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Development of a Three-
Dimensional Semi-Analytical
Elastic-Plastic Contact Code
A three-dimensional elastic-plastic contact code based on semi-analytical method i
sented and validated. The contact is solved within a Hertz framework. The recip
theorem with initial strains is then introduced, to express the surface geometry
function of contact pressure and plastic strains. The irreversible nature of plasticity le
to an incremental formulation of the elastic-plastic contact problem, and an algorithm
solve this problem is set up. Closed form expression, which give residual stresse
surface displacements from plastic strains, are obtained by integration of the recip
theorem. The resolution of the elastic-plastic contact using the finite element (FE) m
is discussed, and the semi-analytical code presented in this paper is validated by
paring results with experimental data from the nano-indentation test. Finally, the res
tion of the rolling elastic-plastic contact is presented for smooth and dented surfaces
for a vertical or rolling loading. The main advantage of this code over classical FE co
is that the calculation time makes the transient analysis of three-dimensional co
problems affordable, including when a fine mesh is required.@DOI: 10.1115/1.1467920#
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Introduction
For aeronautic rolling bearings, the rolling contact fatig

~RCF! is of primary interest since it affects the durability an
reliability of the aircraft engine. In those applications, bearings
designed so that loads stay below the endurance limit. This en
ance limit depends upon several factors. Lamagne`re et al.@1# have
made a comprehensive description of the way to determine
endurance limit based on a comparison between the maxim
shear stress and the microyield stress. The determination of en
ance limit in RCF requires both an accurate knowledge of
stress field history and of the yield stress of the material. For th
applications, an important problem is that of contact with den
surfaces. When a dent~geometrical defect of a few microns dep
over a few hundred microns width! is in the contact area~few
square millimetres!, the contact pressure field is strongly modifie
from the smooth contact case, and high local pressure peak
pear around the dent. The elastic analysis of the dented co
shows that yield stress is usually exceeded, and that as it is
served experimentally plastic flow occurs. As a dent is rolled o
by a rolling body, plastic strains appear, geometry and con
pressure evolve, plastic strain generates residual stress an
material is hardened. Therefore, to get a comprehensive un
standing of the RCF for dented contact, it is necessary to t
plasticity in the dented contact simulation into account to ac
rately know how stress field and the hardened yield str
changed. A tool that can simulate three dimensional elastic-pla
contact is needed.

This tool must take the evolution of contact pressure and of
stress field with plastic flow into account. Since plasticity is h
tory dependent, the loading path must be followed analytica
Therefore, the tool has to allow for vertical loading or unloadin
but also transient rolling of the bodies in contact, to simulate
rolling over the dented surface. Last, this tool must allow fo
fine meshing of the contact area to take into account the pres
of localized surface defects~dents! in a larger contact area. In th
applications, plastic strains are considered moderate~small strains
hypothesis is assumed!, and plastic volumes are assumed sm
and surrounded by a large elastic area. Moreover the contac
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mensions are small compared to the size of the bodies in su
manner that bodies may be considered as half-spaces~Hertz as-
sumption!.

The rough contact problem has been studied for many ye
because of its numerous implications in tribology: friction, we
fatigue and damage. Recent review articles on contact mecha
~Barber and Ciavarella,@2#! and tribology~Tichy and Meyer,@3#!
discuss many important phenomena of tribological contact
emphasize the importance of understanding the effects of rou
ness and plasticity. Modeling these effects has taken two m
paths. The statistical approach to rough contact problems, in
tigated by Archard@4# and Greenwood and Williamson@5#, yields
important results concerning the behavior at the contact s
~contact area, normal approach!. Simple plasticity ideas have re
cently been incorporated into this approach~Zhao et al.,@6#!.
However, statistical models cannot predict the distribution of c
tact spots, local pressure or stress values, which play a major
in material fatigue and damage. Several studies have been foc
on the elastic-plastic contact problem. Hahn et al.@7#, and Gupta
et al. @8# used a finite element approach. If a three-dimensio
problem with a dented surface is considered, this kind of appro
is time-consuming, as pointed out by Dang Van and Maitourn
@9# because of the refinement needed for the mesh. When
plastic volume is small compared with the large elastic surrou
ing area, semi-analytical approaches seem to be suitable, pa
larly when the small strain assumption can be assumed. Howe
most authors use restrictive assumptions to simplify the probl
Hearle and Johnson@10# consider only plastic shear strains, Dan
Van and Maitournan@9# consider a steady-state problem, so t
dented contact cannot be treated because of the rolling move
of the bodies in contact. Virmoux et al.@11# have used a fas
method to evaluate the elastic-plastic evolution of the con
which does not consider the pressure modification nor the rol
loading history. Finally Mayeur et al.@12# have developed a
model without simplification, based on the boundary integral f
mulation, however restricted to two dimensional analysis.

