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The dynamics of a stochastic SIS epidemic model is investigated. First, we show that the system admits a unique positive global
solution starting from the positive initial value. Then, the long-term asymptotic behavior of the model is studied: when 𝑅

0
≤ 1, we

show how the solution spirals around the disease-free equilibrium of deterministic system under some conditions; when 𝑅
0
> 1,

we show that the stochastic model has a stationary distribution under certain parametric restrictions. In particular, we show that
randomeffectsmay lead the disease to extinction in scenarioswhere the deterministicmodel predicts persistence. Finally, numerical
simulations are carried out to illustrate the theoretical results.

1. Introduction

Mathematical epidemiology describing the population
dynamics of infectious diseases has been made a significant
progress in better understanding of disease transmissions
and behavior of epidemics. Many epidemic models have
been described by ordinary differential equations [1–11].
These important and useful deterministic investigations offer
a great insight into the effects of infectious disease, but in
the real world, epidemic dynamics is inevitably affected by
the environmental noise, which is an important component
in the epidemic systems. As a matter of fact, the epidemic
models are often subject to environmental noise; that is,
due to environmental fluctuations, parameters involved
in epidemic models are not absolute constants, and they
may fluctuate around some average values. So, inclusion of
random perturbations in such models makes them more
realistic in comparison to their deterministic counterparts.
In recent years, epidemic models under environmental
noise described by stochastic different equations have been
studied by many researchers. They introduce stochastic
noises into deterministic models to reveal the effect of
environmental variability on the epidemic dynamics in
mathematical ecology [12–20]. For example, Chen and Li
[12] discussed the stability of the endemic equilibrium of
a stochastic SIR model. Tornatore et al. [13] studied the
stability of the disease-free equilibrium of a stochastic SIR

model with and without distributed time delay. Ji et al.
[14] discussed a multigroup SIR model with perturbation,
where they showed that if the basic reproduction number
𝑅
0

≤ 1, then the solution of the model oscillates around
the disease-free steady state, whereas, if 𝑅

0
> 1, there is

a stationary distribution. However, this field is still in its
infancy.

The classical epidemic models proposed by Kermack and
McKendrick in 1927 [21] have been extensively investigated in
the literature.Thedeterministic SISmodel takes the following
form:

̇𝑆 (𝑡) = Λ − 𝜆𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 + 𝛾𝐼 (𝑡) ,

̇𝐼 (𝑡) = 𝜆𝑆 (𝑡) 𝐼 (𝑡) − (𝛾 + 𝜇 + 𝜖) 𝐼 (𝑡) ,

(1)

where 𝑆(𝑡) represents the number of susceptible individuals
and 𝐼(𝑡) denotes the number of infected individuals at time
𝑡. The influx of individuals into the susceptible is given by a
constant Λ. 𝜇 is the natural death rate; 𝜖 represents the death
rate due to disease; 𝜆 and 𝛾 represent the disease transmission
coefficient and the rate of recovery from infection, respec-
tively. Model (1) always has a disease-free equilibrium 𝐸

0
=

(𝑆
0
, 𝐼
0
) = (Λ/𝜇, 0) and it is globally asymptotical stable if the

basic reproduction number 𝑅
0
= Λ𝜆/𝜇(𝜇 + 𝜖 + 𝛾) ≤ 1, which

means the disease will disappear and the entire population
will become susceptible. When 𝑅

0
> 1, 𝐸0 becomes unstable
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and a globally asymptotical stable endemic equilibrium 𝐸
∗
=

(𝑆
∗
, 𝐼
∗
) = ((𝛾+𝜇+𝜖)/𝜆, (Λ𝜆−𝜇(𝛾+𝜇+𝜖))/𝜆(𝜇+𝜖)) appears,

which implies that the disease will always prevail and persist
in the population.

As stated above, due to the existence of environmental
noise, the parameters of model (1) are not absolute constants,
and they exhibit continuous oscillation around some average
values but do not attain fixed values with the advancement of
time. Considering the biological significance and the effects
of stochastic environmental noise perturbations, there are
different possible approaches to include random effects in the
model. The following four approaches are usually adopted
in the literature (see [22]). The first one is through time
Markov chainmodel to consider environment noise [23].The
second is with parameters perturbation [24]. The third one is
the environmental noise that is proportional to the variables
[25], and the last one is to robust the positive equilibria
of deterministic models. In this paper, we will consider a
stochastic counterpart of model (1) in a combination of
the second and third approaches. That is, the stochastic
perturbation is assumed to be of a white noise type which is
directly proportional to 𝑆(𝑡), 𝐼(𝑡), influenced respectively on

̇𝑆(𝑡) and ̇𝐼(𝑡) inmodel (1); meantime, the disease transmission
coefficient𝜆 inmodel (1) is replaced by𝜆+𝜎

3
�̇�
3
(𝑡). Ourmodel

takes the following form:

d𝑆 (𝑡) = (Λ − 𝜆𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) + 𝛾𝐼 (𝑡)) d𝑡

+ 𝜎
1
𝑆 (𝑡) d𝐵

1
(𝑡) − 𝜎

3
𝑆 (𝑡) 𝐼 (𝑡) d𝐵

3
(𝑡) ,

d𝐼 (𝑡) = [𝜆𝑆 (𝑡) 𝐼 (𝑡) − (𝛾 + 𝜇 + 𝜖) 𝐼 (𝑡)] d𝑡

+ 𝜎
2
𝐼 (𝑡) d𝐵

2
(𝑡) + 𝜎

3
𝑆 (𝑡) 𝐼 (𝑡) d𝐵

3
(𝑡) ,

(2)

where 𝐵
1
(𝑡), 𝐵

2
(𝑡), and 𝐵

3
(𝑡) are mutually independent

Brownian motions and 𝜎
1
, 𝜎
2
, and 𝜎

3
are noise intensities.

The organization of this paper is as follows. In Section 2,
we show that there is a unique positive solution of model
(2) for any positive initial value. In Section 3, we show how
the solution spirals around the disease-free equilibrium of
deterministic system under some conditions. In Section 4,
we prove that model (2) has a stationary distribution under
certain parametric restrictions. In Section 5, an extinction
result due to large noises is presented. Finally, numerical
simulations are carried out to illustrate the main theoretical
results.

