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Abstract. Skew Hadamard designs (4n−1, 2n−1, n−1) are associated
to order 4n skew Hadamard matrices in the natural way. We study the
codes spanned by their incidence matrices A and by I +A and show that
they are self-dual after extension (resp. extension and augmentation) over
fields of characteristic dividing n. Quadratic Residues codes are obtained
in the case of the Paley matrix. Results on the p−rank of skew Hadamard
designs are rederived in that way. Codes from skew Hadamard designs
are classified. A new optimal self-dual code over F5 is constructed in
length 20. Six new inequivalent [56, 28, 16] self-dual codes over F7 are
obtained from skew Hadamard matrices of order 56, improving the only
known quadratic double circulant code of length 56 over F7.

1 Introduction

In [2, 1] a systematic study of the codes of the designs of Hadamard matrices
was undertaken. With a Hadamard matrix H of order 4n can be attached a 3−
design T of parameters 3− (4n, 2n, n−1). The derived design D has parameters
2 − (4n − 1, 2n − 1, n − 1). The code Cp(T ) is self-orthogonal. If, furthermore,
H is skew Hadamard (or SH), then Cp(T ) is self-dual [11].

In this article we give an independent coding theoretic proof of the latter
result. We study the codes spanned by the incidence matrices of D and of its
complement and show that they are self dual after extension (resp. extension
and augmentation) over fields of characteristic dividing n. Quadratic Residues
codes are obtained in the case of the Paley matrix. We classify self-dual codes
from skew Hadamard matrices of order 4n (2 ≤ n ≤ 7) and enumerate self-dual
codes from skew Hadamard matrices of order 4n (8 ≤ n ≤ 15, n = 18, 21).
In particular, a new optimal self-dual code over F5 is constructed in length
20. We also find six new inequivalent [56, 28, 16] self-dual codes over F7 from
skew Hadamard matrices of order 56. These are inequivalent to the only known
quadratic double circulant code of length 56 over F7 [3].
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2 Skew Hadamard Designs

Let A be the incidence matrix of a skew Hadamard design of parameters (4n−
1, 2n− 1, n− 1) over a field F of characteristic p. By definition it is a matrix A
of order 4n− 1 satisfying

AAT = nI + (n− 1)J (1)

and
AJ = JA = (2n− 1)J. (2)

The skewness property translates into A being the adjacency of a tournament
digraph, that is,

A + AT + I = J. (3)

In all the article, we assume that p divides n. As a consequence

AAT = −J.

The following result is proved in [11] building on Sylvester’s law of nullity for a
matrix product [12, Thm. 5.6.2, Thm. 5.6.5].

Proposition 1. (T.S. Michael) The p−rank of A (resp. J − A) is 2n (resp.
2n− 1).

We give an independent proof based on coding theory. Let C(A) = 〈A+〉 denote
the F− span of A+, which is A extended by an all-one column. In the notations
of [2] this is the code Cp(T ) of the 3− design T . Let D(A) denote 〈(I + A)−〉
augmented by the all-one vector. Here M− denotes M extended by an all-zero
column. By rk(M) we denote the rank of M over F. The following result implies
the preceding proposition.

Proposition 2. The codes C(A) and D(A) are self-dual over F.

Proof. First, we observe that 〈I + A〉 is self-orthogonal by computing, using
equations (1) and (3), the product (A + I)(A + I)T = AAT + J = O. Hence
rk(A+ I) ≤ 2n− 1. By a similar argument C(A) is self-orthogonal and rk(A) ≤
2n. Adding up these two bounds we obtain

rk(A + I) + rk(A) ≤ 4n− 1. (4)

Next, the eigenspaces of A wrt 0 and −1 are disjoint, and this entails

rk(A + I) + rk(A) ≥ 4n− 1. (5)

Equations (4) and (5) together imply that equality holds in all preceding in-
equalities.

Note that in general for an arbitrary Hadamard matrix one has only an upper
bound on the p−rank [2, Th. 7.4.1]. The next result is well-known for QR codes
over GF (2) of length a multiple of 8.
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Corollary 1. When F = GF (2) the codes C(A) and D(A) are Type II. Further
〈I + AT 〉 is the even part of 〈A〉. In fact 〈A〉 = 〈I + AT 〉 ⊕ 1.

