

The forced responses and acoustic radiation by a point- or lirg2nsistent with the elastic theory formulation in which force is
P yap rhqaced on the wet side.

excited fluid-loaded infinite plate have been investigated by au-, " .

S In light of the above arguments, the radiated pressure by a
th(:jrsKsuc_h %S I'-:|e_ctl{£1],c':l'hohnt1psondalnd Rattay)g&], Ma'd%n'k single-layer steel plate excited by a point-force placed on either
an er_vvm[ 1, Feit| ]’. righton an ””?55]' and many Others, o dry or wet side of the plate was calculated, and the results
using either the classic thin plate or Timoshenko-Mindlin pla ere compared with those of the classic thin plate and

theo.ry. Itis well knowr! that the classic thin plate theqry IS Onlyfimoshenko-MindIin plate theories. In the wet-side drive result,
applicable at frequencies much lower than the coincidence fighere the comparison with the latter theories is relevant, the elas-
quency. Using the Timoshenko-Mindlin plate theory has showniiry theory shows further improvement from the Timoshenko-
considerable improvement of the classic theory, especially at aghdiin plate theory at the coincidence and higher frequencies.
near the coincidence frequend]. Elasticity theory was used by gejow the coincidence frequency, there is no difference between
Gur and Leehey7] to solve for the far-field radiated sound presyhe gry- and wet-side excitation. Above coincidence frequency,
sure and the near-field displacement of an elastic plate, treateq@s radiated field produced by the dry-side excitation is stronger
a layer of elastic mediurtslab), subject to a point- or line-force. than that produced by the wet-side excitation, except at the reso-
From this analysis, they have discussed the upper frequency lifnce frequencies of the thickness-wise compressional modes. At
for the validity of the classic thin plate theory. Elasticity theonthose resonant peaks, the radiated field is independent of the side
was also used by Pathak and StepanigBgfor acoustic radiation to which the force is applied. A one-side water-loaded three-layer
from a fluid-loaded infinite elastic plate subject to a general arbiandwich plate, which consists of a hard rubber core sandwiched
trary loading, with numerical examples given for the far-fielthetween two steel plates of equal thickness, was used as an ex-
pressure patterns radiated from a plate driven by a line forceaghple for the multilayer composite plates. An approximated
low, intermediate, and high frequencies. The above studies hayuivalent sandwich plate soluti¢@] was compared to the elas-
facilitated both the approximated and exact solutions for acousticity theory solution. The result shows that the approximated so-
radiation by a fluid-loaded single-layer uniform plate. lution is, as expected, only valid at frequencies much lower than
Due to the increased usage of multilayer composite systemstlire coincidence frequency. The differences between the dry-side-
structural and noise control engineering, this paper addressesl the wet-side-excited radiated fields in a sandwich plate are
acoustic radiation by a point- or line-excited plate that may consistuch more pronounced than those in a single-layer plate. Con-
of a stack of an arbitrary number of different isotropic materidtary to that of a single-layer steel plate, the radiated field by a
layers. In order to have a wide variety of applications at a broa@ndwich plate subject to the dry-side excitation is, in general,
range of frequencies, elasticity theory is used. Each layer of thweaker than that subject to the wet-side excitation. This difference
plate can be either very thin or very thick, i.e., the thickness ofiay be attributed to the isolation of the dry-side excitation pro-
any layer can be larger than the characteristic wavelengths in tided by the softer rubber core, especially at frequencies above its
layer. Therefore, this method will be applicable to a laminatefindamental thickness mode.
fiber-reinforced composite plate if both the fiber and matrix layers
of the composite are, or are approximately, isotropic. Fluid on one
side c_Jf the plate may be different from that on the_ other side, %thematical Formalism
one side may be a vacuum. In the case of a one-side water-loade ) ) o )
plate, elasticity theory allows one to assess the differences beFor computations of acoustic radiation from a multilayer plate,
tween the radiated pressure field caused by dry-side excitation 4§ study utilized a mathematical formalism derived from the
that caused by wet-side excitation. In the classic thin plate aM@ll-known exact elasticity theory solution for the propagation of
Timoshenko-Mindlin plate theories, these differences cannot BEne waves in a multilayer elastic system. This elasticity theory

distinguished. Because these theories involve the addition of figglution was first introduced by Thomsph0] and later described
in detail in a textbook by Brekhovskiki 1], whose printed errors