In another way, tribologists and bearing manufacturers and
ers, for whom one main goal is the determination of the fatig
life of the bearing, have developed fast and robust technique
solve the problem of dry or elastohydrodynamically lubricat
contact between two real surfaces~with measured surface rough
ness!. Current methods using the Fast Fourier Transform~Polon-
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sky and Keer@13#! or the Multigrid Multi Integration techniques
~Lubrecht and Ioannides@14#! are now fast enough to permit tran
sient simulation of a surface defect rolling through the conta
However such approaches, which are based on the elastic
space theory lead to purely elastic analysis while contact press
leading to stresses up to several times the yield stress of the
terial are locally found.

In the last developments where plasticity has been include
the transient analysis of contact between non-smooth surfaces
papers may present some interest for the readers. Xu et al.@15#
were able to calculate the residual stresses due to debris in
contacts, but the model was limited to line contact problems~two-
dimensional analysis!. Very recently Liu et al.@16# have presented
a refined model that accounted also for thermo-elastic defor
tions ~three-dimensional thermo-elasto-plastic model for dry c
tact with rough surfaces!, where plasticity was considered only a
a limiting maximum contact pressure. It should be noted that b
teams used the FEM to solve the contact problem.

In order to overcome these difficulties, a numerical meth
based on a boundary integral formulation for an elastoplastic h
space is presented in this paper. The method is applied to th
dimensional elastoplastic contact problems with Von-Mises yie
ing and isotropic hardening. This new numerical method, whic
an extension of the method presented by Mayeur et al.@12#, re-
quires discretization of only the contact surface and plastic zo
Thus, the numerical system is dramatically smaller than the b
discretization of finite element systems. Also, the numerical s
tem is well suited for an FFT-based scheme that was use
increase the speed of computation.

The semi-analytical code~SAC! presented here can not on
solve problems with vertical loading but also those with movi
loads ~also called transient rolling elastic-plastic contact!, with
smooth or dented contacting bodies. The principal goal of
paper is to give an overview of the theory in such a manner t
other researchers could rebuild an equivalent computing code.
main assumptions~or limitations! of the proposed analysis ar
those of small strains and rotations, and semi-infinite bod
However, the problem is well-adapted to contact problems w
high resistance steels, such as bearing steels. The present m
has already been used to determine the micro-yield stress pr
versus depth of a surface hardened material by the inverse me
from nano-indentation experiments@17#. Further application to
RCF of dented surface will be presented in a future paper.

The theory is presented in the first part. It leads to an increm
tal formulation of the elastic-plastic contact problem. In the s
ond part, numerical tools are set up to enable the resolution o
problem. Finally several academic applications are presented.
first one consists of a vertical loading which is also used to v
date the SAC by comparing results supplied by the commer
finite elements code ABAQUS. The vertical loading of a den
surface, the rolling on a smooth surface and finally the roll
over a dent are presented to illustrate the capabilities of the S
as required to get a comprehensive description of the RCF
dented surfaces.

1 Formulation of the Elastic-Plastic Contact Problem.
Resolution Algorithm.

The work presented in this paper remains within the framew
of Hertz’s hypotheses. Small strains are assumed, and the di
sions of the contact area are small with regard to the radi
curvature of the contacting bodies that can be considered as
spaces. The contact is subjected to normal loading and tange
effects are neglected. The problem is three-dimensional and
symmetry is implicitly taken into account. Symbolss and « de-
notes respectively the stress and the strain tensors;«e, «p, and«o

represent the elastic, the plastic and the initial strain tensors;u is
the displacement vector; andMi jkl is the fourth order elastic con
stant tensor.
654 Õ Vol. 124, OCTOBER 2002
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1.1 Contact Formulation. A dry static or quasi static nor-
mal contact problem between two bodies B1 and B2~Figs. 1 and
2! can be described by a set of equations that must be so
simultaneously. These equations are:

• The load balance. The integration of contact pressur
p(x1 ,x2) must be equal to the applied external loadW. The
part of the surface where the pressure is not nil is calledGc .

W5E
Gc

p~x1 ,x2!dG . (1.1)

• The surface separation. The distance between the contactin
surfaces h(x1 ,x2) is defined by the initial geometry
hi(x1 ,x2), the rigid body displacementd and by the surface
normal displacements of both bodiesu3

(B11B2)(x1 ,x2):

h~x1 ,x2!5hi~x1 ,x2!1d1u3
~B11B2!~x1 ,x2! . (1.2)

• The contact conditions. The bodies cannot interpenetrate o
another; thush(x1 ,x2) must be positive or nil. Ifh(x1 ,x2) is
not nil, no contact occurs and no pressure is transmitted:

h~x1 ,x2!>0 and p~x1 ,x2!>0

if h~x1 ,x2!.0 then p~x1 ,x2!50 . (1.3)

This set of equations can be solved if the surface normal displ
mentu3

(B11B2)(x1 ,x2) can be expressed as a function of the co
tact pressure. The reciprocal theorem will be used to fulfill t
condition for the elastic-plastic contact problem.