Proof. The first statement is immediate by the fact that all rows of A have
weight 2n− 1. The second statement comes from the relation

A(I + AT )T = A(J −A)T = A(J −AT ) = nJ = O,

a direct consequence of equations (2) and (1). This implies that 〈I+AT 〉 ⊆ 〈A〉⊥.
This bound is an equality by dimension count. Hence 〈I+AT 〉⊥ = 〈A〉. The code
〈I + AT 〉 is even, being self-orthogonal. The result follows.

3 Extended QR Codes from Paley Hadamard Matrices

We recall a definition of a Quadratic Residue (QR) code of prime length l over
GF (p), where p is another prime which is a quadratic residue mod l (here we
interchange p and l in [10, Ch. 16]). Let Q be the set of quadratic residues
modulo l, and N the set of nonresidues modulo l. The set Q is closed under
multiplication by p as p ∈ Q. Let α be a primitive lth root of unity in some
extension of GF (p). Let q(x) =

∏
r∈Q(x − αr). Define the QR code Q to be

the cyclic code of length l over GF (p) with generator polynomial q(x). Define
θ :=

∑l−1
i=1

(
i
l

)
αi to be the Gaussian sum, where α is a primitive lth root of

unity in some extension of GF (p) and
(

i
l

)
is the Legendre symbol. Note that

θ ∈ GF (p). Further the following is known [10, Ch. 16].

Lemma 1. If l ≡ −1 (mod 4), then θ2 = −l.

Proposition 3. Let l := 4n − 1 be a prime and p be a prime dividing n such
that p is a quadratic residue mod l. Suppose H is the Paley Hadamard matrix
of order 4n. Let A be the associated incidence matrix from H. Then C(A) is the
extended quadratic residue code Q̂ over GF (p).

Proof. First we calculate the idempotent of the quadratic residue code Q of a
prime length l over GF (p) in terms of residues and nonresidues mod l. In fact,
the idempotent of the quadratic residue code Q of a prime length l over GF (p)
is given in [10, Theorem 4, Ch. 16] as follows.

Eq(x) =
1
2

(
1 +

1
l

)
+

1
2

(
1
l
− 1

θ

) ∑

r∈Q

xr +
1
2

(
1
l

+
1
θ

) ∑

n∈N

xn.

Here θ is the Gaussian sum given above. Then θ satisfies θ2 = −l by Lemma 1. As
l ≡ −1 (mod p), we get θ2 = 1 (mod p), so θ = ±1. If θ = −1 then we choose
the primitive element α so that θ = 1 (for example, let β := αc where

(
c
l

)
= −1.

Then the Gaussian sum based on β becomes 1). Hence Eq(x) = −∑
r∈Q xr. It

is not difficult to check that the extended code Q̂ is the same as C(A).
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A duadic code is a class of cyclic codes generalizing quadratic residue codes [7].
A multiplier µa of Fp[x]/(xn− 1) is a ring automorphism induced by x 7→ xa. A
cyclotomic coset is an orbit of µp on Zn, where assume n and p are coprime. A
splitting is a partition of Zn \ 0 into two unions of cyclotomic cosets U1 and U2

swapped by a multiplier. Attached duadic codes have characteristic sets U1, U2

(odd-like case) or U1 + 0, U2 + 0 (even like case). Extension of odd like duadic
codes are self dual when a = −1. Quadratic Residue codes correspond to Ui the
set of squares of Zn, for n prime.

In [14] Pless related binary duadic codes to cyclic even tournaments. The
adjacency matrix A of a tournament digraph is called cyclic [14] if each row of
A is a cyclic shift of the previous row and even if AAT ≡ I (mod 2).

We note that our matrix A is not even as AAT ≡ −J (mod p). But if we
assume that A is cyclic, then we obtain duadic codes over GF (p) from A as
follows.

Lemma 2. [7, Theorem 6.4.1] Let C be any [n, (n−1)/2] cyclic code over GF (q),
where q is a power of a prime p. Then C is self-orthogonal if and only if C is
an even-like duadic code whose splitting is given by µ−1.

Proposition 4. Suppose that A is the cyclic incidence matrix of a skew Hadamard
design of parameters (4n−1, 2n−1, n−1). Let C1 := 〈I + A〉 be the code over F
generated by the rows of I +A and let C2 :=

〈
I + AT

〉
. Similarly let D1 :=

〈
AT

〉
and D2 := 〈A〉. Then the following hold.