Contributed by the Technical Committee on Vibration and Sound for puin(:a’[io\r/1Vere later corrected in a paper by Folds and LOg@m' Many

in the JDURNAL OF VIBRATION AND ACOUSTICS Manuscript received Nov. 1999; a@pplications of this method followed: for example, MarfitG]
revised March 2000. Associate Technical Editor: R. L. Clark. and Jackins and Gaunaufd4] used it to investigate the flow
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(a) Line-Force Excitation (b) Point-Force Excitation where\ and u are the Lame’ constants. The valuesu@b ;707

R 8) R 6.6) at the upper boundarg=h, (thickness of thenth layep, can be
’ expressed in terms &,B,C,D,, by substitutions of Eq(l) into
0 F o 2-H Eg. (2). Similarly, at the lower boundary, the values of
V< Bk ° vl 0 71z07 17071 can also be expressed in terdsB,C,, and
Iy D, when evaluated &= 0. EliminatingA,B,,C,, andD, by some
Fo algebraic manipulations, the relationship of velocity and stress
between the two bounding surfaces of titk layer can be estab-
lished as follows:
\, ya
R ZL{ £ ZT}‘ o aj; aj, aj; ay it
vy ap ay ap ay|) oht @)
n - n-1
layer N+1 Zrl] ay agp azg ay ZrZ]_l
7 _ — Zx ay ap ag ay Zx
* /// __t_hN layer N
TlayerN-1. The formula for the coefficientsy; , of matrix A" that depend on
H - the physical and geometrical properties of the layer are given in
‘ Ih TéyeT Ref. [12]_ ar_1d will not be repeated he_re. It can be easi!y showr_1 t_hat
2 Eq. (3) is independent of the location of the coordinate origin.
X layer 1 This independence, along with the enforcement of continuity of
displacementgor particle velocity and stresses at all interfaces,
Fig. 1 A multilayer composite plate subject to a point- or line- allows us to establish the relationship betweenNteand the 1st
force interfaces by successive multiplication Af, forn=2,3,... N;
ie.,
N Ay Ap A A 1
noise reduction by an elastomeric layer and the resonance and U,X\‘ ot T U;
acoustic scattering from stacks of bonded elastic plates, respec- vz | _ Azr Az Az Aul ] v;
: N[ = 1 (4)
tively. Z, Asi Az Az Agl| 42
This method(described in Refd.10—12)) was intended for the zN 71
X A Ap Az Ay X

analysis of sound transmission across and reflection from a

multilayer media subject to an incident plane acoustic wave. Thighere A= ANAN-1 A" A3A2. Note that the superscripts

paper will briefly summarize the method and will then show ho h=2,3,...)shown above are indices rather than exponents of

the method may be applied to the analysis of acoustic radiatighy matrices.

from a.multilayer composite plate subject to a line- or point-force Thus, in a given multilayer system at a given frequency, (En.

excitation. o _ . relates velocities and stresses on the two outer surfaces as a func-
The multilayer system shown in Fig. 1 consists\ointerfacial oy of k. When layers 1 anéi+1 are inviscid fluids, the shear

surfaces. It thus ha¥—1 finite layers(layer 2 through layeN) of 1 N ; P :
various materials, with two semi-infinite fluid media on both Sideégrenssiiszst?tzttji oznxs n%%jg l:fa z%ré) .re%iggdt?g se conditions with
of the plate, labeled as the 1st arld« 1)th layer. All interfaces B Y