Fig. 1 Contact problem description

Fig. 2 Surface separation. Representation in the plane
„0,x¢ 1 ,x¢ 3….
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1.2 Reciprocal Theorem. Consider two independent load
applied to an elastic body of volumeV and of boundaryG. The
first state, noted (u,«,s, f i) exists with initial strains«0. The sec-
ond state, noted (u* ,«* ,s* , f i* ) is for the moment undefined
~Brebbia,@18#; Mayeur,@19#!.

• Consider the product

s i j .« i j* 5Mi jkl .~«kl2«kl
0 !« i j* . (1.4)

• Because of the symmetry of the tensors,

s i j .« i j* 5~«kl2«0
kl!skl* . (1.5)

• Integrate~1.5! on the domainV. Left part of ~1.5!.

E
V

s i j « i j* dV5E
V

s i j

2
~ui , j* 1uj ,i* !dV . (1.6)

• Because of the symmetry of the stress and strain tensors
can write

E
V

s i j « i j* dV5E
V

s i j ui , j* dV5E
V

~s i j ui* ! , jdV2E
V

s i j , jui* dV .

(1.7)

Equilibrium conditions being satisfied,

E
V

s i j « i j* dV5E
V

~s i j ui* ! , jdV1E
V

f iui* dV . (1.8)

• By applying the theorem of Ostrogradski withnj the entering
normal unit vector:

E
V

s i j « i j* dV52E
G
ui* s i j njdG1E

V
f iui* dV . (1.9)

• Right part of~1.5!.

E
V

~« i j 2« i j
0 !s i j* dV5E

V
« i j s i j* dV2E

V
« i j

0 s i j* dV . (1.10)

Using the theorem of Ostrogradski:

E
V

~« i j 2« i j
0 !s i j* dV52E

G
uis i j* njdG1E

V
f i* uidV

2E
V

« i j
0 s i j* dV . (1.11)

• Finally, the reciprocal theorem with initial strains can be wr
ten as

2E
G
ui* s i j njdG1E

V
f iui* dV52E

G
uis i j* njdG1E

V
f i* uidV

2E
V

« i j
0 s i j* dV (1.12)

1.3 Application of the Reciprocal Theorem to Surface Dis-
placement Calculation. The reciprocal theorem is applied t
both bodies in contact, where each of them is considered
half-spaceV whose boundaryG is loaded on a partGC . Initial
strains occupy a volumeVp . Since s i j nj52pi Eq. 1.12 be-
comes:

E
Gc

ui* pidG5E
G
uipi* dG1E

V
f i* uidV2E

Vp

« i j
0 s i j* dV .

(1.13)

If the initial strains are plastic strains (tr(«p)50), one demon-
strates easily that:
Journal of Tribology
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E
Gc

ui* pidG5E
G
uipi* dG1E

V
f i* uidV22mE

Vp

« i j
p « i j* dV .

(1.14)

Consider the state (u* ,«* ,s* ) corresponding to the applicatio
of a unit force alongxW3 applied on the elementary surface ar
centred at pointA of the surface, while neglecting body force
( f * 50), leading to pressurep* (M )5(0,0,0) if MÞA
and p* (M )5(0,0,1/(dx1dx2)) if M5A. It is called
(u* (M ,p* (A)),«* (M ,p* (A)),s* (M ,p* (A)). Equation 1.14
then becomes:

u3~A!5E
G
ui~M !pi* ~M !dG

5E
Gc

ui* ~M ,p* ~A!!pi~M !dG

12mE
Vp

« i j
p ~M !« i j* ~M ,p* ~A!!dV (1.15)

with M a point of the integration surface or volume.
The surface normal displacement of each body can then

expressed as a function of contact pressure and of plastic s
existing in the considered body. The authors now consider o
one body in contact with an elastic-plastic behavior, the other
being purely elastic. The formulation could be extended to
case of two elastic-plastic bodies without major difficulties.

To solve this contact problem, it is necessary to relate the
face displacement to the contact pressure. In expression 1.15
displacement is related to the contact pressure~as in the elastic
case!, but also to the plastic strains. It is then necessary to exp
the plastic strains as a function of contact pressure.

1.4 Application of the Reciprocal Theorem to Stress Cal-
culation. Plastic strains are related to stresses. Therefore,
stress field must be evaluated from elastic-plastic contact co
tions. Consider the reciprocal theorem applied to a half-spacV
whose boundaryG is loaded on a partGC as in paragraph 1.3, Eq
1.14. Consider now the state (u** ,«** ,s** ), corresponding to a
body force applied at a pointB of the half-space in the directionk
and of magnitude one.

E
V

f i** uidV5uk~B!; E
G
uipi** dG50 . (1.16)

Equation 1.14 then becomes:

uk~B!5E
Gc

ui** ~M ,B!.pi~M !dG

12mE
Vp

« i j
p ~M !.«ki j** ~M ,B!dV . (1.17)

Stresses can be related to the displacements via Hooke’s
Therefore, the stress at every point of the half-space can be
vided in two parts,s5spr1s r . In the first term, the pressur
stress is linked to the contact pressure, while the residual stre
related to the plastic strains in the second term. The residual s
is the stress induced by the strain nuclei. It is also the str
produced by plastic strain remaining after unloading, i.e.,pi(M )
50 in Eq. 1.17.

