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PURPOSE. Zernike polynomials have been successfully used for
approximately 70 years in many different fields of optics. Nev-
ertheless, there are some recent discussions regarding the
precision and accuracy of these polynomials when applied to
surfaces such as the human cornea. The main objective of this
work was to investigate the absolute accuracy of Zernike poly-
nomials of different orders when fitting several types of theo-
retical corneal and wave-front surface data.

METHODS. A set of synthetic surfaces resembling several com-
mon corneal anomalies was sampled by using cylindrical coor-
dinates to simulate the height output files of commercial video-
keratography systems. The same surfaces were used to
compute the optical path difference (wave-front [WF] error),
by using a simple ray-tracing procedure. Corneal surface and
WF error was fit by using a least-squares algorithm and Zernike
polynomials of different orders, varying from 1 to 36 OSA-VSIA
convention terms.

RESULTS. The root mean square error (RMSE) ranged—from the
most symmetric corneal surface (spherical shape) through the
most complex shape (after radial keratotomy [RK]) for both
the optical path difference and the surface elevation for 1
through 36 Zernike terms—from 421.4 to 0.8 �m and 421.4 to
8.2 �m, respectively. The mean RMSE for the maximum
Zernike terms for both surfaces was 4.5 �m.

CONCLUSIONS. These results suggest that, for surfaces such as
that present after RK, in keratoconus, or after keratoplasty,
even more than 36 terms may be necessary to obtain minimum
accuracy requirements. The author suggests that the number
of Zernike polynomials should not be a global fixed conven-
tional or generally accepted value but rather a number based
on specific surface properties and desired accuracy. (Invest Oph-
thalmol Vis Sci. 2005;46:1915–1926) DOI:10.1167/iovs.04-1222

Zernike polynomials (ZPs) are named after Fritz Zernike,
who proposed them in 1934.1 Zernike was a Dutch phys-

icist who worked in several fields of optics and won the Nobel
Prize for inventing the phase-contrast microscope in 1935.2

This instrument is still used today to study biological speci-
mens without the need for dyes. Dyes can help in the visual-
ization process by emphasizing contrast but usually spoil the
sample.

After Zernike proposed the ZPs they became rapidly popu-
lar among the optical community, perhaps because of certain

special properties that allow them to be applied in cases in
which the Seidel polynomials (SPs) are not applicable. ZPs
have been applied successfully to the field of optics, optical
engineering, and astronomy for the past 70 years.3 Although
they have only been applied more recently to the description
of the optical aberrations of the human eye,4,5 they have
become a standard in this field also.6 Nevertheless, there have
been some recent discussions (Smolek MK, et al. IOVS 1997;
38:ARVO Abstract 4298; Smolek MK, et al. IOVS 2002;43:
ARVO E-Abstract 3943)7–10 among colleagues in the eye care
community regarding the accuracy and even the usefulness of
these polynomials, specifically for application in the visual
sciences. There are arguments that ZPs are not sufficient to
represent visually significant aberrations,7,8 and other investi-
gators9,10 have stated that ZPs should be used carefully when
fitting complex surfaces.

The main objective in this work was to conduct a quanti-
tative study of the accuracy of ZPs when applied to typical
surfaces in visual optics, ignoring all sources of noise that exist
in any real system. The objective was not to redefine what are
or are not the visually significant aberrations of the in vivo eye.
This subject has been exhaustively discussed in the specialized
literature. To conduct a thorough quantitative analysis of the
accuracy of ZPs as a method for fitting visual-related surfaces,
such as corneal elevation and eye and corneal aberrations, I
think it is important not only to conduct experiments using
third-party software11 on corneal elevation and/or wave-front
(WF) data from in vivo eyes, but also to implement this method
on theoretical surfaces, synthetically generated by computer
algorithms, which eliminates the problem of videokeratogra-
phy measurement errors12,13 and even avoids the limitations of
the molding process of test surfaces on lathes, which are
usually limited to spherical, ellipsoidal, or parabolic surfaces.
In the analysis conducted in this study I applied ZPs in many
different ways and to different theoretical surfaces, avoiding
problems such as misalignment, data noise from image pro-
cessing, and the other just-mentioned technical limitations.
This may give an insight into the intrinsic relations between
actual surface irregularities and accuracy when fitting them
with ZPs.

It should be emphasized that I had no intention of proving
that ZPs are the perfect fitting method for general videoker-
atography and wave-front instrumentation. To do so, it would
be necessary to analyze each instrument available in the mar-
ket, which is quite impossible. What is possible, and was
implemented in this study, is to analyze how well these poly-
nomials perform in typical videokeratography and wave-front
surfaces. If one commercial instrument has much greater noise
than another during the image-processing phase, for example,
of course the Zernike fit will provide different accuracy and
different propagation of error with this specific instrument.