are in thex-y plane and of infinite extent. Stresses and velocities oM My Myl (ol
of plane harmonic waves in any layer, say tith layer, can be [Zﬁ} = {Zi] (5)
deduced from the following potential functions: z Mz Masf| 42
on=(A e+ B, e i@?)gl(kx—ot where
) . Ko o 1
Yn=(Cpe'#r?+ Dy 1Pnt)elo el ® Moo= Aoo—=A21iAs2l gy, Mas=Agz— AniAgal Ay

where ¢ and ¢ are the dilatational and shear wave potentials;
(an=[?(c »(1=in)—k)]¥? and B,=[w?/(c}; (1~ ins) _ _ _
_k2):|1/2, C(in) andc(s’n) , andz, and 7, are their corresponding Equation(5) was used in Refd11] and[12] to derive the reflec-
z-coordinate propagating constants, wave speeds, and loss fact#®§, and transmission coefficients of a multilayer plate subject to
respectively. The wave numbeék, is obviously thex-component an incident plane wave in the upper fluid medigthe N+1th
propagating constant shared by all propagating waves. The ori¢ffen. Note that the dependencelo&ndw of the above variables
of the coordinates in Eq1) may be located at the lower surface'S suppressed for clarity.

of the layer(at the interface between layemsandn—1). Veloci-
ties (v) and stresse&Z) can be obtained from the potential func-
tions by differentiation; i.e.,

M= A= AziPsz/Asr,  Maz=Ass— AzAss/Ap

Radiation from a Line-Force Excitation

[ i _ ] A line harmonic force of root-mean-square amplitdgigunits
IX a9z per linear length along the-axis may be represented as a distri-
h P P bution inx by Fod(x)e™ !, whered(x) is the Dirac delta func-
U; — — tion. This line force is assumed to be applied on the outer surface
vz | 9z 2 Pn (the interface between thdth layer and theN+ 1th semi-infinite
AN 92 92 2ui 2 Un fluid space of the multilayer system. LeZg(k) be the spatial
z" . }\WH)\JFZ’M) F) "o 9xX02 Fourier transform of the line force; then
. 2 . 2 . 1 * .
u A Fos(x)e = | Z-(k)e®=“Ydk  and Ze(k)=Fo
2 2 2
L w X ® Jz° ™)
) (6)
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Since the termF,8(x), has the dimension of force per unit ared\gain, these radiated powers must be obtained by performing the
(stresy, Ze(k)e!®™~ @) must have the dimension of stress penumerical integration along the real axis.
wave number. UsingZg(k)e'™~ ) as the forcing function is
therefore compatible with Eq$1-5). Radiation by a Point-Force Excitation

When the exterior fluids, the upper and lower fluid half spaces
(the N+ 1th and 1st laygrare present, their corresponding Spef’nay be represented b§fo5(x) 3(y)e~“!, which shows a distri-

cific impedances as a function kfand » are bution of the force in the-y plane. Taking the 2-D spatial Fou-

{=piwl /—(k(l))szz' (ns1=prs 1@ /—(k§+ 0252 (7) rier transform of this point force yields

whereky= w/c;, p; andc; (i=1, N+1) are the sonic wave num- Zr(kx.ky)=Fo (16)
ber, fluid density and speed of sound, respectively. Using &s. where Z (K, ,k,) is the transformed point-force that has the di-
and(7), we find the total impedandeolid and fluid impedancgs mension of stresses as a function of wave vector,K). In this
at the drive surface to beMszo+ (1M 39)/ (Moot {1 Mog) +{n+1.  case, the potentials of the wave functions in any laggrand, ,
It follows that the drive surface and the transferred velocity reand the exterior surface velocities per unit point force,