This relation shows that the stress field changes with pla
flow, primarily due to the appearance of plastic strains, but a
because of the modification of contact pressure due to geom
changes.

This method has some similarities with the work presented
Blomerus et al.@20#, who have developed a method in whic
distributed dislocations are used to model plasticity in tw
dimensional problems.
OCTOBER 2002, Vol. 124 Õ 655
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1.5 Plasticity Model. Plasticity is an irreversible phenom
enon, that requires an incremental description. In a general in
mental formulation of plasticity, a plastic strain increment d
pends upon the stress, the stress increment and upon the hard
parameters:

d«p5 f ~s,ds, hardening parameters! . (1.18)

This general formulation is used for theoretical developme
The chosen plasticity model is described in the third part of t
paper, concerned with the validation of the SAC.

1.6 Incremental Formulation of Elastic-Plastic Contact.
Since plasticity is an irreversible phenomena, the relation betw
plastic strain and contact pressure must also be increme
Therefore, an incremental formulation of the elastic-plastic c
tact problem must be used:

• Initial conditions.

W,hi~x1 ,x2!,p~x1 ,x2!,«p, hardening parameters (1.19

• Load balance.

W1dW5E
Gc

@p~x1 ,x2!1dp~x1 ,x2!#dG (1.20)

• Surface separation.

h~x1 ,x2!5hi~x1 ,x2!1d1u3
pr~B11B2!~x1 ,x2!1u3

r ~x1 ,x2!

1du3
r ~x1 ,x2! (1.21)

u3
pr~A!5E

Gc

u3i* ~M ,A!.~pi1dpi !~M !dG:

displacement due to contact pressure (1.2

u3
r ~A!52mE

Vp

« i j
p ~M !«3i j* ~M ,A!dV:

displacement due to plastic strain (1.2

du3
r ~A!52mE

Vp

d« i j
p ~M !«3i j* ~M ,A!dV:

displacement due tod«p (1.24)

• Plasticity model.

d«p5 f ~s,ds, hardening parameters!

• Stress calculation.

s5spr~p!1s r~«p!
(1.25)

ds5dspr~dp!1ds r~d«p!

• Contact conditions.

h~x1 ,x2!>0

if h~x1 ,x2!.0 then p~x1 ,x2!1dp~x1 ,x2!50 . (1.26)

To complete this incremental formulation, the loading histo
must be defined. Two types of load increments are conside
~Fig. 3!. The first one is a vertical loading or unloading witho
rolling movement. The only change is an increase or a decrea
the applied external loadW. The second type of load incremen
corresponds to a rolling movement of the load. The applied ex
nal load does not change. Considering a mark attached to
contact, the plastic strain, hardening state and contact pressp
must be shifted. The initial geometryhi(x1 ,x2) can also evolve,
as it is the case in Fig. 3, where a surface defect is entering
contact zone, as the bodies in contact are rolling, which ind
will strongly modify the contact pressure distribution.
656 Õ Vol. 124, OCTOBER 2002
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It can also be noted that if«p andd«p are known in Eq. 1.21,
this contact formulation is that of the elastic contact, with a mo
fied initial geometryhimod5hi1u3

r 1du3
r . This will be used for

the elastic-plastic contact resolution.

1.7 Resolution of the Elastic-Plastic Contact Problem. To
solve the set of Eq. 1.19–1.26, displacements in equation 1
should be related to the initial state and to the contact pres
increment. Equations 1.22 and 1.23 show that the first two te
can be expressed withp, dp, and «p. The third term,du3

r , is
expressed as a function of the plastic strain incrementd«p.

Plastic Strain Increment. Equations 1.18, 1.24, and 1.25 ca
be put together, leading to Eq. 1.27, showing that plastic st
increment depends uponp, «p, dp, hardening parameters andd«p

itself.

d«p5 f ~p,«p,dp,d«p, hardening parameters! (1.27)

An iterative procedure~Gauss-Seidel iterative method! must be
used to obtain plastic strain increment, solution of Eq. 1.27,
depending ofp, «p, dp, fulfilling the conditions described above

The algorithm described in Fig. 4 is used to evaluate the pla
strain increment. Contact pressurep, contact pressure incremen
dp, plastic strain«p and hardening parameters are all known. T
pressure stressspr, pressure stress incrementdspr and residual
stresss r can be calculated, and the residual stress incremen
initialized to zero.

An initial plastic strain incrementd«pi is calculated, using the
chosen plasticity model. The residual stress increment is evalu
and used to compute a new plastic strain incrementd«p f, that is
compared withd«pi. The convergence is obtained whenud«p f

2d«piu/maxud«piu,eps and checked by calculating the final Vo
Mises stress which should be equal to the final micro-yield str
at every point of the plastic zone~also called the consistenc
condition!. If the convergence is not obtained, a new initial plas
strain increment is calculated fromd«pi andd«p f. This process is
repeated until convergence is reached. Once convergence is
tained, the plastic strain increment is accurately estimated
takes into account the evolution of stress with plastic flow.