It should also be stated that, even though actual data from
real instruments containing noise were not the point of this
study, fitting methods such as ZPs are certainly more advanta-
geous than interpolating methods when one is searching for
precise mathematical representations of visual optics surfaces.

The VSIA6 convention, which has recently also become an
ANSI standard,14 determines, among other aspects, the nomen-
clature that should be used to refer to each Zernike coefficient,
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to avoid confusion when comparing results from different
instrumentation, but does not suggest an upper limit to the
number of terms. Nevertheless, many researchers and manu-
factures throughout the eye care community are currently
using, at most, the first 36 terms, regardless of the application.
The computations shown herein suggest that the ideal number
of Zernike terms should not be a fixed standard for any general
surface, but rather one that would allow for a minimum stan-
dard error for specific types of surfaces that are being repre-
sented by ZPs.

METHODS

Wave Aberration

To understand the importance of ZPs to the field of optics, it is
necessary to understand the context in which they are applied and
why they may be more efficient than other available methods. To do
so, I start by explaining the meaning of WF and wave aberration
(sometimes also referred to wave-aberration function or wave-front
error—which will be abbreviated herein simply as W).

The concept of WF is simple to understand based on the diagram
in Figure 1A. The imaginary surface that unites the wave tips of rays of
the same phase (or the same optical path) form a virtual surface that is
called the wavefront. It may be a perfect sphere, as the WF of any point
source of light should ideally be, or it may have a distorted or irregular
pattern, which is the case for in vivo eyes and most practical optical

systems. A perfect optical system, from a geometric optics point of
view, is one that redirects all refracting rays from object point to a
single conjugate image point (Fig. 1B). For a perfect optical system, the
WF leaving the refracting surface must be centered on the image point,
forming a spherical WF. This fact relies on Fermat’s principle of least
time, which states that the optical path of the principal and marginal
rays should be identical.

In this sense, the objective of a lens designer is to produce an
optical system that forms a perfect image at image space. The
problem is that there is also an economic factor involved. Usually
optical materials of uniform refractive indexes and lenses with
spherical surfaces are much more cost effective. Paraxial rays usu-
ally form a good-quality image for these systems, but marginal rays
degrade them. The departure from a perfect image is called wave
aberration and is illustrated in Figure 2. Because spherical surfaces
intrinsically generate undesired differences in the optical path for
different rays, the lens designer usually has to group several lenses
with different parameters to obtain the best possible image. There
are arguments toward a similar solution regarding the human
eye15,16 (although we do not know whether nature did this also for
economic reasons!). Fortunately, today there are several very so-
phisticated optical design software programs that make this task
much less empiric than it was years ago.3

A WF with aberrations may be described by comparing it with a
reference WF, which is usually chosen to be the spherical WF that
leaves the exit pupil (Fig. 2). The reference WF has its vertex tangent

FIGURE 1. Diagrams illustrating the
definition of (A) a WF and (B) a per-
fect optical system.

FIGURE 2. Definition of the WF
function, also called the optical path
difference or wave-aberration (W)
function. The WF aberration func-
tion W is determined by comparing
the actual WF leaving the exit pupil
with a reference surface, which is an
ideal spherical WF. The actual exit
pupil is not shown, but may be as-
sumed to be tangential to the apex of
the back surface of the lens and to
have the same diameter as the lens.
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to the exit pupil and is centered on the image point with a radius of
curvature R. For each point on the exit pupil, the optical path differ-
ence (OPD), represented by the wave-aberration function (W), is mea-
sured between the spherical reference surface and the aberrated WF
along the radius of the reference surface. The wave aberration is
usually described as a function of Cartesian or Polar coordinates
(W(x,y) or W(�,�)) obtained over the exit pupil, which is now used to
describe the wave aberration in a continuous format.

There are several methods of representing the aberration function
W. The usual procedure is to represent it as a polynomial expansion.
This is very useful because each term of the expansion may itself
represent a specific type of aberration and also may determine how
much of it is present on the entire WF. There are two sets of such
polynomials that traditionally have been used for the description of the
aberration function. In optical design the Seidel polynomials are typ-
ically used. In optical testing and measurement, W usually has to be
deciphered (and not chosen or minimized, as happens in optical
design), and the procedure that became common is to fit W with a set
of ZPs. I will briefly describe the SPs and some of their terms, to show
why they are different from ZPs and why ZPs are a better solution for
more complex applications.