1. Ci (i = 1, 2) is an even-like duadic code over F whose splitting is given by
µ−1.

2. Di is the odd-like duadic code of Ci (i = 1, 2) whose splitting is given by
µ−1.

Proof. We have shown in the proof of Proposition 2 that C1 (similarly C2) is self-
orthogonal over F with dimension 2n−1. Hence the first statement follows from
Lemma 2. Following the proof of Corollary 1, we see that Ci is a codimension
one subcode of Di (i = 1, 2). As 1 is not in Ci (i = 1, 2), Di is the odd-like
duadic code of Ci (i = 1, 2).

Applying the square root bound of duadic codes (cf. [7, Theorem 6.5.2]), we
get the square root bound of duadic codes from the cyclic incidence matrix of a
skew Hadamard design of parameters (4n− 1, 2n− 1, n− 1).

Corollary 2. (Square Root Bound) Let Di (i = 1, 2) of length 4n − 1 be as
above. Let d0 be their (common) minimum odd-like weight. Then the following
hold.

1. d2
0 − d0 + 1 ≥ 4n− 1.

2. Suppose d2
0 − d0 + 1 = 4n− 1 where d0 > 2, then for i = 1, 2

(a) d0 is the minimum weight of Di.
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(b) the supports of the minimum weight codewords of Di form a cyclic pro-
jective plane of order d0 − 1.

(c) the minimum weight codewords of Di are multiples of binary vectors.
(d) there are exactly (4n− 1)(p− 1) minimum weight codewords in Di.

Generalizations of the last two results to the case when D is an abelian
difference set are in [18].

4 Their Codes

In this section, we classify or enumerate self-dual codes from SH matrices of
reasonable sizes. In the following, we do not mention the case when H is the
Paley Hadamard (PH) matrix, as this leads to quadratic residue codes.

4.1 n = 2 or 3

There is a unique SH matrix of order 8 [9], whose C(A) is the binary Hamming
[8, 4, 4] code. Similarly there is a unique SH matrix of order 12 [9], whose C(A)
is the ternary Golay [12, 6, 6] code. These can be explained from Proposition 3.

4.2 n = 4

It is well known that there are two SH matrices of order 16. These matrices can
be constructed from the adjacency matrix A of the unique 2-class association
scheme of order 15 [5] and its transpose AT . We construct two inequivalent
extremal Type II [16, 8, 4] codes of length 16 from C(A) and C(AT ). As there
exist only two such codes, we have shown that every extremal Type II code of
length 16 can be obtained from a SH matrix of order 16.

4.3 n = 5

It is known that there are exactly two SH matrices, one being PH. Again these
matrices can be obtained from the two 2-class Association schemes [5]. We con-
struct two inequivalent optimal [20, 10, 8] self-dual codes over GF (5). More pre-
cisely, No. 2 of [5] is not of Paley type and gives a new [20, 10, 8] self-dual
code SH20 over GF (5) by construction C(A). Its order of the automorphism
group is 29 · 3 · 5. Previously there were known only two self-dual [20, 10, 8]
codes over GF (5), denoted by QDC20 and XQ19 [4] whose group orders are
28 · 32 · 5 and 24 · 32 · 5 · 19, respectively. We recall that there are three inequiva-
lent Hadamard matrices of order 20 [20]. We have checked that the second and
the third Hadamard matrices in [20] produce SH20 and XQ19, respectively while
the first Hadamard matrix in [20] produce QDC20. Therefore we have shown the
following.

Proposition 5. There exist at least three optimal [20, 10, 8] self-dual codes over
GF (5), all of which are from Hadamard matrices of order 20, two being from
skew Hadamard matrices of order 20.
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4.4 n = 6

There are (up to equivalence) 16 SH matrices, one being PH. We use the classifi-
cation given by Spence [21]. Binary and ternary codes of length 24 are obtained
as follows. Assmus and Key [1] described in detail the binary and ternary codes
from Hadamard matrices of order 24, but they did not consider which codes are
from skew Hadamard matrices. We have checked that there are exactly six Type
II codes from the 16 SH matrices, one of them is the extended Golay code G24

of length 24 and the other have minimum weight 4. For detail, see Table 1. Here
the first column refers to the binary Type II codes from [15] and the second
column refers to the indices of the skew Hadamard matrices in [21].