Elastic-Plastic Contact Resolution Algorithm.To solve the in-
cremental elastic-plastic contact problem, the algorithm prese
Fig. 5 will be used.

Fig. 3 Load history description
Transactions of the ASME
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Starting from the initial conditions defined by the loadW, the
initial geometryhi(x1 ,x2), the existing plastic deformation an
the associated residual displacementu3

r , the contact pressure an
by the hardening state of the bodies in contact, the elastic con
problem is solved, taking into account the load increment. Fr
this load increment, the plastic strain increment is obtained~Fig.
4!, enabling the calculation of the residual displacement inc
ment, which is then compared with the one that has been use
the contact pressure calculation. The convergence is reached
udu3

r f 2du3
ri u/maxudu3

riu,eps and the validity of the solution i
evaluated by observing the pressure distribution, the residual
placement of the surface points and the residual stress and s
state below the surface. If the convergence is not obtained,
re-entered into the elastic contact resolution. This process is
peated until the residual displacement increment converges. P
tic strains, load, contact pressure, residual displacement and h
ening parameters are then increased by their increment to defi
new initial condition for the next loading step.

The elastic-plastic contact formulation has been established
well as the algorithm to solve the problem. It is now necess
to present the methods established to perform the diffe
calculations.

Fig. 4 Plastic strain increment algorithm

Fig. 5 Elastic-plastic contact problem resolution algorithm
Journal of Tribology
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2 Development of Calculation Tools
It can be seen in the algorithms presented in Figs. 4 and 5

four calculations need to be performed. First, it is necessary
solve the elastic contact problem with any initial geometry. S
ond, residual displacements must be evaluated from the pla
strains. Third, residual stress and finally the pressure stress
be obtained.

2.1 Elastic Contact Problem Resolution. The determina-
tion of the contact pressure will be done using a normal dry ela
point contact code written by Coulon@21# using multigrid tech-
niques as proposed by Lubrecht and Ioannides@14#. This contact
code solves the set of equations composed of the load balanc
~1.1!, the contact conditions~1.3! and the elastic surface separ
tion equation, with any initial geometry:

h~x1 ,x2!5himod~x1 ,x2!1d1u3
pr~B11B2!~x1 ,x2! . (2.1)

2.2 Residual Displacements. The residual displacement
due to plastic strains are given by Eq. 1.23 and 1.24. To allo
numerical resolution of the problem, the volume where plas
strains have non zero value (Vp) is divided intoNv elementary
cuboidsVcn . The displacements generated by thoseN elementary
cuboids can be written:

u3
r ~A!52m(

n51

Nv E
Vcn

« i j
p ~M !.«3i j* ~M ,A!dV . (2.2)

In each cuboid, plastic strains are considered constant. Exp
sion 2.2 then becomes:

u3
r ~A!52m(

n51

Nv

« i j
p ~n!E

Vcn

«3i j* dV5(
n51

N

« i j
p ~n!D3i j ~n!

(2.3)

with D3i j 5mE E E
Vcn

~u3i , j* 1u3 j ,i* !dx1dx2dx3 . (2.4)

To calculate residual displacements of the surface, express
given in Eq. 2.3 and 2.4 must be integrated. Consider a poin
~Fig. 6! on the surface with a force of magnitude unity actin
normally to the half-space surface and a cuboid of plastic st
2Dx1.2Dx2.2Dx3 large. The cuboid of plastic strain has cent
C(c1 ,c2 ,c3) in a mark attached to pointA. The displacements
generated by this force are given for every pointM (x1 ,x2 ,x3) of
the half-space by~Love, @22#!:

Fig. 6 Cuboid of constant plastic strain
OCTOBER 2002, Vol. 124 Õ 657
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4pmS u31*

u32*

u33*
D 5

122n

r 3
x1 .x3

r 3 2
~122n!.x1

r ~x31r !

x2 .x3

r 3 2
~122n!.x2

r ~x31r !

x3
2

r 3 1
2~12n!

r

4 with

r 5Ax1
21x2

21x3
2 . (2.5)

If functions Fi j are defined so that]Fi j (x1 ,x2 ,x3)/]x1]x2]x3

5m(u3i , j* 1u3 j ,i* ), then functionsD3i j are expressed by:

D3i j 5Fi j ~c11Dx1 ,c21Dx2 ,c31Dx3!2Fi j ~c11Dx1 ,c2

1Dx2 ,c32Dx3!2Fi j ~c11Dx1 ,c22Dx2 ,c31Dx3!

1Fi j ~c11Dx1 ,c22Dx2 ,c32Dx3!2Fi j ~c12Dx1 ,c2

1Dx2 ,c31Dx3!1Fi j ~c12Dx1 ,c21Dx2 ,c32Dx3!

