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ABSTRACT 
This paper investigates the effectiveness of designed 

random behavior in cooperative formation control of multiple 

mobile agents. A method based on artificial potential functions 

provides a framework for decentralized control of their 

formation. However, it implies heavy communication costs. The 

communication requirement can be replaced by onboard 

sensors. The onboard sensors have limited range and provide 

only local information, and may result in the formation of 

isolated clusters. This paper proposes to introduce a component 

representing random motion in the artificial potential function 

formulation of the formation control problem. The introduction 

of the random behavior component results in a better chance of 

global cluster formation. The paper uses an agent model that 

includes both position and orientation, and formulates the 

dynamic equations to incorporate that model in artificial 

potential function approach. The effectiveness of the proposed 

method is verified via extensive simulations performed on a 

group of mobile agents and leaders. 

 

INTRODUCTION 
Formation control of multiple autonomous vehicles has 

received attention of several researchers working in the area of 

mobile robotics because of its potential applications in a 

number of fields including cooperated search and rescue 

operation, surveillance, reconnaissance, and boundary 

protection. Advancement in communication and sensing 

technologies, and in computing resources have made it possible 

to coordinate the movement of several autonomous vehicles 
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working cooperatively to achieve a certain mission. One of the 

very first applications of artificial formation was behavioral 

simulation of flocks of birds, herd of animals and schools of 

fish for computer graphics by Reynolds [1]. He stated three 

simple behaviors that lead to flocking in birds and fish: 

collision avoidance, velocity matching, and flock centering (in 

decreasing order of precedence).  In artificial systems, these 

three behaviors become objectives of the controller to achieve 

flocking. The biggest merit of Reynolds’ behavior-based 

approach was that these behaviors were based on observations 

of environment and interactions on a local scale that could be 

fully implemented in individual agents. These local interactions 

among agents resulted in global flocking, schooling, and 

herding behaviors which were totally scalable.  

Drawing inspiration from Reynolds’ approach, many 

researchers have focused on designing decentralized controller 

for achieving flocking behavior. Balch and Arkin [2] described 

a behavior-based decentralized controller using a number of 

motor-schemas and simple control laws. They applied these 

control laws to mobile robots; however they did not offer any 

stability guarantee of such control methods. In [3,4], the authors 

proposed a decentralized controller for control of formations of 

non-holonomic mobile robots which used local sensor 

information in a leader-follower motion. However, they did not 

discuss scalability issues and the effect of sensor 

limitations/uncertainties on the performance of the strategy.  

In [5], the authors described a model-independent 

coordination strategy for multi-agent control and showed that if 

the tracking errors were bounded, the formation error was 

stabilized. They used formation constraint and virtual leaders/ 
1 Copyright © 2007 by ASME Copyright © 2007 by ASME
 is not subject to copyright protection in the United States.

se: http://www.asme.org/about-asme/terms-of-use



beacons to formulate the problem. In [6], the authors proposed 

a Lyapunov function approach to multi-agent coordination. 

They used Lyapunov function to prove formation maintenance, 

task completion time, and formation velocity. In [7,8], the 

authors considered double integrator dynamics for designing 

control laws using graph theory for both fixed and dynamic 

topology of flocks.  This work was extended to experimental 

implementation in [9]. In [10], the authors described a 

distributed control system for multiple autonomous vehicles for 

formation stabilization. Based on graph rigidity theory, they 

used natural potential functions obtained from structural 

constraints of a desired formation.  However, they did not 

discuss the stability issues under uncertain connections or due 

to the sensing uncertainties.  

The concept of artificial potential has been used in robotics 

by many researchers. Artificial potential has been used for path 

planning [11], manipulator control [12], robot navigation [13], 

and obstacle avoidance [14]. Leonard and Fiorelli [15], in their 

work, proposed a distributed control system to coordinate 

multiple autonomous vehicles using artificial potential functions 

and virtual leaders. Virtual leaders were used to manipulate 

group geometry and control the group motion. The use of 

artificial potentials resulted in interaction forces between the 

agents (and the virtual leaders). Using kinetic and artificial 

potential energies of vehicles, they constructed a Lyapunov 

function to prove stability and robustness of group motion.  