Further the 16 SH matrices produce exactly 9 Type III codes of length 24.
Two such codes are the extended QR code of length 24 and the symmetry code
of length 24.

Table 1. Type II codes from the 16 skew Hadamard matrices of order 24

Codes [15] skew Hadamard matrices [21]

F24 {1, 3, 11, 12}
D24 {2, 4, 7, 8, 13}
C24 {5, 9, 10}
A24 {6}
E24 {15}
G24 {14, 16}

4.5 n = 7

The 65 skew Hadamard matrices of order 28 in [21, p. 239–243] is reduced to
the 54 inequivalent SH matrices, one being PH [21]. For example, the SH matrix
with No. 11 in [21] is equivalent to the SH matrix with No. 7in [21] since both
come from the Hadamard matrix with No. 233 in [21, p. 217].

We consider codes over GF (7) of length 28. Each matrix using the construc-
tion C(A) produces a self-dual [28, 14, 9] code over GF (7) and the 54 codes
obtained this way are all inequivalent as one might expect. In Table 2, we de-
scribe the orders of the permutation automorphism groups of the 54 codes. It
is interesting to compare the orders of the SH matrices with those of the corre-
sponding codes. For example, the orders of the automorphism groups of the SH
matrices with No. 1 and 2 [21] are 2 and 1 respectively while the group orders
of the corresponding codes are 12 and 6 respectively. In most cases, the group
order of the code is 6×(the group order of the SH matrix).

We note that these codes have minimum weight one less than the best known
[28, 14, 10] codes [4].
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Table 2. Orders of the permutation automorphism groups of self-dual [28, 14, 9] codes
over GF (7) from the 54 SH matrices of order 28

|PAut(C)| skew Hadamard matrices [21]

6 {2, 7, 8, 9, 16}
12 {1, 3, 4, 6, 17, 29, 30, 31, 34, 37}
18 {5, 12, 23, 33, 42, 45, 46, 47, 51, 53}
24 {14, 44}
36 {13, 19, 24, 26, 28, 35, 38, 40, 43}
48 {10, 20}
54 {41}
72 {21, 22, 25, 49, 50, 55, 56, 58, 60, 61, 62}
144 {36}
162 {57}
6552 {63}

176904 {65}

4.6 n = 8

There are ≥ 6 SH matrices, one being PH [19]. We only get binary Type II codes
of length 32 by Corollary 1. It is known [7] that there are exactly two binary
extended duadic self-dual codes of length 32, one of which is the extended binary
QR code of length 32. The QR code is constructed from the PH matrix of order
32 by Proposition 4. We omit the detail.

4.7 n = 9

There are ≥ 18 SH matrices of order 36 [9]. Using the file in [9], the 15th
and 16th matrices with construction C(A) produce two inequivalent [36, 18, 9]
ternary self-dual codes (see Table 3). On the other hand, the rest matrices with
construction C(A) produce inequivalent [36, 18, 6] ternary self-dual codes. Other
constructions D(A), C(AT ), and D(AT ) produce the same set of codes as C(A).
We mention that there is only one known ternary self-dual code of length 36
with d = 12, called the Pless symmetry code.

Table 3. Two self-dual [36, 18, 9] codes over GF (3) from the SH matrices of order 36

skew Hadamard matrices [9] Weight Enumerator |PAut(C)|
{15} 1 + 208y9 + 40968y12 + 1407744y15 + · · · 8
{16} 1 + 544y9 + 37944y12 + 1419840y15 + · · · 8
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4.8 n = 10

There are ≥ 22 SH matrices of order 40 [9]. Over GF (2), construction C(A) pro-
duces exactly 8 inequivalent extremal Type II binary [40, 20, 8] codes while the
rest are Type II [40, 20, 4] codes. Similarly, over GF (5) we obtain one [40, 20, 11]
self-dual code, 12 [40, 20, 10] self-dual codes, and 9 [40, 20, 8] self-dual codes. All
of these codes over GF (5) are inequivalent. See Table 4 for detail, where the third
column follows the index of the matrices in [9], and 12(∼= 2) (similarly for two
others) means that the corresponding binary codes are equivalent. We remark
that the 8 binary Type II codes in the third row of Table 4 have automorphism
group orders 64, 1, 768, 32768, 768, 12, 1536, 8, respectively.