1Fi j ~c12Dx1 ,c22Dx2 ,c31Dx3!2Fi j ~c12Dx1 ,c2

2Dx2 ,c32Dx3! . (2.6)

FunctionsF can be integrated and expressed by:

F11~x,y,z!5
1

p F2nx ln~y1R!2~122n!z tan21S y1z1R

x D G
F22~x,y,z!5

1

p F2ny ln~x1R!2~122n!z tan21S x1z1R

y D G
F12~x,y,z!5

1

p
@22nR2~122n!z ln~z1R!#

F13~x,y,z!5
1

p F2x tan21S y1z1R

x D1y ln~z1R!G (2.7)

F23~x,y,z!5
1

p F2y tan21S x1z1R

y D1x ln~z1R!G
F33~x,y,z!5

1

2p F2~12n!S 2z tan21S x1y1R

z D1x ln~y1R!

1y ln~x1R! D2
z

2
uG

with u522.tan21S xy

zRD and R5Ax21y21z2.

Residual displacements of the surface due to plastic strains
isting in the half-space can now be computed, using the relat
described above.

2.3 Residual Stresses. Residual stresses are the stres
generated by plastic strains in a half-space where the surfa
free of any load~pi(M )50 in Eq. 1.17!. The volume where plas
tic strains are not nil (Vp) is divided as in section 2.2 inNv
elementary cuboids of constant plastic strain. The residual st
at a point is the sum of the contribution of all elementary cuboi

The calculation of residual stresses is based on the wor
Chiu @23,24#. Residual stresses at a pointM (x1 ,x2 ,x3) in a half-
space due to a cuboid of constant plastic strain, whose centC
has coordinates~0,0,h! are obtained by the relation:

s i j
r ~M !5Ai jkl ~M ,C!«kl

p ~C! . (2.8)

The tensorA includes 36 different terms, expressed in Append
1. This tensor depends onx1 ,x2 ,x3 , but also on the depthh of the
cuboid of constant plastic strain.

2.4 Pressure Stresses.To calculate pressure stresses, t
surface is discretized in a rectangular mesh. On each elemen
658 Õ Vol. 124, OCTOBER 2002
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pressure has a constant value. Influence coefficients taken
Vergne@25# and given in Appendix 2 give the stresses induced
a rectangular cell on a half-space submitted to an uniform p
sure. If the contact zoneGc is divided in N cells, the stress at a
point M (x1,x2,x3) is obtained by

spr~M !5(
n51

N

p~An!.G~AnM
→

!, (2.9)

whereAn is the control point of celln.
Every calculation needed to solve the elastic-plastic con

problem, following the algorithm described in Figs. 4 and 5 ha
been described. The SAC must now be evaluated and comp
with other numerical tools.

2.5 Calculation Speed. The direct calculation of contac
pressure, residual displacements, residual stresses and pre
stresses requires numerous operations to be performed, as c
seen in Table 1, whereNvz is the number of points of the plasti
volume in depth, andNvs is the number of points in the plasti
volume per depth. The use of accelerating techniques, suc
multigrid and FFT strongly reduced the computational cost
those calculations@26#. The benefit of the limitation of the dis
cretized volume to the plastic region is also very important, sin
the number of operations required to calculate residual stre
increases withNvz

2 .
To give an idea of the computational cost, for one load st

about 10 contact loops~see Fig. 5! are required with each time
between 80~first contact loops! down to 5 ~last contact loops!
plasticity loops~see Fig. 4!, giving a total of about 300 plasticity
loops. Thus, a typical problem of a moving load rolling on
smooth surface with 24324 points along thex and y directions,
respectively, and with about 140320311 points in the plastic
zone, with a rolling movement divided in 170 time step, c
be solved in approximately 4600 seconds on a 1 GHzPersonal
Computer.

For partial comparison, using the FE method with the comm
cial code ABAQUS, one load step for an axisymmetric config
ration ~to simulate only vertical loading! with 2600 elements re-
quires 300 seconds on a 552 MHz powerstation. Extension
large strains and rotations, or to three-dimensional contact p
lems is also possible. However the rolling over a surface de
seems difficult to obtain with the current version of the softwa
~but should be possible using another commercial softw
package!.

3 Validation of the SAC
A computer program has been written, following the method

ogy proposed above. First, a plasticity model has been cho
This choice, as described in paragraph 3.1 has been made ac
ing the material the authors want to work on. Second, the n
indentation test with a spherical punch has been studied. This
which can be simulated by FE, is used to validate the SAC. L
the SAC is applied to three problems, showing the capability
the SAC to answer the problem of the dented rolling contact.

Table 1 Optimization of the calculation time
Transactions of the ASME
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3.1 Plasticity Model. There are numerous models of pla
ticity available, each having different capabilities to describe v
ous experimental phenomena. To choose among those va
models, the following considerations are made.

The SAC is mainly dedicated to simulate contact between b
ies made of bearing steel. One of the characteristic of those s
is that the slope of the hardening curve is high at the beginnin
the curve, and then continuously decreases. Therefore, the l
kinematic hardening model that can not represent this phenom
is eliminated.