2. Existence and Uniqueness of
the Positive Solution

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0

, 𝑃) be a complete
probability space with a filtration satisfying the usual condi-
tions (i.e., it is right continuous and F

0
contains all 𝑃-null

sets). Let 𝐵
𝑖
(𝑡) (𝑖 = 1, 2, 3) denote the independent standard

Brownian motions defined on this probability space. We also
denote

R
2

+
= {(𝑥, 𝑦) ∈ R

2
: 𝑥 > 0, 𝑦 > 0} . (3)

Since the 𝑆(𝑡) and 𝐼(𝑡) in model (2) are, respectively, the sizes
of the susceptible individuals and the infected individuals at

time 𝑡, they should be nonnegative. Therefore, we are only
interested in positive solutions. In order to get a unique global
solution (i.e., no explosion in a finite time) for any given
initial value, the coefficients of the stochastic differential
equation are generally required to satisfy the linear growth
condition and local Lipschitz condition [26]. However, the
coefficients of model (2) do not satisfy the linear growth
condition, though they are locally Lipschitz continuous;
hence the solution of model (2) may explode at a finite time.
In what follows, we shall prove that the solution of model (2)
is positive and global.

Theorem 1. For any given initial condition (𝑆(0), 𝐼(0)) ∈ R2
+
,

there is a unique positive solution (𝑆(𝑡), 𝐼(𝑡)) of model (2) on
𝑡 ≥ 0, and the solution will remain in R2

+
with probability one,

namely, (𝑆(𝑡), 𝐼(𝑡)) ∈ R2
+
for all 𝑡 ≥ 0 a.s.

Proof. Since the coefficients of the equation are locally Lips-
chitz continuous, for any initial value (𝑆(0), 𝐼(0)) ∈ R2

+
, there

is a unique local solution (𝑆(𝑡), 𝐼(𝑡)) on 𝑡 ∈ [0, 𝜏
𝑒
), where 𝜏

𝑒
is

the explosion time. To show this solution is global, we need
to show that 𝜏

𝑒
= +∞ a.s. Define the stopping time

𝜏
+
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑆 (𝑡) ≤ 0, 𝐼 (𝑡) ≤ 0} , (4)

where throughout this paper we set inf 𝜙 = ∞ (as usual 𝜙
denotes the empty set). Obviously, we have 𝜏

+
≤ 𝜏
𝑒
. So, if we

can prove that 𝜏+ = ∞ a.s., then 𝜏
𝑒
= ∞ and (𝑆(𝑡), 𝐼(𝑡)) ∈ R2

+

a.s. for all 𝑡 ≥ 0.
Assume that 𝜏+ < ∞; then there exists a 𝑇 > 0 such that

P(𝜏
+
< 𝑇) > 0. Define a 𝐶

2-function 𝑉 : R2
+

→ R
+
by

𝑉 (𝑆 (𝑡) , 𝐼 (𝑡)) = ln 𝑆 (𝑡) 𝐼 (𝑡) . (5)

Applying Itô’s formula, we can get

d𝑉 (𝑆 (𝑡) , 𝐼 (𝑡)) =
1

𝑆 (𝑡)
d𝑆 (𝑡) −

1

2𝑆2 (𝑡)
(d𝑆(𝑡))2

+
1

𝐼 (𝑡)
d𝐼 (𝑡) −

1

2𝐼2 (𝑡)
(d𝐼(𝑡))2.

(6)

That is,

d𝑉 (𝑆 (𝑡) , 𝐼 (𝑡))

= [
Λ

𝑆 (𝑡)
− (2𝜇 + 𝜖 + 𝛾) +

𝛾𝐼 (𝑡)

𝑆 (𝑡)
+ 𝜆𝑆 (𝑡)

− 𝜆𝐼 (𝑡) −
𝜎
2

1
+ 𝜎
2

2

2
−

𝜎
2

3
𝐼
2
(𝑡) + 𝜎

2

3
𝑆
2
(𝑡)

2
] d𝑡

+ 𝜎
1
d𝐵
1 (𝑡) + 𝜎

2
d𝐵
2 (𝑡)

− 𝜎
3
𝐼 (𝑡) d𝐵

3
(𝑡) + 𝜎

3
𝑆 (𝑡) d𝐵

3
(𝑡) .

(7)

Due to the positivity of 𝑆(𝑡) and 𝐼(𝑡), it follows from the above
equality that

d𝑉 (𝑆 (𝑡) , 𝐼 (𝑡)) ≥ 𝑘 (𝑆 (𝑡) , 𝐼 (𝑡)) d𝑡 + 𝜎
1
d𝐵
1 (𝑡) + 𝜎

2
d𝐵
2 (𝑡)

− 𝜎
3
𝐼 (𝑡) d𝐵

3
(𝑡) + 𝜎

3
𝑆 (𝑡) d𝐵

3
(𝑡) ,

(8)
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where 𝑘(𝑆(𝑡), 𝐼(𝑡)) = −(2𝜇 + 𝜖 + 𝛾 + 𝜆𝐼(𝑡)) − (𝜎
2

1
+ 𝜎
2

2
)/2 −

(𝜎
2

3
𝐼
2
(𝑡) + 𝜎

2

3
𝑆
2
(𝑡))/2.

Integrate both sides of (8) from 0 to 𝑡; we yield

𝑉 (𝑆 (𝑡) , 𝐼 (𝑡)) ≥ 𝑉 (𝑆 (0) , 𝐼 (0))

+ ∫

𝑡

0

𝑘 (𝑆 (𝑢) , 𝐼 (𝑢)) d𝑢 + 𝜎
1
𝐵
1
(𝑡) + 𝜎

2
𝐵
2
(𝑡)

− ∫

𝑡

0

𝜎
3
𝐼 (𝑢) d𝐵

3
(𝑢) + ∫

𝑡

0

𝜎
3
𝑆 (𝑢) d𝐵

3
(𝑢) .

(9)

It is easy to see that, for almost all 𝜔 in 𝜏
+

< 𝜏
𝑒
, 𝑆(𝑡), 𝐼(𝑡) are

positive on [0, 𝜏
+
) and 𝑆(𝜏

+
)𝐼(𝜏
+
) = 0. Accordingly,

lim
𝑡→𝜏
+

[ln 𝑆 (𝑡) + ln 𝐼 (𝑡)] = −∞. (10)

Letting 𝑡 → 𝜏
+, it follows from (9) that

−∞ ≥ 𝑉 (𝑆 (0) , 𝐼 (0))

+ ∫

𝜏
+

0

𝑘 (𝑆 (𝑡) , 𝐼 (𝑡)) d𝑢 + 𝜎
1
𝐵
1
(𝜏
+
) + 𝜎
2
𝐵
2
(𝜏
+
)

− ∫

𝜏
+

0

𝜎
3
𝐼 (𝑡) d𝐵

3
(𝑢) + ∫

𝜏
+

0

𝜎
3
𝑆 (𝑡) d𝐵

3
(𝑢) > −∞

(11)

which is a contradiction; therefore we have 𝜏
+

= ∞ a.s. The
proof is therefore completed.