Seidel Polynomials

SPs are usually represented in a polar coordinate system (�,�) at the
exit pupil where � is the radial distance and � is the polar angle. The
wave-aberration function W can be represented mathematically by a
set of SPs by

W��,�� � �
i,j,k

Cijk Hi �j cosk �, (1)

where Cijk is the WF aberration coefficient, H is the fractional image/
object height for the chief ray, and the other terms are the radial order
and polar frequency. The use of normalized pupil coordinates is a
matter of convenience, and dimensionality is maintained by the Cijk

coefficient.

The SPs are defined as the five lower-order terms where i � j � 4
in the expansion given by equation 1. The most familiar aberrations are
spherical aberration, coma, astigmatism, field of curvature, and distor-
tion. Figure 3 shows two- and three-dimensional representations of
some of the Seidel aberrations.

Although the SPs may be used to represent most of the common
aberrations present in optical systems, there are certain restrictions.
These restrictions arise as soon as the optical system becomes nonro-
tationally symmetric, which happens when an optical component is
tilted or decentralized, relative to the optic axis. This is certainly a
major problem in visual optics.17 When decentralization and tilt are
present, there is no term in the SP expansion that can account for the
wave aberration induced, because SPs are based on rotationally sym-
metric terms. When this problem arises, ZPs make a difference. As will
be shown in the next section, they have all the invariance, normaliza-
tion, and other interesting properties of the Seidel expansion, but they
can also account for a more complete set of possible optical imperfec-
tions.

Special Properties of ZPs

ZPs have certain special properties that make them an interesting
expansion set for the description of general surfaces in the fields of
optical engineering and in physiological optics. First, some of these
properties will be depicted, and later, simulations will be conducted to
confirm this affirmation. The ZPs themselves will not be formally
introduced nor will the theory behind their recursive equations for
generating individual terms, given that most of the vision science
community should be acquainted by now with these fundamental
concepts and also because this is a thoroughly covered topic in the
specialized literature.1,5,12,13

ZP properties may be summarized by stating that they form a
“complete set of orthonormal polynomials” in the three-dimensional
space inside the unit circle domain.1 This guarantees that one may fit
any piece-wise continuous surface in space, given that a sufficiently
large number of terms are used. This is certainly the case for most
corneas18 that have not undergone physical trauma, early post-kerato-

FIGURE 3. A plot (MatLab; the Math-
Works, Natic, MA) of some of the
most common Seidel aberrations,
represented in two- and three-dimen-
sional format. The third-order ap-
proximation of aberration theory
leads to what are called the primary
aberrations. (In the United Kingdom,
these aberrations are viewed as the
first-order corrections to the paraxial
theory, whereas in the United States
they are viewed as the third-order
correction to the first-order theory.)
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plasty, in keratitis, or in any other severe disease that may cause abrupt
changes in curvature.

To demonstrate this fact, I will revise some of the theory behind the
properties of these polynomials and also provide examples with a
well-known power series. I will demonstrate that for a limited number
of terms in a power series or a polynomial series there should also be
limited accuracy in data fitting. This may seem quite an obvious
affirmation and should be valid for any fitting method applied to any
typical problem, but what is not so obvious is how this fitting accuracy
varies for specific types of surfaces and at what cost/benefits in terms
of computational time, which is one of the objectives of this study.
Because Fourier series (FS) have analogous properties when compared
with ZPs, I will begin to demonstrate this fact by using FS for a simple
signal and then for a more complex signal. Afterward ZPs will be
applied to both simple and more complex surfaces.

A FS may be defined as the expansion of a function f(x) as an
infinite summation of sines and cosines with different coefficients and
arguments. Its general expression is given by

f�x� �
1

2
a0 � �

n�1

�

an cos �nx� � �
n�1

�

bn sin �nx� (2)

where the coefficients in the equation are given by

a0 �
1

��
��

�

f�x�dx, (3)

an �
1

��
��

�

f�x� cos �nx�dx, (4)

and

bn �
1

��
��

�

f�x� sin �nx�dx. (5)

FS are an elegant and simple method to break up a periodic function
into a set of simple terms to fit a solution to whatever the desired
accuracy. One of the main applications of a FS is to allow the segmen-
tation of complex signals (whether they are in image-processing appli-
cations or electric engineering, for example) into its basic frequen-
cies—so that a noisy signal may be represented by a set of well-
behaved periodic functions, each with its own frequency and
amplitude. Figure 4 shows two completely different types of signals:
(A) a simple sinusoidal wave given by a sine function and (B) a square
wave composed of several different frequencies. Superimposed on
these signals are several successive attempts to fit them with FS with a
different number of terms. It can be easily seen that for type 1, the
increase in the number of terms (frequencies) in the FS has little
consequence after a certain number of terms. (Actually, after the
second term is added, the accuracy changes very little, because this is
the original number of terms used to generate f(x).) For signal type 2,
the story is different. Because the signal is much more complex (has
several frequencies associated with it) the truncation of the FS at
different frequencies has significant influence on accuracy.