The kinematic hardening of steels is important when the st
is reversed during cyclic loading. The SAC is devoted to cont
calculation, where it is not the case. Furthermore, this code m
e

s

t

l

fi

t
t
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simulate contact with bodies made of surface hardened steel,
it is difficult to identify hardening parameters. So, a simple mo
of isotropic hardening has been chosen. Tresca and Von M
criteria are very close to each other and both give a cor
representation of the yield surface. For numerical reasons,
Mises criterion is used, and the model chosen is that of Pran
Reuss.

The hardening law is described by the Swift’s law

sVM5B.~C1«p!n. (3.1)

The plastic flow law can then be formulated according to Lamaˆtre
and Chaboche@27# as follows:
d«5d«e1d«p

d«e5
11n

E
ds2

n

E
~Tr~ds!!I

if
f 50 and d f 50
~ f 5sVM2sY! Ud«p5

3

2
g8~sVM!

dsVM

sVM
s8 with g8~sVM!5@k8~k21~sVM!!#21

d«p50 otherwise s5k~«p! is the hardening law

with the Swift’s law: g8~sVM!5
1

n.B S B

sVM
D 121/n

. (3.2)
d. In
t is

esh

ite
the
ory

the

ce.
is
s8 is the deviatoric stress tensor;sVM is the von Mises stress. Th
symbol8 stands for derivative with respect to the argument.

The choice of this model is relevant to the materials the auth
want to work on. However, it is important to note that anoth
choice of modeling is always possible and that only the mod
that calculates plastic strains has to be changed, the other
being identical.

3.2 Validation of the SAC. Nano Indentation Test. To
confirm the results supplied by the SAC, a comparison with
commercial finite element code ABAQUS is made. First, it
necessary to solve properly the same problem by both meth
Since the SAC simulates the contact between two half-space
first the FE results are compared with the Hertz theory~assuming
an elastic behavior of the bodies!. Next, the elastic-plastic FE
analysis is compared with the results supplied by the SAC.
fully validate the SAC, the nano-indentation test will be studie
In this test, surface geometry changes have a non-negligible e
on the pressure field, plastic flow has an important influence
the stress field and small strain theory can be used. Furtherm
experimental data are available, enabling an experimental va
tion of the results supplied by the SAC.

Problem Definition. The test problem will be the nano
indentation of a steel whose elastic characteristics areE
5210 GPa andn50.3 for Young modulus and Poisson coef
cient. Its plastic behavior is described by the Swift’s law who
parameter areB51240 MPa,C530, andn50.085. The plastic
strain is expressed in 1026 deformation. These values are take
according to El Ghazal@19# and they correspond to the exper
mental data presented later in this paragraph. The body mad
steel is smooth and flat.

The punch is a sphere of 105mm radius made of diamond. In
the simulations, the punch can be assumed rigid or having
elastic behavior, withE51140 GPa andn50.07.

Resolution of an Identical Problem by FE.The code devel-
oped here is in the framework of Hertz’s hypotheses; so i
necessary to simulate with ABAQUS, the contact between
ors
er
ule
teps

he
is
ods.
s, at

To
d.

ffect
on
ore,
ida-

-

-
se

n
i-
e of

an

is
wo

half-spaces. For this, three simulations have been conducte
this section, only the elastic behavior of the bodies in contac
considered.

First, a Hertzian pressure is applied on a half-space. The m
is refined in the contact zone~90 nodes in contact!, and limit
conditions are zero displacement at infinity, by the use of infin
elements. The problem is axisymetric. The displacement of
surface is then compared with results supplied by Hertz the
~Fig. 7!. Both solutions seems almost identical. It validates
choice of the boundary conditions imposed on the mesh.

In a second step, a rigid punch is in contact with the half-spa
The variation of the load with the rigid body displacement

Fig. 7 Dimensionless normal surface displacement under load
for a Hertzian pressure versus dimensionless distance from
center of symmetry
OCTOBER 2002, Vol. 124 Õ 659
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plotted in Fig. 8. The Hertz solution is identical to the resu
given by the FE simulation, and therefore, the contact is corre
solved by the FE code.

Finally, the contact between an half-space and a deforma
punch made of diamond is studied. The results, plotted in Fig
show a difference between the FE analysis and the analytica
lution. This difference has essentially two origins: As the punch
truncated~Fig. 10!, the half-space hypotheses are not respec
Furthermore, the load is imposed by moving vertically the nod
at the top of the mesh, which disables the warping of this pla
So the contact between a rigid punch and a half-space will be u
to validate the SAC.

Validation of the SAC. In order to validate the results supplie
by the SAC, simulations have been carried out with an elas
plastic body in contact with a rigid punch and the solution
observed in several ways.

First, the evolution of the load with the rigid body displaceme
is plotted in Fig. 11. The results supplied by the FE code and
the SAC are identical. The formed indent has a depth of abou
nm. Because the hardening model that has been chosen, no
ticity occurs during unloading. Therefore, the comparison of
unloading of the elastic indentation and the unloading of
elastic-plastic indentation shows the influence of the geome
change. If the geometry would not change, the pressure would
the same in both cases, and the two unloading curves shoul
only shifted. This can also be seen in Fig. 12, where the ela
Hertzian pressure for a load of 650 mN is compared with t

Fig. 8 Load versus rigid body displacement. Rigid punch.