3. Asymptotic Behavior around the
Disease-Free Equilibrium 𝐸

0

As mentioned above, if 𝑅
0

≤ 1, then model (1) always has
a globally asymptotically stable disease-free equilibrium 𝐸

0,
which means the disease will die out with the advancement
of time. Noting that 𝐸

0 is not an equilibrium of stochastic
model (2), it is natural to ask whether the disease will go to
extinction in the population. In this sectionwemainly use the
way of estimating the oscillation around 𝐸

0 to reflect how the
solution of model (2) spirals closely around 𝐸

0. We have the
following theorem.

Theorem 2. Assume 𝑅
0
≤ 1. Then for any solution (𝑆(𝑡), 𝐼(𝑡))

of model (2) with initial value (𝑆(0), 𝐼(0)) ∈ R2
+
, if 𝜎2
1
< 𝜇 and

𝜎
2

2
/2 < 𝜇 + 𝜖, we have

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑢) −
Λ

𝜇
)

2

+ 𝐼
2
(𝑢)] d𝑢 ≤

𝜎
2

1
Λ
2

𝑚𝜇2
, (12)

where 𝑚 = min{𝜇 − 𝜎
2

1
, 𝜇 + 𝜖 − 𝜎

2

2
/2}.

Proof. Define a function 𝑉 : R2
+

→ R
+
by

𝑉 (𝑡) = 𝑉
1
(𝑡) +

2𝜇 + 𝜖

𝜆
𝑉
2
(𝑡)

=
(𝑆(𝑡) − (Λ/𝜇) + 𝐼(𝑡))

2

2
+

2𝜇 + 𝜖

𝜆
𝐼 (𝑡) .

(13)

Along the trajectories of system (2), we have

d𝑉
1
(𝑡) = (𝑆 (𝑡) −

Λ

𝜇
+ 𝐼 (𝑡)) (d𝑆 (𝑡) + d𝐼 (𝑡))

+
1

2
(d𝑆(𝑡) + d𝐼(𝑡))2

= 𝐿𝑉
1 (𝑡) d𝑡 + (𝑆 (𝑡) −

Λ

𝜇
+ 𝐼 (𝑡))

× (𝜎
1
𝑆 (𝑡) d𝐵1 (𝑡) + 𝜎

2
𝐼 (𝑡) d𝐵2 (𝑡)) ,

d𝑉
2
(𝑡) = 𝐿𝑉

2
(𝑡) d𝑡 + 𝜎

2
𝐼 (𝑡) d𝐵

2
(𝑡) + 𝜎

3
𝑆 (𝑡) 𝐼 (𝑡) d𝐵

3
(𝑡) ,

(14)

where

𝐿𝑉
1
(𝑡) = (𝑆 (𝑡) −

Λ

𝜇
+ 𝐼 (𝑡)) (Λ − 𝜇𝑆 (𝑡) − (𝜇 + 𝜖) 𝐼 (𝑡))

+
𝜎
2

1
𝑆
2
(𝑡) + 𝜎

2

2
𝐼
2
(𝑡)

2
,

(15)

𝐿𝑉
2
(𝑡) = 𝜆𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝜖) 𝐼 (𝑡) . (16)

From (15), we have that

𝐿𝑉
1 (𝑡)

= (𝑆 (𝑡) −
Λ

𝜇
+ 𝐼 (𝑡)) [−𝜇(𝑆 (𝑡) −

Λ

𝜇
) − (𝜇 + 𝜖) 𝐼 (𝑡)]

+
𝜎
2

1
(𝑆(𝑡) − Λ/𝜇 + Λ/𝜇)

2
+ 𝜎
2

2
𝐼
2
(𝑡)

2

≤ − (𝜇 − 𝜎
2

1
) (𝑆(𝑡) −

Λ

𝜇
)

2

− (2𝜇 + 𝜖) (𝑆 (𝑡) −
Λ

𝜇
) 𝐼 (𝑡)

− (𝜇 + 𝜖 −
𝜎
2

2

2
) 𝐼
2
(𝑡) + 𝜎

2

1
(
Λ

𝜇
)

2

,

(17)

where in the last step we have used the inequality (𝑎 + 𝑏)
2
≤

2𝑎
2
+ 2𝑏
2. Similarly, we can have from (16) that

𝐿𝑉
2 (𝑡) = 𝜆(𝑆 (𝑡) −

Λ

𝜇
+

Λ

𝜇
) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝜖) 𝐼 (𝑡)

= 𝜆(𝑆 (𝑡) −
Λ

𝜇
) 𝐼 (𝑡) + [𝜆

Λ

𝜇
− (𝜇 + 𝛾 + 𝜖)] 𝐼 (𝑡) .

(18)

Noting that 𝑅
0

= Λ𝜆/𝜇(𝜇 + 𝜖 + 𝛾) ≤ 1, it follows from the
above that

𝐿𝑉
2
(𝑡) ≤ 𝜆(𝑆 (𝑡) −

Λ

𝜇
) 𝐼 (𝑡) . (19)
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It follows from (17), (19), and (13) that

𝐿𝑉 (𝑡) ≤ − (𝜇 − 𝜎
2

1
) (𝑆 (𝑡) −

Λ

𝜇
)

2

− (𝜇 + 𝜖 −
𝜎
2

2

2
) 𝐼
2
(𝑡) + 𝜎

2

1
(
Λ

𝜇
)

2

.

(20)

Integrating from 0 to 𝑡 on both sides of (20) and taking
expectation yield

𝐸𝑉 (𝑡) − 𝑉 (0) ≤ − (𝜇 − 𝜎
2

1
) 𝐸∫

𝑡

0

(𝑆(𝑢) −
Λ

𝜇
)

2

d𝑢

− (𝜇 + 𝜖 −
𝜎
2

2

2
)𝐸∫

𝑡

0

𝐼
2
(𝑢) d𝑢 + 𝜎

2

1
(
Λ

𝜇
)

2

𝑡.