A point harmonic force of the root-mean-square amplit&ge

sponses per unit force) andu?, are ud(ky ky , @) andul(k, k, ), can be described using the pre-
N (Mot Z.M vious corresponding equations by simply replacikg)(and «?)
N=lz (Maz+ {aM5g) @® With (kx+ky) and «Z+K?), respectively. Thezdirection
* Fo (Mgt {iMag)+{ne1(Mapt {1 M) propagation factors that were a functionisfin Eq. (1) are now
and a function ofy?=(kZ+k?), i.e.,
v = o B
=Z= n -
2 Fo (Mgt {iMgg)+{nr (Mot (1M Cim(1=1m)
respectively. When there is no fluid on one or both sides of tqd
plate, either{; or {y. 4 or both of them must be zero. Once the w? 1/2
two outer surface velocities are known, the radiated pressure fields Bn=|—7——— yz}
at a given frequencyw, in the upper- and lower-half fluid spaces Clsm(1=i75)
are obviously Similar to Egs.(10) and (11), the radiated pressure fields on the
N+1 w N upper and lower media are
p (X!Z) 7 PN+1@ z i (kx+ o (z—H))
S p fﬁwa,\,ﬂe N+1 dk (10) PN L(x,y,2) 1 % N
Fo —'(Zﬂjz §N+1(kkay1w)uz(kx’ky:w)
and o
Xei(kxx+k y+aN+l(27H))dk dk 17
pl(xvz) p1w * U% i(kx—a12) ’ X Y ( )
=-S5 | —qelrmaddk (11)  and
Fo 27 | _ L«
. . . . pixyz 1 (= )
v_vfyersl:is the total thickness of solid layera; = \/(k'o)z—kz; i F—0= (27)2 ,fl(kx Ky 0)uz(ky Ky, @)
_ In a multilayer system, the variableé2' and u% in th_e above Xei(kxx+kyy—alz)dkxdky (18)
integrands are too complicated to be handled analytically. Equa-
tions (10) and(11) are numerically integrable as long as the polesespectively, where {1=prol \/(kOI)Z— Y2 Nt 1

of the integrands do not lie on the real axis, which is possible if ;. ./ /(K" 1)?2— 2. The pressure field induced by a point-
non-zero loss factors for the fluid and solid layers are given. Thgice is more conveniently expressed in the cylindrical coordi-
far-field solutions of the above equations Bt ¢) can be obtained nates ¢, ¢,z). Since the field has no angular dependencypan
by the stationary-phase integration methég i.e., the x-y plane, the radiated pressure field that is transformed into
the cylindrical coordinates becomes
PN YR, 6) _ PN+1@ Y

u(kYLsing)elke R (12)

Fo  J2nkl R PV peaw f Uy (y,0)
and Fo 27 Jo (kg H?=
. N+1.2_ 2,
piR,6)  pio o xeVko Tz gy ydy  (19)
= ul(kg sin g)e! (kR4 (13)
Fo V2mkiR and
whereul(k3 sin 6) andu (k) ** sin 6) are the values afi} andu? pi(r2) _pio [~ uy(y,) N q
evaluated ak equals tokg sin @ andky ™' sin 6, respectively. The Fo 27 Jo J(kbZ—/? € olyr)ydy
radiated sound powers into thid+1th and 1st fluid media, (20)
I1 and II , respectively, are then determined b . . .
evhglﬁgtli)r)lg (@) P y yFoIIowmg the procedure of the stationary-phase method described
by Junger and Fef6], we obtain the following far-field solutions:
Hyi1(0)  py1o fkgﬂ |U’z\l|2dk (14) NFIR,G) iky TR
= , i we' o
Fo 27 | graaVT P " pN*;ﬂR W tsing)  (21)
0
and and
My(0) pio (K |ug]? 1 : iR
_ % P (R,0) ipjwe™o .
FO 2 7ké Dll dk (15) FO = 1277-R u%(ké sin 0) (22)
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Fig. 2 Radiated pressures by a uniform plate subjected to a wet-side point-
force

