
Sample-efficient Deep Reinforcement Learning for Dialog Control

Kavosh Asadi
Brown University

kavosh@brown.edu

Jason D. Williams
Microsoft Research

jason.williams@microsoft.com

Abstract

Representing a dialog policy as a recurrent
neural network (RNN) is attractive
because it handles partial observability,
infers a latent representation of state, and
can be optimized with supervised learning
(SL) or reinforcement learning (RL). For
RL, a policy gradient approach is natural,
but is sample inefficient. In this paper,
we present 3 methods for reducing the
number of dialogs required to optimize
an RNN-based dialog policy with RL.
The key idea is to maintain a second
RNN which predicts the value of the
current policy, and to apply experience
replay to both networks. On two tasks,
these methods reduce the number of
dialogs/episodes required by about a third,
vs. standard policy gradient methods.

1 Introduction

We study the problem of using reinforcement
learning (RL) to optimize a controller represented
as a recurrent neural network (RNN). RNNs
are attractive because they accumulate sequential
observations into a latent representation of state,
and thus naturally handle partially observable
environments, such as dialog, and also robot
navigation, autonomous vehicle control, and
others.

Among the many methods for RL optimization
[Sutton and Barto, 1998], we adopt the policy
gradient approach [Williams, 1992]. Policy
gradient approaches are a natural fit for recurrent
neural networks because both make updates via
stochastic gradient descent. They also have
strong convergence characteristics compared to
value-function methods such as Q-learning, which
can diverge when using function approximation
[Precup et al., 2001]. Finally, the form of

the policy makes it straightforward to also train
the model from expert trajectories (ie, training
dialogs), which are often available in real-world
settings.

Despite these advantages, in practice policy
gradient methods are often sample inefficient,
which is limiting in real-world settings where
explorational interactions – ie, conducting dialogs
– can be expensive.

The contribution of this paper is to present a
family of new methods for increasing the sample
efficiency of policy gradient methods, where the
policy is represented as a recurrent neural network
(RNN). Specifically, we make two changes to
the standard policy gradient approach. First,
we estimate a second RNN which predicts the
expected future reward the policy will attain in the
current state; during updates, the value network
reduces the error (variance) in the gradient step,
at the expense of additional computation for
maintaining the value network. Second, we add
experience replay to both networks, allowing more
gradient steps to be taken per dialog.

This paper is organized as follows. The next
section reviews the policy gradient approach,
Section 3 presents our methods, Sections 4 and
5 present results on two tasks, Section 6 covers
related work, and Section 7 briefly concludes.

2 Preliminaries

In a reinforcement learning problem, an agent
interacts with a stateful environment to maximize
a numeric reward signal. Concretely, at a
timestep t, the agent takes an action at, is
awarded a real-valued reward rt+1, and receives
an observation vector ot+1. The goal of the agent
is to choose actions to maximize the discounted
sum of future rewards, called the return, Gt. In an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357380036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

episodic problem, the return at a timestep t is:

Gt =

T−t∑
i=1

γi−1rt+i , (1)

where T is the terminal timestep, and γ is a
discount factor 0 ≤ γ ≤ 1.

In this paper, we consider policies represented
as a recurrent neural network (RNN). Internally
the RNN maintains a vector representing a latent
state s, and the latent state begins in a fixed state
s0. At each timestep t = 1, 2, . . ., an RNN
takes as input an observation vector ot, updates its
internal state according to a differentiable function
F (st−1,ot|θf) = st, and outputs a distribution
over actions at according to a differentiable
function G(st|θg) = at, where θ = (θf ,θg)
parameterize the functions. F and G can be
chosen to implement long short-term memory
(LSTM) [Hochreiter and Schmidhuber, 1997],
gated recurrent unit [Cho et al., 2014], or other
recurrent (or non-recurrent) models. πθ(at|ht)
denotes the output of the RNN at timestep t.