(21)

Hence, we have that

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝜇 − 𝜎
2

1
) (𝑆 (𝑢) −

Λ

𝜇
)

2

+ (𝜇 + 𝜖 −
𝜎
2

2

2
) 𝐼
2
(𝑢)] d𝑢 ≤ 𝜎

2

1
(
Λ

𝜇
)

2

.

(22)

Let 𝑚 = min{𝜇 − 𝜎
2

1
, 𝜇 + 𝜖 − 𝜎

2

2
/2}; it follows from (22) that

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

[(𝑆 (𝑢) −
Λ

𝜇
)

2

+ 𝐼
2
(𝑢)] d𝑢 ≤

𝜎
2

1
Λ
2

𝑚𝜇2
. (23)

The proof of Theorem 2 is thus completed.

Notice that when 𝜎
1

= 0, 𝐸
0 is also the disease-free

equilibriumof system (2), and (20) is reduced to the following
form:

𝐿𝑉 (𝑡) ≤ −𝜇(𝑆 (𝑡) −
Λ

𝜇
)

2

− (𝜇 + 𝜖 −
𝜎
2

2

2
) 𝐼
2
(𝑡) , (24)

which means that 𝐿𝑉(𝑡) is negative definite provided that
𝜎
2

2
/2 < 𝜇 + 𝜖. Therefore, we can have the following result (see

[26]).

Corollary 3. Assume that 𝑅
0

≤ 1 and 𝜎
1

= 0. Then
the disease-free equilibrium 𝐸

0 of system (2) is stochastically
asymptotically stable in the large provided 𝜎

2

2
/2 < 𝜇 + 𝜖.

4. Existence of the Stationary Distribution

It is well known that, in the study of epidemic dynamical
model, the endemic equilibrium, which means that disease
will prevail and persist in a population, is one of the most
important and interesting topics owing to its theoretical
and practical significance. Since 𝐸

∗ is not an epidemic
equilibrium of stochastic model (2), in this section, we turn
to prove the existence of its stationary distribution. Before
proving themain theoremof this sectionwe first cite a known
result from Hasmiskii [27] which will be useful to prove the
theorem.

Let𝑋(𝑡) be a regular time-homogeneous Markov process
in 𝐸
𝑙
(the 𝑙 dimensional Euclidean space) described by

stochastic equation

d𝑋 (𝑡) = 𝑏 (𝑋) d𝑡 +
𝑘

∑

𝑟=1

𝑓
𝑟
d𝐵
𝑟
(𝑡) . (25)

The diffusion matrix is defined as follows:

𝐴 (𝑥) = (𝑎
𝑖𝑗 (𝑥)) , 𝑎

𝑖𝑗 (𝑥) =

𝑘
1

∑

𝑟=1

𝑓
𝑟

𝑖
(𝑥) 𝑓𝑟

𝑗
(𝑥) . (26)

There exists a bounded domain𝑈 ⊂ 𝐸
𝑙
with regular boundary

Γ, having the following properties.

(B.1) In the domain 𝑈 and some neighborhood thereof,
the smallest eigenvalue of the diffusion matrix 𝐴(𝑥)

is bounded away from zero.
(B.2) If𝑥 ∈ 𝐸

𝑙
\𝑈, themean time 𝜏 at which a path emerging

from 𝑥 reaches the set𝑈 is finite, and sup
𝑥∈𝐾

𝐸
𝑥
𝜏 < ∞

for every compact subset 𝐾 ⊂ 𝐸
𝑙
.

Lemma 4. If above assumptions (B.1) and (B.2) hold, then the
Markov process𝑋(𝑡) has a stationary distribution 𝜇(⋅). Let𝑓(⋅)

be a function integrable with respect to the measure 𝜇. Then

𝑃
𝑥
{ lim
𝑇⇀∞

∫

𝑇

0

𝑓 (𝑋 (𝑡)) d𝑡 = ∫
𝐸
𝑙

𝑓 (𝑥) 𝜇 (d𝑥)} (27)

for all 𝑥 ∈ 𝐸
𝑙
.

Remark 5. We can find the proof of Lemma 4 in [27].
Hasmiskii [27] refers the existence of a stationary distribution
with suitable density function.

To validate (B.1), it suffices to prove 𝐹 is uniformly
elliptical in 𝑈, where 𝐹𝑢 = 𝑏(𝑥) ⋅ 𝑢

𝑥
+ [tr𝐴(𝑥)𝑢

𝑥𝑥
]/2; that

is, there is a positive number 𝑀 such that

𝑘

∑

𝑖,𝑗=1

𝑎
𝑖,𝑗
𝜉
𝑖
𝜉
𝑗
≥ 𝑀

𝜉


2
, 𝑥 ∈ 𝑈, 𝜉 ∈ 𝑅

𝑘 (28)

(see [28] and Rayleigh’s principle in [29]). To verify (B.2), it is
sufficient to show that there exist some neighborhood 𝑈 and
a nonnegative𝐶

2-function such that and for any 𝐸
𝑙
\𝑈, 𝐿𝑉 is

negative function [30].

Theorem 6. Consider stochastic model (2) with initial con-
dition in (𝑆(0), 𝐼(0)) ∈ R2

+
. Assume that 𝑅

0
> 1 and

0 < 𝛿 < min(𝑚
1
𝑆
∗2

, 𝑚
2
𝐼
∗2

) then there exists a stationary
distribution 𝜇(⋅) for model (2). Here (𝑆

∗
, 𝐼
∗
) is the unique

endemic equilibrium of (1) and

𝑚
1
= 𝜇 − 𝜎

2

1
−

𝜎
2

3
(2𝜇 + 𝜖) 𝐼

∗

𝜆
, 𝑚

2
= 𝜇 + 𝜖 − 𝜎

2

2
,

𝛿 = 𝜎
2

1
𝑆
∗2

+ (𝐼
∗2

+
2𝜇 + 𝜖

2𝜆
𝐼
∗
)𝜎
2

2
+

𝜎
2

3
𝐼
∗
(2𝜇 + 𝜖)

𝜆
𝑆
∗2

.

(29)
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Especially, we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

[𝑚
1
(𝑆 (𝑢) − 𝑆

∗
)
2
+ 𝑚
2
(𝐼 (𝑢) − 𝐼

∗
)
2
] d𝑢 ≤ 𝛿.