To demonstrate the errors associated with a different number of
terms when fitting a function f(x) with an FS we calculated the root
mean square error (RMSE) associated with each function, given by

RMSE � ��f � IFn�2, (6)

where IFn represents the FS up to the nth order. Results for a succes-
sive number of terms for the square wave and sinusoidal functions are
provided in Table 1.

As shown in Table 1 and the graph in Figure 5, as the number of
terms increase, RMSE decreases, as expected. This decline is in agree-
ment with the fact that I have mentioned, but notice that, for a less
complex function (one that contains less components), the RMSE
decreases more rapidly after a given term. Why does this happen? What
are the fundamental mathematical properties of the FS (and as will be
shown, also of ZPs) that make them suitable for such fitting proce-
dures, and why are the errors associated in the fitting process so
closely related to the number of terms? These properties lay behind the
concepts of “othogonality” and “completeness”; the formal definition
of these terms follows.

Two functions (the terms “functions” and “polynomials” are used
interchangeably), f(x) and g(x), are said to be orthogonal over the
interval a � x � b with weighting function w(x) if

�f�x�|g�x�� � �
a

b

f�x�g�x�w�x�dx � 0, (7)

and, in addition, if also

�
a

b

�f�x��2 w�x�dx � 1 (8)

and

�
a

b

�g�x��2 w�x�dx � 1, (9)

the functions are also said to be “normalized.” When functions are both
orthogonal and normalized, they are called “orthonormal.” If the set of
functions and polynomials has more than two terms, the generalized
form of these properties, if each term is represented by 	, is

�
a

b

w�x�	n�x�	m�x�dx � 
mncn, (10)

where n and m represent the indexes of each polynomial, Cn is a
constant and, when it assumes a value of 1, the polynomials are also
normalized, and 
 represents the Kronecker delta19 and assumes a
value of 0 if m � n and 1 if m 	 n. The general properties given by
equations (7–10) are also applicable to functions or polynomials de-
fined in larger domains (such as the x–y plane). The only difference is
that a double integral should be implemented. The orthonormal func-
tions are also said to be “complete” in the closed interval x � (a,b) if,
for every piece-wise continuous function f(x) in this interval, the
squared error

En � �f � �c1	1 � c2	2 � c3	3 � . . .cn	n��
2 (11)

converges to 0 as n3�. Symbolically, a set of functions is complete if
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lim
m3�

�
a

b

�f�x� � �
n�0

m

cn	n�x��2w�x�dx � 0 (12)

for every value of x in the considered interval. If this same concept is
applied to a set of functions or polynomials for which the domain now
is the x,y plane, the symbolic representation becomes

lim
m3�

�
a

b

�
c

d

�f�x,y� � �
n�0

m

cn	n�x,y��2w�x,y�dxdy � 0, (13)

where the closed interval is defined both in the x-axis (a,b) and the
y-axis (c,d). Also, if these polynomials are in cylindrical coordinates—
that is, 	(�,�)—then equation 13 can be written in terms of these new

FIGURE 4. (A) Sinusoidal and (B)
square-wave functions, with differ-
ent-order Fourier fittings.
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coordinates, and the limiting interval will also be determined by (�,�).
More specifically, it is useful to write these polynomials in cylindrical
coordinates when the domain has polar symmetry, which often hap-
pens in the case of optical apertures and also the human pupil. This is
why the VSIA standards for ZPs are given in cylindrical coordinates.
ZPs also obey all the properties discussed thus far—a fact that is not
proven herein, given that there are very good references that demon-
strate these properties and also for the sake of brevity. The reader is
directed to Born1 for a thorough discussion and demonstration of these
properties and also an explanation of the recursive formulas for gen-
erating ZPs of any order. In this way, it can also be affirmed that ZPs
form a “complete set of orthonormal polynomials” inside the unit
circle domain (0 � 1, 0 � 2�).

To determine the efficiency of ZPs in fitting simple and complex
surfaces, the same techniques applied in the above example using FS

were applied to synthetic corneas and synthetic OPD aberrations
calculated using these corneas. The following section explains how
these surfaces were generated.

Synthetic Corneal Surfaces

Several surfaces that resemble typical corneal shapes were used, such
as spherical, ellipsoid, ellipsotoric, keratoconic, and post-radial kera-
tectomy (post-RK). Based on the coordinate system shown in Figure 6
shapes were as follows.