Past work has established a principled method
for updating the parameters θ of the policy πθ via
RL [Williams, 1992, Sutton et al., 2000, Peters and
Schaal, 2006] via stochastic gradient descent:

4θd =
T−1∑
t=0

5θ log πθ(at|ht)Gt . (2)

While this update is unbiased, in practice it has
high variance and is slow to converge. Williams
[1992] and Sutton et al. [2000] showed that this
update can be re-written as

4θd =

T−1∑
t=0

5θ log πθ(at|ht)(Gt − b), (3)

where b is a baseline, which can be an arbitrary
function of states visited in dialog d. Note that
this update assumes that actions are drawn from
the same policy parameterized by θ – ie, this is an
on-policy update.

Throughout the paper, we also use importance
sampling ratios that enable us to perform
off-policy updates. Assume that some behavior
policy µ is used to generate dialogs, and may in
general be different from the target policy π we
wish to optimize. At timestep t, we define the
importance sampling ratio as

ρt =
π(at|ht)
µ(at|ht)

. (4)

3 Methods

3.1 Benchmarks
Before introducing our methods, we first describe
our two benchmarks. The first uses (2) directly.
The second uses (3), with b computed as an
estimate of the average return of π:

b =

∑
d∈D w(d)Gd0∑
d∈D w(d)

(5)

where D is a window of most recent episodes
(dialogs), and the weight of each dialog w(d) is
w(d) = Π

T (d)−1
t=0 ρt. To compute ratios using (4),

the policy that generated the data is µ, and the
current (ie, target) policy is π.

3.2 Method 1: State value function as
baseline

Our first method modifies parameter update (3) by
using a per-timestep baseline:

4θon
d =

T−1∑
t=0

5θ log πθ(at|ht)
(
Gt − V̂ (ht,w)

)
,

(6)
where V̂ (ht,w) is an estimate of the value of
πθ starting from ht, and w parameterizes V̂ .
This method allows a gradient step to be taken
in light of the value of the current state. We
implement V̂ (ht,w) as a second RNN, and update
its parameters at the end of each dialog using
supervised learning, as

4won
d =

T−1∑
t=0

(
Gt−V̂ (ht,w)

)
5wV̂ (ht,w) (7)

Note that this update is also on-policy since the
policy generating the episode is the same as the
policy for which we want to estimate the value.

3.3 Method 2: Experience replay for value
network

Method 2 increases learning speed further by
reusing past dialogs to better estimate V̂ (ht,w).
Since the policy changes after each dialog, past
dialogs are off-policy with respect to V̂ (ht,w), so
a correction to (7) is needed. Precup et al. [2001]
showed that the following off-policy update is
equal to the on-policy update, in expectation:

4woff
d =

T−1∑
t=0

t−1
Π
i=0
ρi

(T−1
Π
j=0

ρjGt − V̂ (ht,w)
)
5w V̂ (ht,w).

Our second method takes a step with 4won
d with

d as the last dialog, and one or more steps with
4woff

d where d is sampled from recent dialogs.

3.4 Method 3: Experience replay for policy
network

Our third method improves over the second
method by applying experience replay to the
policy network. Specifically, Degris et al. [2012]
shows that samples of the following expectation,
which is under behavior policy µ, can be used
to estimate the gradient of the policy network
representing the policy πθ:

E[ρt 5θ log πθ(at|ht)Qπ(ht, at)|µ] (8)

We do not have access to Qπ, but since
Qπ(ht, at) = rt + γV π(ht+1), we can state
the following off-policy update for the policy
network:

4θoff
d =

T−1∑
t=0

ρt 5θ log πθ(at|ht)(
rt + γV̂ (ht+1,w)− V̂ (ht,w)

)
Method 3 first applies Method 2, then updates
the policy network by taking one step with 4θon

d ,
followed by one or more steps with 4θoff

d using
samples from recent dialogs.