In this paper, a distributed control model of a multi-agent 

system using artificial potential functions and virtual leaders 

[15-16] has been used. In most of the earlier work [7, 8, 10, 15, 

16], a particle model has been used to represent mobile agents. 

These agents were represented by a double integrator dynamic 

model. This paper extends the concept of particle model to a 

model with orientation. This model is a better representation of 

a mobile robot dynamic model, and can be easily implemented 

on mobile robots. Moreover, the use of artificial potential 

function based method requires full state information (more 

precisely, relative position and velocity information) of all 
agents and leaders at all times. If full state information of agents 

and leaders are communicated to each agent, this would result 

in a huge communication overload. This requirement of 

communication can be overcome by use of onboard sensors. 

The leaders, in this case, need to be real agents which can be 

sensed. However, sensors have their own limitations [17-18]. 

Their measurements are generally noisy, and ranges are limited. 

With limited range, sensors can provide information about 

neighboring agents and leaders only. A control system based on 

the above method should be able to stabilize itself based on 

local information when the interactions between all of its agents 

are complete. In other words, if the interaction between agents 

(and leaders) are modeled as a graph, and if the graph is 

connected (i.e., no node or group of nodes are isolated), then 

the above method should be able to find the globally stable 
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equilibrium formation. However, if there is an agent or a group 

of agents that is not connected to the rest of the graph (i.e., it 

forms a disconnected subgraph), then the system may not form 

a globally stable single cluster.  

In the formation control problem where the leaders steer the 

agents, the agents must be connected to the leaders via a chain 

of links for the group to be able to follow the desired trajectory. 

Hence, all isolated subgraphs that do not contain leaders as 

member nodes will follow an arbitrary trajectory, and that group 

may or may not find any leader to follow. For example, 

situations can arise when a certain agent cannot find any other 

agent or leader in its neighborhood. Similarly, even when there 

are some agents in the neighborhood, if the group of agents find 

themselves in isolation with no leader in sight, the group would 

not be able to follow the leader(s). Without the global 

information, such systems are highly susceptible to fall into 

local minima (a stable group disconnected from virtual leaders 

and other agents).  

This paper investigates the above scenarios and draws 

analogies from optimization algorithms where exploration 

(random component of the search process) plays an important 

role in the optimization process. It introduces a component 

representing random motion in the artificial function 

formulation of the formation control problem. There are a few 

considerations to be kept in view while designing the random 

component, for example the randomness should not lead to an 

unstable formation. The introduction of the random behavior 

component in agents who do not have leaders in sight results in 

a better chance of global cluster formation. The analysis uses a 

model that includes agent orientation and formulates the 

dynamic equations to incorporate artificial potential function 

approach. The effectiveness of the proposed method is verified 

via extensive simulations performed on a group of mobile 

agents and leaders. The simulations and experiments performed 

lead to the conclusion that although random behavior does not 

guarantee better performance in finite time and in every 

instance, a controlled randomization does improve the chances 

of system to maintain the group connectedness in presence of 

sensor uncertainties and limitations resulting in broken links of 

interactions between members of the group.  

The paper is organized as follows: First, the approach for 

mobile agent formation control using artificial potential 

function is briefly discussed. Then, the notion of orientation is 

introduced to the model of the mobile agent, and the 

corresponding dynamic equations of motions are derived. The 

concept of random motion is introduced as an approach to 

overcome the problem of getting stuck in local minima in 

absence of global information. Some factors to be considered 

while designing the randomness alongwith an analysis for 

stability are presented next. A simulation study is then carried 

out, and results are presented to verify that the proposed 

technique leads to a better formation, maintenance, and steering 
2 Copyright © 2007 by ASME Copyright © 2007 by ASME
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Down
of cluster of mobile agents.  