Spheres, Ellipsoids, and Ellipsotorics. For the ellipsotoric
family the equation

� � �2zcra � pzc
2 (14)

was used, where ra is the apical radius, p � 1 � e2 is the “shape
factor,” and e is the eccentricity. When e is set to 0, the shape factor
is 1, and equation 14 becomes a sphere with radius ra. Another typical
parameter is the “asphericity” (Q) of the surface, which is equal to �e2,
so that the shape factor may also be written as p � 1 � Q. To model
an astigmatic cornea, an ellipsotoric surface20 was used, where the
apical radius is a function of the polar angle (�)

ra��� �
1

� 1

rh
� �1

rv
�

1

rh
� sin2��, (15)

where rv and rh are the vertical and horizontal apical radii, respec-
tively.

Varying these parameters allows simple spherical surfaces to astig-
matic surfaces to be generated with elliptic profiles of different eccen-
tricities.

Keratoconus. For the keratoconic surface the following para-
metric equation was applied

TABLE 1. RMSE for the Sine and Square-Wave Functions

n
Sine

Function
Square-Wave

Function

1 0.5671 0.8800
2 0.3108 0.5373
3 0.2962 0.5035
4 0.2965 0.4962
5 0.2854 0.4400
6 0.2854 0.4400
7 0.2817 0.3838
8 0.2897 0.3765
9 0.2849 0.3427

The abrupt error minimization after the second term is included in
the sine approximation, and the low variation after that. On the
contrary, for the square wave, there was a gradual error minimization
as the number of terms successively increased. Truncation of the RMSE
at the fourth significant algorithm was purely arbitrary and has no
relation to the intrinsic floating-point precision for inverse Fourier
transform calculations in the software (MatLab; The MathWorks,
Natick, MA).

FIGURE 5. The RMSE for the FS fit
for the sine and square-wave func-
tions. The series associated with the
simpler symmetry (fewer frequen-
cies) converges to 0 more rapidly
than that associated with the square
wave. Also, it requires fewer terms to
converge to a lower RMSE.
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zc � �
r0 � �r0

2 � �2

r0 � �r0
2 � �2 �

a

2�1 � cos �� � � �1

�2 � �1
��

r0 � �r0
2 � �2

	 for 0 � � � �1

for �1 � � � �2.
for �2 � � � �3

(16)

Parameter a is keratoconus intensity. This surface has continuous
curvature (proportional to the second derivative), an important feature
to mimic in vivo corneal surfaces.18 Although decentralized keratoco-
nus is also common in in vivo eyes, this surface mimics a centralized
keratoconus—that is, one for which the apex coincides with the
intersection of the optic axis with the anterior cornea. This simplifies
the computational efforts of synthetic Placido image simulation. There
is also the possibility of tilting this surface by using rotation and
translation transformation matrices commonly used in computer
graphics,21,22 to obtain decentralized keratoconus. This was not imple-
mented in the present work for the sake of brevity, although it is
certainly an important analysis to undertake in further work.

Post-Radial Keratectomy. An equation suggested by Klein,18

a generalized version of a surface proposed by Rand et al.,23 was used
for the post-RK cornea

zc � r0 � �r0
2 � �2 � a cos �8��R���, (17)

where the corneal height (z) is now a function of the axial distance (�)
and the polar angle (�). R is a parametric factor that depends on the
axial distance, so that

R��� � �
0

1 � cos ��
�� � �1�

�2 � �1
�

0
	 for � � �1

for �1 � � � �2

for � � �2

(18)

where a here is the “wound intensity,” proportional to the depth of the
scalped incisions. This surface is a sphere of radius r0 with an added
sinusoidal corrugation. Table 2 is a list of surfaces that were used in the
simulations and their respective parameters, according to the descrip-
tion just provided.

Examples of in-focus simulated Placido images for surfaces A
through I are shown in Figure 7. The ZP fit of the surface profiles were
compared to the original surface points for each Placido disc (polar
coordinates). The RMSE for the entire surface was computed as

RMSE �
1

5760 �
n�1

16 �
��1

360

�
z����,n�,�� � zc����,n�,���2�1/2, (19)

where z is the ZP fit of the corneal height, zc is the theoretical surface
height computed from equations 12, 13, 15, 16, and 17, and the �
values are presented in their parameterized form—that is, as a function
of polar angle (�) and Placido disc (n). An analogous procedure was
implemented to compute the errors associated with the WF error fit.

Generating the Aberration Function from Corneal
Height Data

The second type of surface in which the ZP expansion was tested is the
OPD computed from the synthetic corneas given in the previous
section. This section explains the method used to generate OPD
points. The diagram shown in Figure 8 illustrates the method used for
optical aberration calculations.