We note that the quadratic double circulant (self-dual) code of length 40 over
GF (5) has the largest known minimum distance 13 [3], which is, therefore, two
larger than the above best code.

Table 4. Self-dual [40, 20] codes from the 22 SH matrices of order 40

Over GF (q) Min. Dis. d skew Hadamard matrices [9]

q = 2 d = 4 {2, 3, 4, 6, 8, 9, 12(∼= 2), 14(∼= 6), 15, 16(∼= 6), 18, 19, 21, 22}
d = 8 {1, 5, 7, 10, 11, 13, 17, 20}
d = 8 {5, 6, 7, 9, 13, 14, 15, 20, 22}

q = 5 d = 10 {1, 2, 4, 8, 10, 11, 12, 16, 17, 18, 19, 21}
d = 11 {3}

4.9 n = 11

There are ≥ 59 SH matrices of order 44 [9]. We consider self-dual codes over
GF (11) by construction C(A). More precisely, we get exactly 9 [44, 22, 14] self-
dual codes, 37 [44, 22, 13] self-dual codes, 10 [44, 22, 12] self-dual codes, and 3
[44, 22, 11] self-dual codes. See Table 5 for detail.

Table 5. Self-dual [44, 22] codes over GF (11) from the 59 SH matrices of order 44

Min. Dis. d skew Hadamard matrices [9]

d = 11 {9, 12, 39}
d = 12 {6, 8, 11, 13, 14, 23, 35, 36, 42, 49}
d = 13 the rest
d = 14 {1, 5, 18, 19, 28, 29, 44, 51, 56}



9

4.10 n = 12 or 13

The PH matrix of order 48 is the only known SH matrix of that order [9]. Since
2 and 3 are quadratic residues modulo 47, C(A) are quadratic residue codes over
GF (2) or GF (3) by Proposition 3.

Let us consider n = 13. There are ≥ 561 SH matrices of order 52. The first
SH matrix of order 52 in [9] gives a self-dual [52, 26, 16] code over GF (13). This
minimum distance is somewhat high. We do not compare this with other possible
codes since few self-dual codes over GF (13) are known. We stop considering
remaining matrices due to a computational complexity.

4.11 n = 14

In [8] 75 SH matrices of order 56 are given. We consider self-dual codes over
GF (2) and GF (7). Interesting codes are obtained. In particular, we have checked
that there are exactly five extremal Type II [56, 28, 12] codes from the 75 SH
matrices and that only three of the five are inequivalent and they have group
orders 24, 168, 168, respectively. It is known that there are 16 Type II [56, 26, 12]
codes with automorphism of order 13 [22]. So our codes are inequivalent to these
codes. Later, Harada [6] constructed at least 1135 Type II [56, 26, 12] codes
from self-orthogonal 3-(56, 12, 65) designs. It will be interesting to check the
equivalence of our codes with his codes.

On the other hand, there are self-dual codes over GF (7) with minimum
distance d from 10 to 16. The detail is given in Table 6. There is only one known
(quadratic double circulant) self-dual code, denoted by C7,56, over GF (7) with
minimum distance d = 16 [4], [3]. We have checked by Magma that the six
nonequivalent codes with d = 16 in Table 6 are not equivalent to C7,56. We
observe that none of these six codes obtained in length 56 = 1 + 55 is the
extended quadratic residue code of length 56 over GF (7).

Since 7 (resp. 2) is not a square (mod 55), the 75 self-dual codes from SH
matrices over GF (7) (resp. GF (2)) are not even-like duadic codes.

As a summary, we have the following.

Proposition 6. 1. There are exactly five extremal Type II [56, 28, 12] codes
from the known 75 SH matrices of order 56, three of which are not equivalent
to each other.

2. There exist at least seven inequivalent [56, 28, 16] self-dual codes over GF (7),
six of which are from SH matrices of order 56.