Since the laminated plate is homogeneous in thg/)( plane, tion and that caused by the wet-side excitation. When using the

ul(y) andul(y) are independent of the polar angi,and they classic thin plate and Timoshenko-Mindlin plate theories, these

may be evaluated, without loss of generality, along sexis differences cannot be distinguished. o

wherek,=0 andy=k,=k. Thereforeul(y) andul(y) can be In the plate theoriegthin and Timoshenko-Mindlin platgs

evaluated directly from Eq¢8) and (9), respectively. fluid impedance is added to the plate impedance against the drive
Similar to the case of a line excitation, the sound powers radRrce. This classic approach is consequently consistent with the

ated into the 1st antl+ 1th fluid media,Ill;(») and [y, (o), elastic theory formulation, in which force is placed on the wet

respectively, are side. In light of the above arguments, the radiated pressure by a
Ne1 single-layer(5 cm) steel plate excited by a point-force placed on
Myi(w) 1 (0 [ul ™ (y,0))? either the dry- or wet-side of the plate is calculated, and the results
Fo 27 ) 1 Inea(yi0) ydy (23)  are compared with those of the classic thin plate and Timoshenko-
0 Mindlin plate theorieqcalculated using the formula presented in
and
Mi(w) 1 (& |ui(y,w)?
Il:( )zz_f Rty (4) 1 .
0 ™ —ké gl( 71‘”) ansuncene Plate Theories
. . === Dry-Side Drive
As discussed earlier, as long as loss factors for any of the ma ——  Waet-Side Drive

rials are not zero, Eqg23) and (24) are numerically integrable 10k
because the poles of:(y) andu)(y) will not occur on the real
axis.

-
o D

Numerical Examples

The above equations for computing radiated power and pr&
sure fields are applicable to the following combinations of fluig 152
media on both sides of the platd) both sides loaded with heavy &
fluid such as water2) both sides loaded with light fluid such as
air, (3) one side with heavy fluid but the other with light fluid, anc
(4) one side with fluid while the other is a vacuuthe latter will 10 f
be the dry side, with zero fluid impedance, if the other side
watep. The force of excitation in the last case may be placed ¢
either the dry- or wet-side of the plate. Since the drive force 4 \

always placed on th&lth surface, theN+1th layer must be a 0 2 .

0 2
X ) o o ] 10 10 10 10 10
vacuum in the case of dry-side excitation; similarly, the first laye Frequency/(Coincident Frequency)
must be a vacuum in the case of wet-side excitation. This elastic-
ity theory formulation thus allows one to assess the differencegy. 3 Radiated pressures by a uniform plate subjected to a

between the radiated pressure field caused by the dry-side exoitet-side point-force, at 6=0

6=0) (2t R)/koF
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Fig. 4 Radiated pressures by a sandwich plate subjected to a wet-side point-
force
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Fig. 5 Radiated pressures by a sandwich plate subjected to a dry- or wet-side
point-force
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10" . : . This difference may be attributed to the isolation of the dry-side

_________ Eq. Thin PI excitation provided by the softer rubber core, especially at fre-
==- Dry-Side Drive quencies above its fundamental thickness mode.
100 I ——  Wet-Side Drive|

Conclusion and Future Work

| This paper has presented an elasticity theory solution for com-
putation of acoustic radiation by a point- or line-excited fluid-
1 loaded thin or thick composite plate, which may consist of a stack
1 of an arbitrary number of different isotropic material layers or just
a single layer uniform plate. The formulation allows for different
fluids on both sides of the plate, and either side may be a vacuum.

-
o,
T

p(Ra=0)(2p R)/koF
67\)

o

\
10°F “ ,", N 4 In the case of a one-side water-loaded plate, the elasticity theory
LY 1 allows one to assess the differences between the radiated pressure
‘v",: field caused by dry-side excitation and that caused by wet-side
10k i . excitation. In the classic thin plate and Timoshenko-Mindlin plate
“"I theories, these differences cannot be distinguished. The radiated
1 pressure field produced by a single-layer steel plate excited by a
-5 . . .
105 — - — L , point-force placed on either the dry or wet side of the plate was
10 10 10 10 10 10 calculated, and the results show a further improvement from the
Frequency/(Coincident Frequency) Timoshenko-Mindlin plate theory at the coincidence and higher
] ) ] ) frequencies. Above the coincidence frequency, the radiated field
Fig. 6 Broadside radiated pressures by a sandwich plate sub- produced by the dry-side excitation is different from that pro-

Jected to a dry- or wet-side point-force duced by the wet-side excitation.