4 Problem 1: dialog system

To test our approach, we created a dialog system
for initiating phone calls to a contact in an address
book, taken from the Microsoft internal employee
directory. Full details are given in Williams and
Zweig [2016]; briefly, in the dialog system, there
are three entity types – name, phonetype, and
yesno. A contact’s name may have synonyms
(“Michael”/“’Mike”) and a contact may have more
than one phone types (eg “work”, “mobile”) which
in turn have synonyms (eg “cell” for “mobile”).

To run large numbers of RL experiments, we
then created a stateful goal-directed simulated
user, where the goal was sometimes not covered
by the dialog system, and where the behavior
was stochastic – for example, the simulated user
usually answers questions, but can instead ignore
the system, provide additional information, or give
up. The user simulation was parameterized with
around 10 probabilities.

We defined the reward as +1 for successfully
completing the task, and 0 otherwise. γ = 0.95

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

su
cc
es
s.p

ro
ba

bi
lit
y

episode.number

benchmark1
benchmark2
method1
method2
method3

Figure 1: Number of dialogs vs. average task
success over 200 runs for the dialog task.

0

0.01

0.02

0.03

0.04

0.05

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

va
ria

nc
e

episode5number

benchmark1
benchmark2
method1
method2
method3

Figure 2: Number of dialogs vs. variance in task
success among 200 runs.

was used to incentivize the system to complete
dialogs faster rather than slower. For the policy
network, we defined F and G to implement an
LSTM with 32 hidden units, with a dense output
layer with a softmax activation. The value network
was identical in structure except it had a single
output with a linear activation. We used a batch
size of 1, so we update both networks after
completion of a single dialog. We used Adadelta
with stepsize α = 1.0, ρ = 0.95, and ε = 10−6.
Dialogs took between 3 and 10 timesteps. Every
10 dialogs, the policy was frozen and run for 1000
dialogs to measure average task completion.

Figures 1 and 2 show mean and variance
for task completion over 200 independent runs.
Compared to the benchmarks, our methods require
about one third fewer dialogs to attain asymptotic
performance, and have lower variance.

5 Problem 2: lunar lander

To test generality and provide for reproducibility,
we sought to evaluate on a publicly available

0 5000 10000 15000 20000 25000 30000 35000 40000
episode number

200

150

100

50

0

50

100

150

200
m

e
a
n
 e

p
is

o
d
e
 r

e
tu

rn

benchmark 1
benchmark 2
method1
method2
method3

Figure 3: Number of epsidoes vs. average return
over 200 runs for the lunar lander task.

dialog task. However, to our knowledge none
exists, and so we instead applied our method to
a public but non-dialog RL task, called “Lunar
Lander”, from the OpenAI gym.1 This domain
has a continuous (fully-observable) state space
in 8 dimensions (eg, x-y coordinates, velocities,
leg-touchdown sensors, etc.), and 4 discrete
actions (controlling 3 engines). The reward is
+100 for a safe landing in the designated area, and
-100 for a crash. Using the engines will also result
in a negative cost as explained in the link below.
Episodes finish when the spacecraft crashes or
lands. We used γ = 0.99.

Since this domain is fully observable, we
chose definitions of F and G in the policy
network corresponding to a fully connected neural
networks with 2 hidden layers, followed by a
softmax normalization. We further chose RELU
activations and 16 hidden units, based on limited
initial experimentation. The value network has
the same architecture except for the output layer
that has a single node with linear activation.
We used a batch episode size of 10, as we
found that with a batch of 1 divergence appears
frequently. We used a stepsize of 0.005 and used
Adam algorithm [Kingma and Ba, 2014] with its
default parameters. Methods 2 and 3 performs 5
off-policy updates per each on-policy update for
the value network. Method 3 performs 3 off-policy
updates per each on-policy update for the policy
network.

Results are in Figure 3, and show a similar
increase in sample efficiency as in the dialog task.