(30)

Proof. Our approach is inspired by the work of Ji and Jiang
[31]. Since 𝑅

0
> 1, then there exists a unique positive

equilibrium point 𝐸∗ = (𝑆
∗
, 𝐼
∗
) of model (1). Furthermore,

we have that

Λ + 𝛾𝐼
∗
= 𝜆𝑆
∗
𝐼
∗
+ 𝜇𝑆
∗
, 𝜆𝑆
∗
𝐼
∗
= (𝛾 + 𝜇 + 𝜖) 𝐼

∗
. (31)

Define a positive definite function 𝑉 : 𝐸
2

→ R
+
:

𝑉 (𝑡) =
1

2
(𝑆 (𝑡) + 𝐼 (𝑡) − 𝑆

∗
− 𝐼
∗
)
2

+
2𝜇 + 𝜖

𝜆
(𝐼 (𝑡) − 𝐼

∗
− 𝐼
∗ ln 𝐼 (𝑡)

𝐼∗
)

= 𝑉
1
(𝑡) +

2𝜇 + 𝜖

𝜆
𝑉
2
(𝑡) ,

(32)

where 𝐸
2
= Int(R2+). Applying Itô’s formula and using (31),

we can calculate

d𝑉
1
(𝑡) = (𝑆 (𝑡) + 𝐼 (𝑡) − 𝑆

∗
− 𝐼
∗
) (d𝑆 (𝑡) + d𝐼 (𝑡))

+
1

2
(d𝑆(𝑡) + d𝐼(𝑡))2

= 𝐿𝑉
1
(𝑡) + (𝑆 (𝑡) + 𝐼 (𝑡) − 𝑆

∗
− 𝐼
∗
)

× (𝜎
1
𝑆 (𝑡) d𝐵1 (𝑡) + 𝜎

2
𝐼 (𝑡) d𝐵2 (𝑡)) ,

d𝑉
2
(𝑡) = (1 −

𝐼
∗

𝐼 (𝑡)
) d𝐼 (𝑡) +

𝐼
∗

2𝐼2 (𝑡)
(d𝐼(𝑡))2

= 𝐿𝑉
2
(𝑡) + (1 −

𝐼
∗

𝐼 (𝑡)
)

× (𝜎
2
𝐼 (𝑡) d𝐵

2
(𝑡) + 𝜎

3
𝑆 (𝑡) 𝐼 (𝑡) d𝐵

3
(𝑡)) ,

(33)

where

𝐿𝑉
1 (𝑡) = (𝑆 (𝑡) − 𝑆

∗
+ 𝐼 (𝑡) − 𝐼

∗
) [Λ − 𝜇𝑆 (𝑡) − (𝜇 + 𝜖) 𝐼 (𝑡)]

+
1

2
(𝜎
2

1
𝑆
2
(𝑡) + 𝜎

2

2
𝐼
2
(𝑡))

= (𝑆 (𝑡) − 𝑆
∗
+ 𝐼 (𝑡) − 𝐼

∗
)

× [𝜇𝑆
∗
+ (𝜇 + 𝜖) 𝐼

∗
− 𝜇𝑆 (𝑡) − (𝜇 + 𝜖) 𝐼 (𝑡)]

+
1

2
𝜎
2

1
(𝑆 (𝑡) − 𝑆

∗
+ 𝑆
∗
)
2
+

1

2
𝜎
2

2
(𝐼 (𝑡) − 𝐼

∗
+ 𝐼
∗
)
2

≤ (𝑆 (𝑡) − 𝑆
∗
+ 𝐼 (𝑡) − 𝐼

∗
)

× [−𝜇 (𝑆 (𝑡) − 𝑆
∗
) − (𝜇 + 𝜖) (𝐼 (𝑡) − 𝐼

∗
)]

+ 𝜎
2

1
(𝑆 (𝑡) − 𝑆

∗
)
2
+ 𝜎
2

1
𝑆
∗2

+ 𝜎
2

2
(𝐼 (𝑡) − 𝐼

∗
)
2
+ 𝜎
2

2
𝐼
∗2

= − (𝜇 − 𝜎
2

1
) (𝑆(𝑡) − 𝑆

∗
)
2

− (2𝜇 + 𝜖) (𝑆 (𝑡) − 𝑆
∗
) (𝐼 (𝑡) − 𝐼

∗
)

− (𝜇 + 𝜖 − 𝜎
2

2
) (𝐼 (𝑡) − 𝐼

∗
)
2
+ 𝜎
2

1
𝑆
∗2

+ 𝜎
2

2
𝐼
∗2

,

𝐿𝑉
2
(𝑡) = (𝐼 (𝑡) − 𝐼

∗
) [𝜆𝑆 (𝑡) − (𝜖 + 𝛾 + 𝜇)]

+
𝐼
∗

2
𝜎
2

2
+

𝜎
2

3
𝐼
∗

2
𝑆
2
(𝑡)

= (𝐼 (𝑡) − 𝐼
∗
) (𝜆𝑆 (𝑡) − 𝜆𝑆

∗
)

+
𝐼
∗

2
𝜎
2

2
+

𝜎
2

3
𝐼
∗

2
(𝑆 (𝑡) − 𝑆

∗
+ 𝑆
∗
)
2

≤ 𝜆 (𝑆 (𝑡) − 𝑆
∗
) (𝐼 (𝑡) − 𝐼

∗
)

+
𝐼
∗

2
𝜎
2

2
+ 𝜎
2

3
𝐼
∗
(𝑆(𝑡) − 𝑆

∗
)
2
+ 𝜎
2

3
𝐼
∗
𝑆
∗2

.