A one-side water-loaded three-layer sandwich plate, which con-
sists of a hard rubber core sandwiched between two steel plates of
equal thickness, was used as an example of the multilayer com-

Ref. [6]). The loss factor of steel is assumed to be 0.005 in thepesite plates. Comparison of this result and that obtained from the
calculations. Figure 2 shows the normalized far-field pressuigproximated equivalent thin plate solution indicates that the ap-
pP(R,0)(27R)/koFo, subject to a wet-side point-excitation atproximated solutions are, as expected, valid only at frequencies
various normalized frequenciedf., wheref is the coincidence substantially lower than the coincidence frequency. The numerical
frequency of the plate. At frequencies much below the coincéxample shows that the approximated solutions suffer substantial
dence frequency, say/f.~0.1, there is no difference which error even at about one-tenth of the coincidence frequency. Also,
theory is used. This figure also shows the differences between the differences of the radiated fields between the dry- and wet-side
result of the thin plate theory and that of the exact elasticity theogxcitation in a sandwich plate are much more pronounced than
at higher frequencies. As expected, the result from Timoshenk@wose in a single-layer plate. Therefore, the methodology shown in
Mindlin theory (which is a substantially improved theory from thethis paper is recommended for analysis of acoustic radiation by
thin plate theory lies between the two. point- or line-excited laminated plates.

The differences inp(R, 0)(27R)/koF, (when 6=0) between  The method presented in this paper will be applicable to a lami-
the dry- and wet-side excitation of a uniform steel plate are demated fiber-reinforced composite plate if both the fiber and matrix
onstrated in Fig. 3, which shows that above the coincidence fliayers of the composite are, or are approximately, isotropic. The
quency, the radiated field produced by the dry-side excitationfiper layers are, however, mostly orthotropic or anisotropic.
stronger than that produced by the wet-side excitation, exceptTaierefore, an extension of this method to accommodate the ortho-
the resonance frequencies of the thickness-wise modes associgigsic and, perhaps, more general anisotropic material layers are
with the compressional waves. At those resonant peaks, the raslanned for a future work.
ated field is independent of the side to which force is applied. The
smoother curve showfas a dotted lingin this figure is calculated
from the thin plate theory which basically cannot tell which sidé\cknowledgment

the force is applied. _ _ This work was supported by funding from Office of Naval Re-
.Aone-5|de water-loaded three-layer.sandwmh pllate,whlch.cogéarch’ Code 334, and administered by Dr. Geoffrey L. Main,

sists of a 3.8 cm hard rubber cofehysical properties shown in ynder the 6.2 Structural Acoustics Progrét893-1998 while the

Ref. [15], loss factor-0.1 assumedsandwiched between tWo first author was employed at the Naval Surface Warfare Center,

steel plates of equal thicknegs.8 cm), was used as an examplecrderock Division, West Bethesda, MD.

of the multilayer composite plates. Figure 4 shows

p(R, ) (27R)/koFq calculated from the elasticity theory solution

subject to the wet-side excitation and that from the approximat&eferences

equivalent sandwich plate soluti¢@]. The equivalent sandwich (1] jecki, M., 1959, “Sound Radiation by Point-Excited Plates,” Acoust@a,

plate solution is essentially a classic thin plate solution using the  pp. 371-380.

equivalent bending rigidity of the sandwich pldtegs.(2.2) and [2] Thompson, Jr., W., and Rattayya, J. V., 1964, “Acgustic Power Radiated by
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