Figure 8 illustrates the image formation by a refracting surface
separating two media of different refractive indexes (n and n�). An
object point at position (P) localized at the object plane (O) has its
image formed at point (P�) on the image plane (I). A marginal ray
intersects the exit pupil at some point (�c,�c) on the corneal surface. W

FIGURE 6. Cylindrical coordinate system for representation of corneal
and WF elevation data.

TABLE 2. Surfaces Used in the Simulation

Surface Description Equation Parameters

A Sphere 14 p � 1, ra � 7.80
B Ellipsoid 14 p � 0.50, ra � 7.80
C Ellipsotoric 14,15 p � 0.75, rh � 7.50, rv � 8.00
D Ellipsotoric 14,15 p � 0.50, rh � 8.00, rv � 7.50
E Ellipsotoric 14,15 p � 0.30, rh � 9.00, rv � 7.00
F Keratoconic 16 a � 0.0125, �1 � 1.00, �2 � 3.00, r0 � 7.00
G Keratoconic 16 a � 0.0250, �1 � 1.50, �2 � 3.00, r0 � 8.00
H Keratoconic 16 a � 0.0500, �1 � 2.00, �2 � 3.00, r0 � 9.00
I Post-RK 17,18 a � 0.0250, �1 � 2.00, �2 � 4.00, r0 � 7.00
J Post-RK 17,18 a � 0.0500, �1 � 2.00, �2 � 5.00, r0 � 8.00

Parameters were chosen in accordance with two principles: (1) published values of typical corneal
shape factors (p) and (2) values that generated severe surface curvature changes resembling cases of
astigmatism, keratoconus, and post-RK. Surfaces are separated into three families: ellipsotoric (A–E),
keratoconic (F–H), and post-RK (I, J).
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along the marginal ray is calculated as the difference in optical path
length from the chief ray. For a single ray

W � nl � nl� � ns � ns�. (20)

The object distance (s) is chosen to be at infinity (6 m), and the image
distance s� is calculated by approximating the cornea to a lens, with
radius (rm) calculated from the mean value of all axial radii of curvature
of the surface

rm �
1

360 �
n�1,��1

16, 360
���,n�

sin ���,n�
(21)

where

���,n� � arctan � ���,n�

ra � zc��,n��, (22)

where ra is the apical radius (computed in the corneal elevation
simulation phase). Alternatively, but with little loss in precision and
generalization, the paraxial approximation may be applied and the rm

is then replaced by the apical radius of curvature. When the surface is
astigmatic, the mean value of the vertical plus horizontal radii may be
used [(rv � rh)/2].

For the s3� assumption, the focal distance of the lens is equal to
the image distance (s� � f) and the Lens Maker equation with a single
refracting surface of radius rm may be applied

1

s
�

1

f
�

n� � n

rm
. (23)

After s� is determined, the distances of the marginal and chief rays
can be computed, and equation 20 can be applied over the entire
Placido image domain

W � n��zc � s�2 � xc
2 � yc

2 � n���s� � zc�
2 � xc

2 � yc
2 � ns � n�s�,

(24)

where W, zc, xc, and yc are all parameterized functions of (�(�,n), �).
From this equation, the optical aberration (�,�) for each corneal sur-
face point zc(�,�) obtained from the theoretical surface can be calcu-
lated.

FIGURE 7. Simulated Placido images
obtained for surfaces listed in Table 1
using the ray-tracing procedures de-
scribed elsewhere.12 The central
crosses are 5 � 5 mm and may be
used as qualitative reference to show
the changes in Placido image size as
the surface becomes more or less
prolate, more or less astigmatic, and
so on.

FIGURE 8. The ray-tracing proce-
dure for wave-aberration calculation
based on the synthetic corneal data.
The WF error function W was calcu-
lated for all surfaces shown in Table
2 and an exit pupil of 8 mm in diam-
eter was used in all cases.
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Figure 7 shows that the Placido image dimensions vary over the
Cartesian planes of different synthetic surfaces. This happens because
in the simulation algorithms presented in the previous section, the
surface minimum and maximum height were the limiting parameters
for computation of Cartesian positions of discs, and not the contrary
(for more implementation details please refer to Ref. 12). Because of
this implementation detail, all Placido image domains and exit pupil
domains of all the synthetic images were limited to a total radial
distance of 4 mm when computing the corneal elevation, optical
aberrations, and errors. This radial distance limit guarantees that all
Zernike fit errors for different surfaces are compared for domains
having the same area. Aberrations for smaller pupils were not com-
puted, because an 8-mm pupil maximizes aberration and at the same
time serves as a reasonable approximation of maximum in vivo pupil
sizes.24

The aberration data are fit to a set of ZPs, and the errors involved
are computed in a procedure analogous to the one used for the corneal
height, described in the previous section.