(34)

It follows from (32)-(33) that

𝐿𝑉 (𝑡) = 𝐿𝑉
1
(𝑡) +

2𝜇 + 𝜖

𝜆
𝐿𝑉
2
(𝑡)

≤ − (𝜇 − 𝜎
2

1
) (𝑆 (𝑡) − 𝑆

∗
)
2
− (𝜇 + 𝜖 − 𝜎

2

2
) (𝐼(𝑡) − 𝐼

∗
)
2

+ 𝜎
2

1
𝑆
∗2

+ 𝜎
2

2
𝐼
∗2

+
𝐼
∗
(2𝜇 + 𝜖)

2𝜆
𝜎
2

2
+

2𝜇 + 𝜖

𝜆
𝜎
2

3
𝐼
∗
(𝑆 − 𝑆

∗
)
2

+
2𝜇 + 𝜖

𝜆
𝜎
2

3
𝐼
∗
𝑆
∗2

= (𝜇 − 𝜎
2

1
−

2𝜇 + 𝜖

𝜆
𝜎
2

3
𝐼
∗
) (𝑆(𝑡) − 𝑆

∗
)
2

− (𝜇 + 𝜖 − 𝜎
2

2
) (𝐼(𝑡) − 𝐼

∗
)
2
+ 𝜎
2

1
𝑆
∗2

+ 𝜎
2

2
𝐼
∗2

+
𝐼
∗
(2𝜇 + 𝜖)

2𝜆
𝜎
2

2
+

2𝜇 + 𝜖

𝜆
𝜎
2

3
𝐼
∗
𝑆
∗2

≜ − 𝑚
1
(𝑆(𝑡) − 𝑆

∗
)
2
− 𝑚
2
(𝐼(𝑡) − 𝐼

∗
)
2
+ 𝛿,

(35)

where 𝑚
1
, 𝑚
2
, and 𝛿 are defined, respectively, in (29).

Notice that if 0 < 𝛿 < min(𝑚
1
𝑆
∗2

, 𝑚
2
𝐼
∗2

), then the
ellipsoid

−𝑚
1
(𝑆(𝑡) − 𝑆

∗
)
2
− 𝑚
2
(𝐼(𝑡) − 𝐼

∗
)
2
+ 𝛿 = 0 (36)
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lies entirely in R2
+
. We can take 𝑈 to be any neighborhood of

the ellipsoid such that𝑈 ⊆ 𝐸
𝑙
= R2
+
, so for 𝑥 ∈ 𝑈\𝐸

𝑙
, 𝐿𝑉(𝑡) ≤

−𝐶 (𝐶 is a positive constant), which implies condition (B.2)
is satisfied.

On the other hand, we can write system (2) as the form of
system (25):

d(
𝑆 (𝑡)

𝐼 (𝑡)
) = (

Λ − 𝜆𝑆𝐼 − 𝜇𝑆 + 𝛾𝐼

𝜆𝑆𝐼 − (𝜇 + 𝜖 + 𝛾) 𝐼
) d𝑡 + (

𝜎
1
𝑆

0
) d𝐵
1

+ (
0

𝜎
2
𝐼
) d𝐵
2
+ (

−𝜎
3
𝑆𝐼

𝜎
3
𝑆𝐼

) d𝐵
3
.

(37)

Here the diffusion matrix is

𝐴 = (
𝜎
2

1
𝑆
∗2

+ 𝜎
2

3
𝑆
∗2

𝐼
∗2

−𝜎
2

3
𝑆
∗2

𝐼
∗2

−𝜎
2

3
𝑆
∗2

𝐼
∗2

𝜎
2

2
𝐼
∗2

+ 𝜎
2

3
𝑆
∗2

𝐼
∗2

) . (38)

There is an 𝑀 = min{𝜎2
1
𝑆
2
, 𝜎
2

2
𝐼
2
} > 0, such that for all

(𝑥
1
, 𝑥
2
) ∈ 𝑈 and 𝜉 ∈ R2,

2

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
= (𝜎
2

1
𝑆
2
+ 𝜎
2

3
𝑆
2
𝐼
2
) 𝜉
2

1

+ (𝜎
2

2
𝐼
2
+ 𝜎
2

3
𝑆
2
𝐼
2
) 𝜉
2

2
− 2𝜎
2

3
𝑆
2
𝐼
2
𝜉
1
𝜉
2

= 𝜎
2

1
𝑆
2
𝜉
2

1
+ 𝜎
2

2
𝐼
2
𝜉
2

2
+ 𝜎
2

3
𝑆
2
𝐼
2
(𝜉
1
− 𝜉
2
)
2

≥ 𝜎
2

1
𝑆
2
𝜉
2

1
+ 𝜎
2

2
𝐼
2
𝜉
2

2

≥ min {𝜎
2

1
𝑆
2
, 𝜎
2

2
𝐼
2
}
𝜉


2

= 𝑀
𝜉


2
,

(39)

which shows that condition (B.1) is also satisfied. Therefore,
we can conclude that stochastic model (2) has a stationary
distribution 𝜇(⋅).

Based on (30) in Theorem 6, we can further have the
following persistence result of model (2).

Corollary 7. If 𝑅
0
> 1 and 𝛿 < min{𝑚

1
(𝑆
∗
)
2
, 𝑚
2
(𝐼
∗
)
2
}, then

model (2) is persistent in the mean.

Proof. Obviously, (30) holds. It follows that

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑆(𝑢) − 𝑆
∗
)
2d𝑢 ≤

𝛿

𝑚
1

a.s., (40)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝐼(𝑢) − 𝐼
∗
)
2d𝑢 ≤

𝛿

𝑚
2

a.s. (41)

Noting also that

2(𝑆
∗
)
2
− 2𝑆
∗
𝑆 = 2𝑆

∗
(𝑆
∗
− 𝑆) ≤ (𝑆

∗
)
2
+ (𝑆 − 𝑆

∗
)
2
, (42)

we have that

𝑆 ≥
𝑆
∗

2
−

(𝑆 − 𝑆
∗
)
2

2𝑆∗
. (43)

It follows from (40) and (43) that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑆 (𝑢) d𝑢 ≥
𝑆
∗

2
− lim sup
𝑡→∞

∫

𝑡

0

(𝑆 (𝑢) − 𝑆
∗
)
2

2𝑆∗
d𝑢

≥
𝑆
∗

2
−

𝛿

2𝑆∗𝑚
1

a.s.

(44)

Similarly, we have

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝐼 (𝑢) d𝑢 ≥
𝐼
∗

2
− lim sup
𝑡→∞

∫

𝑡

0

(𝐼(𝑢) − 𝐼
∗
)
2

2𝐼∗
d𝑢

≥
𝐼
∗

2
−

𝛿

2𝐼∗𝑚
2

a.s.

(45)

Therefore, model (2) is persistent in the mean.

5. Extinction of the Disease

In this section, our goal is to find the conditions under which
the disease will go to extinction. In the previous section
we have showed that under certain conditions, deterministic
model (1) and the associated stochastic model (2) behave
similarly in the sense that both have positive solutions which
will not explode to infinity in a finite time. In other words,
we show that under certain condition the noise will not spoil
these properties. For the deterministic epidemic model (1),
the value of the basic reproduction number 𝑅

0
determines

the extinction or persistence of the disease: If 𝑅
0

≤ 1,
the disease will go to extinction, and if 𝑅

0
> 1, then the

disease will be persistent in the population. However, we will
show in this section that if the noise is sufficiently large, the
disease will become extinct for stochasticmodel (2), although
it may be persistent for its deterministic version (1). The
following theorem gives a condition for the extinction of the
disease expressed in terms of intensities of noise and system
parameters.