 

ARTIFICIAL POTENTIAL FUNCTIONS BASED 

CONTROL 
This paper utilizes a well formulated approach [15-16] for 

distributed control of multiple autonomous agents based on 

artificial potentials and virtual leaders. The artificial potentials 

are functions of relative distances between the pairs of 

neighbors. Among a group of autonomous agents, this approach 

introduces some virtual leaders. In order to extend their method 

to formation control where agents are equipped with sensors 

(which have limited range and can detect only neighboring 

agents/leaders), the leaders have to be real agents controlled 

independently to steer the group. There are three types of forces 

acting on each agent – interaction force derived from artificial 

potential function with other neighboring agents (F
a
), 

interaction force with any neighboring leaders (F
l
), and a 

controlled dissipative force (F
v
) (which is zero when the agent 

is moving with same velocity as its neighbors). The potentials 

corresponding to F
a
 and F

l
 are represented by V

a
 (potential 

function due to interaction between two agents) and V
l
 

(potential function due to interaction between agent and leader) 

respectively. Figure 1 shows the plot of V
a
 with respect to inter-

agent distance. A plot of V
l
 with respect to agent-leader distance 

has the same shape as Figure 1. 
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Figure 1: Interaction Potential versus Inter-Agent Distance 

 

Artificial potential function due to interaction between two 

agents i and j can be expressed as: 
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where, a is a scalar control gain, 
ijij qqq −=  is inter-agent 

distance.  

Similarly, for agent-leader interaction between agent i and 

leader k, the artificial potential function is given by:  
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where, b is a scalar control gain, and qik  is the distance between 

agent i and leader k. The parameters d0 and h0 represent the 

distance between the agent-agent and agent-leader respectively 

below which the interaction force is repulsive (negative). The 

parameters d1 and h1 represent the distance between the agent-

agent and agent-leader respectively above which there are no 

interactions, and they can be regarded as the range beyond 

which sensor cannot see other agents and leader (respectively). 

The total artificial potential associated with an agent i is given 

by: 
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where 
a

i
N  is the set containing agents in the neighborhood of 

agent i, and 
l

i
N  is the set containing leaders in the 

neighborhood of agent i. 

 

The group of mobile agents consists of N fully actuated robots 

whose dynamics is given by the double integrator: 

 

ii pq =
•

      (4a) 

Niup ii ,,1K==
•

   (4b) 

where i
q and i

p are m-dimensional position and velocity 

vectors respectively of agent i. Net control force on an agent i 

can be written as 

 
v

iiqi fVu
i

+−∇=     (5) 

 

where the first term represents the gradient descent based on 

artificial potential functions (due to interactions with other 

agents and leaders), and the second term represents the damping 

force which is responsible for achieving consensus among the 

agents.  
iq

∇  represents the gradient with respect to coordinates 

(position) of agent i: i
q . The damping term 

v

if  is given by: 

 

( )∑
∈
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iNj
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v
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D

where c is a scalar gain, i
p represents velocity of agent i, and 

l

i

a

ii
NNN ∪=  is the set of agents and leaders in the 

neighborhood of agent i. The total potential of the system is 

given by: 
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where N is the total number of agents, and 
NmRq∈ is stacked 

position vector of all agents. 

 

The collective dynamics of the system can be given by: 

( ) ( )pqLqVp

pq

^

−−∇=

=
•

•

    (8) 

where 
NmRp∈ is stacked velocity vector for all agents, and 

( ) NmNmRqL ×∈
^

 is m-dimensional graph Laplacian (see reference 

[16]). Among other important properties of graph Laplacian 

matrix ( )qL
^

, it is a positive semi-definite matrix. 

 

In order to carry out stability analysis of the collective motion 

of agents resulting from the above method, a Lyapunov function 

can be chosen as the total energy (artificial potential energy and 

kinetic energy) of the system: 

 

( ) ( ) ppqVpq T
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Lemma: Consider a system of N mobile agents. Each of the 

agents follows dynamics given by Equation (4), and with 

feedback control law given by Equation (5). For any initial 

condition belonging to the level set of ( )pq,Φ  given by 

( ) ( ){ }CpqpqC ≤Φ=Ω ,:,  with C>0, and when the underlying 

graph of the system is connected and cohesive, then the system 

asymptotically converges to an invariant set 
CI Ω⊂Ω  such that 

the points in 
IΩ  have a velocity that is bounded and velocity of 

all agents match. 