4.12 n = 15

There are ≥ 22 SH matrices of order 60 [8]. Since 15 = 3 · 5, we have self-dual
codes over GF (3) and GF (5). More precisely, we obtain 14 ternary self-dual
[60, 30, 12] codes and 8 ternary self-dual [60, 30, 9] codes. We have checked that
the 22 codes are all inequivalent. We remark that the best known two ternary
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Table 6. Self-dual [56, 28] codes from the 75 SH matrices of order 56

Over GF (q) Min. Dis. d skew Hadamard matrices [9]

d = 4 the rest
q = 2 d = 8 {2, 3, 10(∼= 2), 12, 17, 21, 24(∼= 12), 25, 26(∼= 17), 37(∼= 3),

40(∼= 3), 47(∼= 17), 50, 51, 53, 54, 55, 56(∼= 55), 57(∼= 53),
58, 59, 61(∼= 54), 62(∼= 53), 63(∼= 55), 64(∼= 54), 68, 69,

70, 71, 72(∼= 50), 73(∼= 51), 74(∼= 58), 75(∼= 59)}
d = 12 {52, 60(∼= 52), 65, 66(∼= 52), 67}
d = 10 {2, 3, 48, 49}
d = 11 {1, 4, 5, 24}
d = 12 {6, 40, 47, 63, 66, 72}

q = 7 d = 13 {9, 10, 12, 13, 15, 17, 20, 21, 23, 25, 26, 29, 30, 33, 37, 38}
d = 14 {11, 14, 16, 42, 45, 53, 57, 58, 65, 72, 73, 75}
d = 15 the rest
d = 16 {18, 22, 31, 36, 62, 68}

self-dual codes of length 60 have minimum distance 18 [4]. Over GF (5) we obtain
seven self-dual [60, 30, 15] codes, eight self-dual [60, 30, 14] codes, four self-dual
[60, 30, 13] codes, two self-dual [60, 30, 12] codes, and one self-dual [60, 30, 10]
codes. The best known two self-dual codes over GF (5) of length 60 is 18 [4].

Table 7. Self-dual [60, 30] codes from the 22 SH matrices of order 60

Over GF (q) Min. Dis. d skew Hadamard matrices [8]

q = 3 d = 9 {1, 5, 7, 13, 14, 16, 18, 19}
d = 12 {2, 3, 4, 6, 8, 9, 10, 11, 12, 15, 17, 20, 21, 22}
d = 10 {8}
d = 12 {12, 17}

q = 5 d = 13 {13, 14, 15, 16}
d = 14 {1, 2, 3, 4, 5, 10, 11, 21}
d = 15 {6, 7, 9, 18, 19, 20, 22}

4.13 n = 18

There are at least ≥ 990 SH matrices of order 72 [8]. We have checked that these
produce Type II codes with minimum distance d = 4, 8, and 12. In fact, we have
plenty of Type II [72, 36, 12] codes with distinct weight enumerators. More detail
will be added. d = 16 is open for Type II codes of length 72. We also have Type
III codes with minimum distances in the set {9, 12, 15}. The extended quadratic
residue code XQ71 over GF (3) has d = 18, and this is the only known code.
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4.14 n = 21

There are at least ≥ 720 SH (non PH) matrices of order 84 [9]. We obtain Type
III codes with minimum distances in the set {9, 15, 18}. The optimal distance
(obtained for QR83) is 21.

5 Conclusion and Open Problems

In this paper, we have given a coding theoretic proof of Michael’s result [11] that
the p-rank of a skew Hadamard design D of parameters (4n − 1, 2n − 1, n − 1)
over a field of characteristic p where p|n is 2n. We thus have shown that the
extension of the corresponding incidence matrix produces self-dual codes over
Fp. We also have classified self-dual codes from skew Hadamard matrices of
order 4n (2 ≤ n ≤ 7) and have enumerated self-dual codes from skew Hadamard
matrices of order 4n (8 ≤ n ≤ 15, n = 18, 21). In particular, we have a new
optimal self-dual [20, 10, 8] code over F5 and six new optimal self-dual [56, 28, 16]
codes over F7.

We list some interesting problems for future work as follows.

1. Study self-dual codes over rings, in particular, over Z4 from SH matrices.
2. Give exhaustive lists of SH matrices for n = 8 and n = 16.
3. Is there a square Root bound for self-dual codes from SH matrices?
4. Are there Abelian codes from SH matrices?

Acknowledgement: Both authors are thankful to T.S. Michael for pro-
viding reference [12] and to E. Spence for explaining his paper [21]. The first
author acknowledges partial support by a Project Completion Grant from the
University of Louisville.
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