Theorem 8. Consider stochastic model (2) with initial condi-
tion in R2

+
. We have

lim sup
𝑡→∞

ln 𝐼 (𝑡)

𝑡
≤

𝜆
2

2𝜎
2

3

− (𝛾 + 𝜇 + 𝜖) −
𝜎
2

2

2
a.s. (46)

If 𝜆2/2𝜎2
3

≤ (𝛾 + 𝜇 + 𝜖) + 𝜎
2

2
/2 holds, then I(t) will go to zero

exponentially with probability one.
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Figure 1: The trajectories of deterministic system (1) and stochastic system (2) with initial value (𝑆(0), 𝐼(0)) = (0.8, 0.8). Here Λ = 1, 𝜆 =

0.4, 𝜇 = 0.4, 𝜖 = 0.4, and 𝛾 = 0.4; (a) 𝜎
1
= 0.1, 𝜎

2
= 0.1, and 𝜎

3
= 0.1; (b) 𝜎

1
= 0.05, 𝜎

2
= 0.05, and 𝜎

3
= 0.05.

Proof. Define 𝑉(𝐼(𝑡)) = ln 𝐼(𝑡); by Itô’s formula we have

ln 𝐼 (𝑡) = ln 𝐼 (0)

+ ∫

𝑡

0

[𝜆𝑆 (𝑢) − (𝛾 + 𝜇 + 𝜖) −
𝜎
2

2

2
−

𝜎
2

3
𝑆
2
(𝑢)

2
] d𝑢

+ 𝜎
2
𝐵
2
(𝑡) + ∫

𝑡

0

𝜎
3
𝑆 (𝑢) d𝐵

3
(𝑡)

= ln 𝐼 (0)

+ ∫

𝑡

0

[−
𝜎
2

3

2
(𝑆
2
(𝑢) −

2𝜆

𝜎
2

3

𝑆 (𝑢))

− (𝛾 + 𝜇 + 𝜖) −
𝜎
2

2

2
] d𝑢

+ 𝜎
2
𝐵
2
(𝑡) + 𝑀 (𝑡) .

(47)

Clearly, we have that

−
𝜎
2

3

2
(𝑆
2
(𝑡) −

2𝜆

𝜎
2

3

𝑆 (𝑡)) = −
𝜎
2

3

2
(𝑆(𝑡) −

𝜆

𝜎
2

3

)

2

+
𝜆
2

2𝜎
2

3

≤
𝜆
2

2𝜎
2

3

.

(48)

It follows from (47) that

ln 𝐼 (𝑡) ≤ ln 𝐼 (0) + ∫

𝑡

0

[
𝜆
2

2𝜎
2

3

− (𝛾 + 𝜇 + 𝜖) −
𝜎
2

2

2
] d𝑢

+ 𝜎
2
𝐵
2
(𝑡) + 𝑀 (𝑡) ,

(49)

where 𝑀(𝑡) = ∫
𝑡

0
𝜎
3
𝑆(𝑢)d𝐵

3
(𝑢) is a continuous local martin-

gale whose quadratic variation is

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩ = 𝜎
2

3
∫

𝑡

0

𝑆
2
(𝑢) d𝑢, (50)

which implies that

lim sup
𝑡→∞

⟨𝑀,𝑀⟩𝑡

𝑡
< ∞. (51)



8 Discrete Dynamics in Nature and Society

0 50 100 150
0

1

2

3

t

S
(
t
)

0 50 100 150
0

0.2

0.4

0.6

0.8

t

I
(
t
)

(a)

0 50 100 150
0

1

2

3

t

S
(
t
)

0

0.2

0.4

0.6

0.8

0 50 100 150
t

I
(
t
)

(b)

Figure 2:The trajectories of deterministic system (1) and stochastic system (2) with initial value (𝑆(0), 𝐼(0)) = (0.8, 0.8). Here Λ = 1, 𝜆 = 0.4,
𝜇 = 0.4, 𝜖 = 0.4, and 𝛾 = 0.4; (a) 𝜎

1
= 0.05, 𝜎

2
= 0.01, and 𝜎

3
= 0.01; (b) 𝜎

1
= 0, 𝜎

2
= 0.01, and 𝜎

3
= 0.01.

Hence, by the strong law of large numbers of martingales,

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (52)

Hence, we can divide both sides of (49) by 𝑡 and then let 𝑡 →

∞ to obtain that

lim sup
𝑡→∞

ln 𝐼 (𝑡)

𝑡
≤

𝜆
2

2𝜎
2

3

− (𝛾 + 𝜇 + 𝜖) −
𝜎
2

2

2
. (53)

The proof is therefore completed.

Remark 9. When 𝑅
0

> 1, the positive solution converges
to the endemic equilibrium of deterministic model (1).
However, the disease will die out exponentially regardless of
the magnitude of 𝑅

0
provided that 𝜎

2
and 𝜎

3
are big enough

such that 𝜆2/2𝜎2
3

≤ (𝛾 + 𝜇 + 𝜖) + 𝜎
2

2
/2. That is to say, large

noises can lead to the extinction of disease.