Fitting Corneal Elevation and WF with
Different-Order ZPs

To perform the fitting routines, I represented corneal elevation data or
wave-front aberration data as a parameterized function of polar coor-
dinates (�,�). This representation is illustrated in Figure 6. In this
manner, corneal or WF surface elevation can be approximated by the
series

zc���n,��,�� 
 �
j�0

36

CjZj���n,��,��, (25)

where � is a parametric function of the Placido disc number and angle
(n,�), Cj are the Zernike coefficients, and Zj are the ZPs.

To find the Zernike coefficients for a specific corneal height, a
minimum square fit is performed for all N data points. This procedure
consists of minimizing the sum

S � �
��1,n�1

360, 16


zc���n,��,�� � �
j�1

36

CjZj���n,��,���2 (26)

relative to each Zernike coefficient; dS/dCt � 0 for t � 1,. . . ,k, must
be found, where k is the total number of coefficients, so that

dS

dCt
� �

��1,n�1

360, 16

zc���n,��,��Zt���n,��,��

� �
j�1

36

Cj �
��1,n�1

360, 16

Zj���n,��,��Zt���n,��,�� � 0, (27)

from which we extract a linear system AC � b with 36 equations and
36 unknown values of C. By solving this linear system through con-
ventional procedures, such as the Gaussian elimination method, the
36 Zernike coefficients are found for each surface.

RESULTS

Figure 9 is a plot of the RMSEs for all corneal surfaces in Table
2 versus the number of Zernike terms used in the fitting
process. In Figure 10, the analogous results for the WF errors
calculated for each of these surfaces are shown.

DISCUSSION

As shown in Figure 9, errors for ZPs up to the third order
(from the first to the fourth terms) correspond to unaccept-
able errors that range from approximately 360 to 460 �m.
This is obviously the result of using a restricted number
of terms that cannot account for surface irregularities; more-
over, they are also not efficient, even in simple surfaces
such as spheres (surface A). At this stage, the RMSE has
apparently no strict relation to the complexity of the sur-

FIGURE 9. The RMSE of the corneal
surface as a function of the number
of ZP coefficients. The Zernike terms
were grouped into two categories
because the error range is �500 to 0
�m, which makes it difficult to visu-
alize small errors in a single graph.
The two groups included coefficients
1 to 4 and coefficients 5 to 36. Sur-
faces are as listed in Table 2, and
correspond to: A–E, the ellipsotoric
family; F–H, the keratoconic family;
and I, J, the post-RK family. A break
in the right panel y-axis was inserted
after five coefficients, to avoid super-
position of most of the lower errors,
due to an error of approximately 44
�m on surface E.
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face, given that lowest errors are associated with a kerato-
conic surface (H). The absence of such a relation is obvi-
ously a coincidence. The same behavior was observed in the
case of the WF error (Fig. 10), although errors were in a
lower range for third-order polynomials (from 45 to 80 �m,
approximately). This finding is an interesting fact, but it is
not difficult to understand why the errors were so much
lower for the WF error than they were for the corneal
surface. It is because, although corneal anomalies do prop-
agate to the WF aberration, the deviations involved in the
OPD are much more subtle than those of the corneal sur-
face, which is a positive factor that contributes to visual
acuity.

For the next sequence of coefficients (4–12; Fig. 9) errors
were in a much smaller range, from approximately 2.5 to 20
�m for the cornea and 2 to 10 �m for the WF error. In the case
of corneal surfaces in this second group, the order in which the
surfaces appeared is more coherent with the symmetry com-
plexity. But there are still more complex surfaces that result in
a lower RMSE than other simpler ones. The latter sequences
are where the errors are more coherent, in that they correlate
with what is expected, for both corneas and WF errors. The
RMSE diminishes as the surface shape becomes simpler—as
expected, since this behavior was also observed in the FS
examples.

Zernike coefficients are a reliable and well-established
method for representing optical aberrations in many fields of
optics, and they will probably continue to be a standard in
most fields of optics, including visual optics. Nevertheless, as
results of this work indicate, certain specific considerations
should be made when applying ZPs to different problems.
Depending on the complexity of the corneal and WF surfaces,
accuracy varies, from 421.4 to 0.8 �m, to 421.4 to 8.2 �m,
respectively, and the mean RMSE for a maximum of 36 Zernike
terms for both surfaces was 4.5 �m—a high error for most
applications in visual optics today involving wave-front and
videokeratography measurements. Klein18 has obtained accu-
racy of up to 0.1 �m for elevation of synthetic surfaces with an
algorithm that avoids the skew ray problem, and Guirao and

Artal13 have obtained accuracy of 0.2 �m in practical measure-
ments on test surfaces, using a commercial videokeratograph
and synthetic ellipsoidal surfaces.