 

Differentiating with respect to time and using Equation (9) one 

gets: 
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since ( )qL
^

 is positive semi-definite matrix. 
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where E is the set of edges in the graph (graph modeling the 

interconnections between agents) representing interactions 

between two agents. From Lasalle’s Invariance Principle, all 

solutions of the system starting in 
CΩ  will converge to the 

largest invariant set ( ) ( )






 =ΦΩ∈=Ω

•

0,:, pqpq II
, and this 

happens when the velocities of all agents match. For a detailed 

proof of this lemma, please see references [16]. 

 

AGENT MODEL 
The agent, in the previous section, had been modeled as a 

particle with double integrator dynamics given by Equation (4). 

This section describes a method by which the double integrator 

dynamics can be extended to include the orientation of an agent. 

Figure 2 shows a schematic diagram of the mobile agent or 

vehicle.  

 
 

Figure 2: Schematic Representation of a Mobile Agent 

 

For modeling purposes, the agent is assumed to be a two 

dimensional circular entity with radius L, mass M, and moment 

of inertia J.  Let C(x,y) be the center of gravity of the agent, 
•

TX be the translational speed of the agent in the direction shown 

(θ) in the figure. Thus, one can write  
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Differentiating Equations (12) gives: 
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Coordinates of point P can be expressed in terms of robot’s 

orientation and coordinates of center of gravity C.  
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Differentiating Equation (14) twice yields the acceleration of 

point P:  
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Also,  
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where F is the force, and T is the torque applied to agent. 

From Equations (13), (15), and (16): 
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The control inputs F and T can be found as follows: 
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The vector 







=

y

x

u

u
u  is obtained from the artificial forces acting 

on the mobile agent due to its interaction with neighboring 

agents and virtual leaders, and is given by Equation (5) for 

agent ‘i’. 

RANDOM MOTION STRATEGY 
The coordinated control method based on artificial potential 

functions results in a stable flocking or schooling behavior, 

which is evident from the analysis shown in the previous section 
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based on Lyapunov function given by Equation (9). The stable 

flocking or schooling configuration is nothing but an 

equilibrium condition where the sum of forces acting on each 

agent arising from artificial interactions between agents and 

between agents and leaders are zero. In other words, the 

formation control into a schooling behavior can be seen as an 

optimization process in agent configuration space where the 

Lyapunov function is minimized. A negative gradient given by 

Equation (10) guarantees that the system discussed in the 

Section entitled “Artificial Potential Functions Based Control” 

will reach a configuration where the Lyapunov function is 

minimum, and desired formation is achieved.  

The achievement of desired and stable equilibrium 

configuration mentioned above, however, is based on an 

assumption that each agent has the knowledge of the position of 

all other neighboring agents and leaders, and the underlying 

graph of the whole system is connected. In practical situations, 

this can be achieved via communicating positional information 

of all agents and leaders to all agents. However, this kind of 

strategy will result into huge communication overload. 

Moreover, the existence of a central sensing system (to 

determine position of all agents) and central communication 

system would compromise the decentralized nature of the 

control system. The use of a central communication system can 

be avoided if the agents are equipped with sensors which can 

provide positional information of the neighbors. However, 

without the use of a communication channel, the concept of 

virtual leaders cannot be used. The leaders need to be real 

among the agents which can be sensed by the agents, and which 

can be separately controlled so that leaders can follow a desired 

trajectory to steer the agents. The use of onboard sensors has its 

own limitations. Sensors have limited range, and their 

measurements can be noisy.   

A formation control system based on artificial potential due 

to interactions between neighboring agents can essentially be 

regarded as a particle swarm optimization [19] process where a 

large number of agents (or particles) are searching for the 

globally optimal point (or globally stable equilibrium 

formation). While such a method may be inherently robust to 

noise in sensor measurements, sensor limitation arising due to 

range of the sensors will be detrimental. The range limitation of 

sensors results in agent’s partial or local knowledge about the 

surrounding. A control system based on the above method 

should be able to stabilize itself based on local information 

when the interactions between all of its agents are complete. In 

other words, if the interaction between agents (and leaders) are 

modeled as a graph, and if the graph is connected (i.e., no node 

or group of nodes are isolated), then the above method should 

be able to find the globally stable equilibrium formation. 