6. Numerical Simulations

In order to make the readers understand our results more
better, we will perform some numerical simulations to
illustrate our theoretical results. The numerical simulation is
given by the following Milstein scheme [32]. Consider the
discretization of model (2) for 𝑡 = 0, Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡:

𝑆
𝑘+1

= 𝑆
𝑘
+ (Λ − 𝜆𝑆

𝑘
𝐼
𝑘
− 𝜇𝑆
𝑘
+ 𝛾𝐼
𝑘
) Δ𝑡

+ 𝑆
𝑘
[𝜎
1
𝜉
1,𝑘

√Δ𝑡 +
1

2
𝜎
2

1
(𝜉
2

1,𝑘
− 1)Δ𝑡]

+ 𝑆
𝑘
𝐼
𝑘
[𝜎
3
𝜉
3,𝑘

√Δ𝑡 +
1

2
𝜎
2

3
(𝜉
2

3,𝑘
− 1)Δ𝑡] ,

𝐼
𝑘+1

= 𝐼
𝑘
+ [𝜆𝑆
𝑘
𝐼
𝑘
− (𝛾 + 𝜇 + 𝜖) 𝐼

𝑘
] Δ𝑡

+ 𝐼
𝑘
[𝜎
2
𝜉
2,𝑘

√Δ𝑡 +
1

2
𝜎
2

2
(𝜉
2

21,𝑘
− 1)]Δ𝑡

+ 𝑆
𝑘
𝐼
𝑘
[𝜎
3
𝜉
3,𝑘

√Δ𝑡 +
1

2
𝜎
2

3
(𝜉
2

3,𝑘
− 1)Δ𝑡] ,

(54)
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Figure 3: The solution of the stochastic system (2) and its histogram with initial value (𝑆(0), 𝐼(0)) = (1.9, 1.9). Here Λ = 2, 𝜆 = 0.4, 𝜇 = 0.4,
𝜖 = 0.2, and 𝛾 = 0.2; 𝜎

1
= 0.1, 𝜎

2
= 0.1, and 𝜎

3
= 0.1.

where Δ𝑡 is time increment and 𝜉
1,𝑘
, 𝜉
2,𝑘
, and 𝜉

3,𝑘
(𝑘 =

1, 2, . . . , 𝑛) are independent Gaussian random variables
𝑁(0, 1) which can be generated numerically by pseudoran-
dom number generators. In order to understand their role on
the dynamics, we use different values of 𝜎

1
, 𝜎
2
, and 𝜎

3
. In all

the following figures, the blue lines and the red lines represent
solutions of the deterministic system (1) and the stochastic
system (2), respectively.

In Figures 1 and 2, we always choose initial value 𝑆(0) =

0.8, 𝐼(0) = 0.8, and parameters Λ = 1, 𝜆 = 0.4, 𝜇 = 0.4, 𝜖 =

0.4, and 𝛾 = 0.4with different intensities of white noise which
satisfy the conditions in Theorem 2. We can easily compute
that 𝑅

0
= 0.8333 < 1, 𝐸0 = (Λ/𝜇, 0) = (2.5, 0). By Matlab

software, we simulate the solution of model (2) with different
values of 𝜎

𝑖
, 𝑖 = 1, 2, 3 and the solution of model (1).

In Figure 1(a), we choose 𝜎
1
= 0.1, 𝜎

2
= 0.1, and 𝜎

3
= 0.1,

and in Figure 1(b), we choose 𝜎
1
= 0.05, 𝜎

1
= 0.05, and 𝜎

3
=

0.05. We can see from Figure 1 that the solution of model (2)
will oscillate around the disease-free equilibrium in time, and

moreover, the larger the intensities of the white noises are, the
larger the fluctuations of the solutions will be.

Furthermore, if we take 𝜎
1

the same value as in
Figure 1(b), but take 𝜎

2
, 𝜎
3
smaller values 𝜎

2
= 𝜎
3
= 0.01. We

can see from Figure 2(a) that the fluctuation of the solution
will be very smaller. That is to say, the intensities of 𝜎

2
and 𝜎
3

have little effects on the solution.
When 𝜎

1
= 0, then 𝐸

0 becomes the disease-free
equilibrium of model (2). We can see from (20) that

𝐿𝑉 (𝑡) ≤ −0.4(𝑆 (𝑡) − 2.5)
2
− 0.79995𝐼

2
(𝑡) ≤ 0; (55)

that is, the solution of model (2) is stochastically asymptoti-
cally stable in the large.

In the following, we consider the the long behavior of
model (2) in the case of 𝑅

0
> 1. Choose the parameters

Λ = 2, 𝜆 = 0.4, 𝜇 = 0.4, 𝜖 = 0.2, 𝛾 = 0.2.

(56)
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Figure 4: The solution of the stochastic system (2) and its histogram with initial value (𝑆(0), 𝐼(0)) = (1.9, 1.9). Here Λ = 2, 𝜆 = 0.4, 𝜇 = 0.4,
𝜖 = 0.2, and 𝛾 = 0.2; 𝜎

1
= 0.05, 𝜎

2
= 0.05, and 𝜎

3
= 0.05.

We can compute that 𝑅
0

= 2.5, 𝐸∗ = (𝑆
∗
, 𝐼
∗
) = (2, 2). We

start our numerical simulation with environmental forcing
strengths 𝜎

1
= 0.1, 𝜎

2
= 0.1, and 𝜎

3
= 0.1 and starting

from the initial point (1.9, 1.9). Figure 3 reports the result
of one simulation run and stationary distribution about
the populations of susceptibles and infectives. After some
initial transients the population densities fluctuate around
the deterministic steady-state values 𝑆

∗
= 2 and 𝐼

∗
= 2,

respectively. It is to compute that 𝑚
1

= 0.34, 𝑚
2

= 0.59,
𝑚
1
𝑆
∗2

= 1.46,𝑚
2
𝐼
∗2

= 2.36, and 𝛿 = 0.305.The conditions in
Theorem 6 are satisfied. Accordingly, there exists a stationary
distribution for model (2). From the histograms in Figure 3
we can see that the values of 𝑆(𝑡) and 𝐼(𝑡) are distributed
normally around the mean values 2 and 2, respectively.

Next we decrease intensities of environmental forcing
to 𝜎
1

= 0.05, 𝜎
2

= 0.05, and 𝜎
3

= 0.05 and again we
observe that the population distribution fluctuates around the
deterministic steady-state value but amplitude of fluctuation
is less compared to earlier case (see Figure 4), which is also
reflected in their stationary distributions. In Figure 4, the

population of susceptible is distributed within (1.5, 2.6) and
the population of infected remains within the range (1.4, 2.8),
while in Figure 3 they are, respectively, distributed within (1,
3.1) and (0.8, 3.4).

Now, if we take 𝜎
𝑖
big enough, for example, 𝜎

1
= 0.1, 𝜎

2
=

0.1, and 𝜎
3
= 0.33, other parameters take the same values as

in (56). We can verify that the conditions in Theorem 8 are
satisfied. Moreover, we have

lim sup
𝑡→∞

ln 𝐼 (𝑡)

𝑡
≤ −0.0704, (57)

which means that 𝐼(𝑡) will go to zero exponentially with
time (see Figure 5). That is to say, large noises can lead the
disease to extinction, which is a phenomenon different from
its corresponding deterministic model (1).
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