In contrast, in regard to specific surfaces, examined one at
a time for the spherical surface, for example, after coefficient
number 10, errors were already very close to 2.0 �m. This
means that there are two ways in which ZPs could be success-
fully used: (1) If there were prior information or a parameter
that told in advance the complexity of the surface, certain
assumptions could be made regarding the necessary or suffi-
cient number of elements in the Zernike expansion; and (2) a
securely high number of terms could be used in all cases,
providing more reliable results both for simple and complex
surfaces. The great disadvantage of this second option is the
computational cost. The least-squares method used for calcu-
lating the ZP coefficients involves the inversion of a square
matrix. When the number of coefficients is doubled, the matrix
becomes four times greater, and so does the computing time.
This means that using 36 coefficients instead of 18, for exam-
ple, takes four times more computational time. In some cases,
this is not acceptable, depending on the type of application.
For laboratory instrumentation, computational time is, in most
cases, not such a relevant issue because most of what is done
is experimental in nature, and algorithms should be tested and
retested.25 On the contrary, for commercial diagnostic instru-
mentation used by eye care professionals, processing time
should be a major factor. With most commercial videokeratog-
raphy instruments available today, data processing takes only a
few seconds,26–29 which means that algorithms that take on
the order of minutes would be unacceptable for professional
clinical use. I used commercial programming language (MatLab;
The MathWorks, Natick, MA), input files which have the same
number of data points as the Eyesys videokeratograph (5760), and
three different IBM-compatible computers with processors and
RAM, respectively, of 1.6 GHz with 1 GB, 1.7 GHz with 1 GB,
and 1.7 GHz with 0.5 GB. Processing times for each number of
Zernike coefficients are illustrated in Figure 11.

The three curves were fit with second-order polynomials of
time (t) as a function of number of Zernike coefficients (n)

FIGURE 10. The RMSE for the WF
error (OPD) as a function of the num-
ber of ZP coefficients. ZPs and sur-
faces are grouped in the same man-
ner as described in Figure 9. A break
in the right panel y-axis was inserted
after five coefficients, to avoid super-
position of most of the lower errors,
due to an error of approximately 36
�m on surface E.
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t�n� � 0.0303n2 � 0.0057n � 0.1113 (28)

and

t�n� � 0.0253n2 � 0.0449n � 0.1415 (29)

where equation 29 refers to the 1.6-GHz computer data and
equation 29 refers to both 1.7-GHz computers, since there was
practically no difference in processing time for the latter com-
puters, regardless of the quantity of RAM. From the graphs
shown in Figure 11, the meaning of “acceptable processing
times,” at least for commercially available systems, should be-
come clearer. Of course, there is no universally accepted stan-
dard for the least or the most time an eye care instrument
should take to process patient data. Nevertheless, common
sense tells us that an instrument that would take more than half
an hour to process and print the results of patient examinations
would probably have very little success among eye care pro-
fessionals in today’s fast-paced world. Moreover, extrapolating
both graphs shown in Figure 11, using equations 28 and, 29 for
a total of 72 coefficients, for example, shows that times would
be 157.5901 and 134.0723 minutes, respectively, for the 1.6-
and 1.7-GHz processors. These processing times are more than
100 times greater than are obtained with typical commercially
available videokeratographs.27

For more quantitative values regarding times needed for
phases before the specific Zernike coefficient processing, such
as the image-processing phase, for both videokeratography
systems and WF instrumentation, there are several resources
(see Refs. 25–29).

Future work should be undertaken to make other practical
conclusions regarding the most efficient procedures for appli-
cation of ZPs in visual optics. A study should be conducted to
recalculate the ZP coefficients of surfaces such as those pre-
sented herein for more than 36 terms, and an analysis should
be made of the computational efficiency in terms of the desired
accuracy when fitting complex surfaces. A more ideal defini-
tion of the optimum number of coefficients should be adopted

as a standard in visual optics. The greatest challenge is the
accuracy to which the corneal elevations and eye aberrations
can be measured and the precision with which they should be
represented, not the mathematical tools used to fit the sur-
faces. The most important decision factor today is computa-
tional time, given that, as has been shown in this work, ZPs are
a sophisticated method and are not a limiting factor, since one
can generate as many terms as desired.
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