1https://gym.openai.com/envs/
LunarLander-v2

6 Related work

Since neural networks naturally lend themselves to
policy gradient-style updates, much past work has
adopted this broad approach. However, most work
has studied the fully observable case, whereas
we study the partially observable case. For
example, AlphaGo [Silver et al., 2016] applies
policy gradients (among other methods), but Go
is fully observable via the state of the board.

Several papers that study fully-observable RL
are related to our work in other ways. Degris
et al. [2012] investigates off-policy policy gradient
updates, but is limited to linear models. Our use of
experience replay is also off-policy optimization,
but we apply (recurrent) neural networks. Like our
work, Fatemi et al. [2016] also estimates a value
network, uses experience replay to optimize that
value network, and evaluates on a conversational
system task. However, unlike our work, they do
not use experience replay in the policy network,
their networks rely on an external state tracking
process to render the state fully-observable, and
they learn feed-forward networks rather than
recurrent networks.

Hausknecht and Stone [2015] applies RNNs to
partially observable RL problems, but adopts a
Q-learning approach rather than a policy gradient
approach. Whereas policy gradient methods
have strong convergence properties, Q-learning
can diverge, and we observed this when we
attempted to optimize Q represented as an LSTM
on our dialog problem. Also, a policy network
can be pre-trained directly from (near-) expert
trajectories using classical supervised learning,
and in real-world applications these trajectories
are often available [Williams and Zweig, 2016].

7 Conclusions

We have introduced 3 methods for increasing
sample efficiency in policy-gradient RL. In a
dialog task with partially observable state, our
best method improved sample efficiency by about
a third. On a second fully-observable task,
we observed a similar gain in sample efficiency,
despite using a different network architecture,
activation function, and optimizer. This result
shows that the method is robust to variation in task
and network design, and thus it seems promising
that it will generalize to other dialog domains as
well. In future work we will apply the method to a
dialog system with real human users

References

Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua
Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078,
2014.

Franois Chollet. Keras. https://github.
com/fchollet/keras, 2015.

Thomas Degris, Martha White, and Richard S
Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing
He, and Kaheer Suleman. Policy networks with
two-stage training for dialogue systems. In
SIGDIAL2016, 2016.

Matthew J. Hausknecht and Peter Stone. Deep
recurrent q-learning for partially observable
mdps. CoRR, abs/1507.06527, 2015. URL
http://arxiv.org/abs/1507.06527.

Sepp Hochreiter and Jurgen Schmidhuber. Long
short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Rafal Jozefowicz, Wojciech Zaremba, and
Ilya Sutskever. An empirical exploration
of recurrent network architectures. In
Proceedings of the 32nd International
Conference on Machine Learning (ICML-15),
pages 2342–2350, 2015.

Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Jan Peters and Stefan Schaal. Policy gradient
methods for robotics. In Proceedings of
the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages
2219–2225. IEEE, 2006.

Doina Precup, Richard S Sutton, and Sanjoy
Dasgupta. Off-policy temporal-difference
learning with function approximation. In ICML,
pages 417–424, 2001.

David Silver, Aja Huang, Chris J. Maddison,
Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam,
Sander Dieleman Marc Lanctot, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya

Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of Go with deep
neural networks and tree search. Nature, 529:
484–489, 2016.

R Sutton and A Barto. Reinforcement Learning:
an Introduction. MIT Press, 1998.

Richard S. Sutton, David McAllester, Satinder
Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with
function approximation. In Advances in Neural
Information Processing Systems (NIPS) 12,
Denver, USA, pages 1057–1063, 2000.

Theano Development Team. Theano: A
Python framework for fast computation of
mathematical expressions. arXiv e-prints,
abs/1605.02688, May 2016. URL http://
arxiv.org/abs/1605.02688.

Jason D. Williams and Geoffrey Zweig.
End-to-end lstm-based dialog control
optimized with supervised and reinforcement
learning. CoRR, abs/1606.01269, 2016. URL
http://arxiv.org/abs/1606.01269.

Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8
(23), 1992.