However, if there is an agent or a group of agents that is not 

connected to the rest of the graph (i.e., it forms disconnected 

subgraph), then system may not form a globally stable single 
5 Copyright © 2007 by ASME Copyright © 2007 by ASME
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cluster. In the formation control problem where the leaders steer 

the agents, agents must be connected to the leaders via a chain 

of links for the group to be able to follow the desired trajectory. 

Hence, all isolated subgraphs that do not contain leaders as 

member nodes will follow an arbitrary trajectory, and that group 

may or may not find any leader to follow. 

In this paper, a random motion has been used as a strategy to 

find leaders in case such isolation happens. Completely random 

search techniques may not provide results in a finite time. 

However, they have been widely used as a component in several 

deterministic and stochastic search algorithms. For example, 

evolutionary search algorithms [20] have heavy stochastic 

components (choice of chromosomes for reproduction, 

crossover, and mutation are driven by probabilities based on 

their fitness function).  Mutation process, which is a random 

change in bits representing chromosome (or possible solution), 

is largely responsible for the global optimization capabilities of 

evolutionary algorithms. Reinforcement learning techniques 

[21] have two components: exploitation and exploration. 

Exploration is nothing but a random walk in the search space 

that makes the algorithm investigate new regions. Bateson [22] 

calls the mind as a stochastic system and cognitive learning 

process a stochastic process. Contemporary cognitive scientists 

consider mental processes as stochastic processes such as 

evolutionary algorithms where hypotheses or ideas are 

proposed, tested, and either accepted or rejected by a 

population. Random or trial-and-error learning techniques 

provide ways to create new varieties of solutions for problems. 

Random behavior is ubiquitous in biological systems. Chaotic 

behavior of a hooked fish, random behavior among preys for 

predator avoidance, and zig-zagging of a chased rabbit through 

a meadow are all examples of existence and heavy use of 

random behaviors among animals. Lorenz [23], in his intuitive 

chapter entitled “Oscillation and Fluctuation as Cognitive 

Functions”, has described the importance of a random behavior 

in organisms’ motion for search as well as for escaping dangers. 

This paper proposes to use this kind of random behavior as a 

component in the artificial potential function method that can 

improve the chances that the system reaches the globally 

optimal configuration. The control force on agent i has now 

three components, and is given by: 

 
R

i

v

iiqi ffVu
i

++−∇=     (19) 

 

where 
R

if  is the random component given by: 

ξDf R

i =      (20) 

 

where ξ is the Gaussian random process of unit variance, and 

D  is the matrix that scales the random component, and 

DDT
is the covariance of the random component. 
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There should be a few specific considerations while 

designing this random component of force. These 

considerations, as well as corresponding analyses, are provided 

below: 

i. The magnitude of the random component should not be 

large which can result into unstable and non-cohesive 

group. In terms of Lyapunov function analysis, this 

translates to: 
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Or, if ( ) ( )pqLFpqL R
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
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then ( )qL
^

′  should still be a positive semi-definite matrix, 

where 
NmR RF ∈ is a vector of random component of 

force for all agents.  

ii. At the same time, this random component should be large 

enough so as to be able to impart enough energy to the 

agent (belonging to the sub-group which is stuck in local 

minimum) to enable it to get out of local minimum valley. 

The magnitude of random component applied on an agent 

should depend on how many agents are in the subgroup 

(subgraph) that the agent is a part of. More the number of 

agents in the subgroup implies that more deep is the valley 

created by addition of potentials and more energy is 

required to break free if an agent needs to break free of 

this potential barrier. In other words: 

N

N
f

a

iR

i ∝      (23) 

where 
a

iN  is the cardinality of set 
a

iN which is the set 

of agents belonging to the neighborhood of agent i.  

iii. If a subgroup has a leader in it, then the agents belonging 

to this subgroup should experience lesser magnitude of 

random component. Lesser magnitude of random 

component will prevent an agent belonging to such 

subgroup from breaking free. Providing lesser magnitude 

of random component can be achieved by adequately 

inversely scaling the random component with respect to 

number of leaders in the subgroup. In other words: 

l

i

l
R

i
N

N
f ∝     (24) 
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Dow
where 
l

iN is the cardinality of set 
l

iN , which is the set of 

leaders belonging to the neighborhood of agent i, and 
lN is the total number of leaders in the system. 

SIMULATIONS AND DISCUSSIONS OF RESULTS 
The effectiveness of the proposed random motion strategy 

was verified with the help of simulations carried out on a group 

of twenty agents (N=20) and two leaders ( 2=lN ). The 

following parameters were assumed for the simulations: 

M=1kg, J=1 kgm
2
, L=0.1m, d0=h0=5m, d1=h1=22m, ai=ah=5. 

The values d1, h1 represent the range of sensor beyond which 

sensor cannot measure. 

Simulation results are shown in Figures 3 to 6. Figures 3 to 4 

represent the results obtained for simulations carried out when 

the random motion component was not present (Case 1) in the 

control strategy. And, Figures 5 to 6 represent the results when 

the random motion component was present (Case 2). 
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Figure 3: Average Speed (Top) and Average Orientation 

(Bottom) of Agents (Case 1) 
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Figure 4: Configuration of Agents and Leaders (Case 1) in X-

Y Plane at time T=0 Sec (Top), T=75 Sec (Middle), and T=150 

Sec (Bottom) 
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Figure 5: Average Speed (Top) and Average Orientation 

(Bottom) of Agents (Case 2) 
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Figure 6: Configuration of Agents and Leaders (Case 2) in X-

Y Plane at time T=0 Sec (Top), T=75 Sec (Middle), and T=150 

Sec (Bottom) 

 

In Figure 3 and Figure 5, the dashed lines represent the 

reference trajectory that leaders are following. It can be seen 

from these figures that, for Case 2, agents on an average align 

with the reference trajectory better than for Case 1. Similarly, 

Figures 4 and 6 show the configuration of the mobile agents at 

times T=0, 75, and 150 seconds. Agents are represented by 

‘dots’ with short tail (showing orientation), and leaders are 

represented by ‘stars’. Initial configuration for both Case 1 and 

Case 2 are the same. For Case 1, the number of agents with the 

leaders is 9 (out of total 20). For Case 2, this number is 17 

which shows a drastic improvement (which are also evident 

from Figures 3 and 5.  

The above results were based on a single pair of 

simulations. In order to study the average effect of random 

motion, fifty (50) pairs of simulations were performed. The 

number of agents in the group that contained leaders is plotted 
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in Figure 7 for Case 1 and Case 2, for 50 different simulations 

where each simulation started with a random initial 

configuration of agents. The average number of agents in the 

subgroup with leaders for Case 1 is 11.7, and that for Case 2 is 

12.98. 
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Figure 7: Number of Agents in the Subgroup that Contains 

Leaders 

 

The component of random motion in the second case leads 

to better results because random behavior of isolated agent or 

group of agents makes it more likely that they will find leaders 

or other agents that are connected to leaders. Although, random 

behavior does not guarantee better performance in finite time 

and in every example, a controlled randomization does improve 

the chances of system providing better performance. 

CONCLUSIONS 
The paper has presented an innovative mechanism to add 

designed random behavior to mobile agents which facilitated an 

effective formation control of multiple mobile agents in 

presence of sensor range limitations. The range limitation of 

onboard sensors results in the local information available to 

mobile agents. Formation of a global and stable cluster based 

on local information may not be possible due to isolation of 

agents or group of agents. The proposed method adds a 

component representing random motion to a method based on 

artificial potential functions. The random motion is applied to 

mobile agents by providing random yet designed magnitude of 

control while taking the stability of the group into 

consideration. Extensive simulations performed on a group of 

mobile agents and leaders confirmed that the chances of global 

formation of cluster following desired reference trajectory with 

large number of agents are better with the proposed method. 
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