Fig. 9 Load versus rigid body displacement. Deformable
punch.
660 Õ Vol. 124, OCTOBER 2002
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Fig. 10 Meshing of the elastic punch

Fig. 11 Load versus rigid body displacement. Rigid punch and
elastic-plastic half-space.

Fig. 12 Influence of plasticity on pressure distribution. Load
of 650 mN.
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Fig. 13 Plastic strain versus depth along the contact axis

Fig. 14 Residual stress versus depth along the contact axis

Fig. 15 Plastic strain profile at 2 microns far from the
contact axis

Fig. 16 Residual stress profile at 2 microns far from the
contact axis
Journal of Tribology
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obtained in the elastic-plastic case, and illustrates why it is ne
sary to take into account the surface modification during the re
lution of the elastic-plastic contact problem.

Plastic strains and residual stresses along the contact axi
plotted respectively in Figs. 13 and 14 for SAC and FE code. T
applied load is 190 mN. First, good agreement between the re
supplied by both tools for plastic strains as well as for resid
stresses is noticed. The maximum plastic strain for this cas
about 0.6 percent, and can reach 1.5 percent under a load of
mN. The small strain theory is still valid, but for higher loads, th
hypothesis might not hold. Figure 14 shows that thesxx stress is
much more important than theszz stress~influence of the surface!
and that the value obtained for residual stresses are not neglig
If this contact was purely elastic, the Hertz’s pressure would be
4.9 GPa, leading to a maximum shear stress of 1470 MPa.

Finally, Figs. 15 and 16, which represent respectively plas
strains and residual stresses along a profile two microns far f
the contact axis~which correspond approximately to 0.253a, a
being the contact radius!, show also a good agreement betwe
the different results.

A comparison was also made with experimental data, obtai
from a nano-indentation test carried by El Ghazal@19#, where the
measurement process has been numerically reproduced. Ex
mental data and numeric simulations agree very well, as show
Fig. 17. For this simulation, the punch was elastic, with elas
properties of diamond~E51140 GPa andn50.07!.

3.3 Application of the SAC. To illustrate the capabilities of
the SAC, three applications are presented. First, the rolling o
smooth surface is presented. Second, the case of the vertical
ing of a dented surface and last the rolling on a dented sur
have been studied.

Rolling on a Smooth Surface.To illustrate the capabilities of
the SAC, a smooth rolling contact between an elastic sphere
an elastic-plastic half-space is presented. The elastic sphe
made of steel~E5210 GPa andn50.3! and the elastic-plastic
half-space properties are the same as in the previous part.
sphere has a radius of 20 mm, and the applied load is 4200 N,
leads to a Hertz pressure of 3 GPa and a contact radius of 820mm.
The surface displacement at the center of the rolling track a
unloading is shown in Fig. 18. The contact is first loaded to 50
N, then the load is maintained constant and the sphere is rolle
the elastic-plastic half-space on the distance of 4200mm, and the
contact is finally unloaded~position 0 is the center of the contac
at this moment!. It can be seen that the sphere must be rolled o
about two times the contact radius to be in steady state. The
sults are intentionally presented in a dimensional form, since
behavior depends not only of the elastic limit, but also on
hardening law parameters.

Vertical Loading of a Dented Surface.The case of the vertica
loading of the dented contact is considered. The dent~Fig. 19! is

Fig. 17 Residual print depth versus applied load †28‡
OCTOBER 2002, Vol. 124 Õ 661
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Fig. 18 Surface displacement at the center of the rolling track
after unloading

Fig. 19 Dent geometry

Fig. 20 Elastic and elastic-plastic dented contact. Contact
pressure.
662 Õ Vol. 124, OCTOBER 2002
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described by a damped cosinus, that described a dent of 35mm
depth and of 115mm radius, with shoulders 4mm height.

hi~x,y!5hi~x,y!135 cosF2p
450

r GexpF213
r 2

4502G . (3.3)

The dented body is made of steel, whose characteristics aE
5219 GPa,n50.3, B51280 MPa,C54, andn50.095. It is a
sphere of 24 mm radius. The smooth body is elastic, with a Yo
modulus,E5210 GPa, and a Poisson coefficient,n50.3, and is a
sphere of 40 mm radius. The load applied to the bodies in con
is W51318 N, leading to a Hertz pressure of 2.5 GPa, and t
contact area radius ofa5500mm for a smooth elastic contact.

The pressure field obtained with an elastic analysis and with
elastic-plastic analysis are both plotted in Fig. 20. It can be s
that the presence of the dent at the center of the contact stro
modified the pressure repartition from the smooth case. The p
tic effect is visible on the pressure peaks, that are about 10 per
more important when predicted by the elastic analysis than w
they are estimated with the elastic-plastic analysis.

The residual stress field can also be obtained as shown in
21 wheres11

r is plotted in the planex3 (i.e., depth)550mm. It
can be seen to be important~down to 2500 MPa!, and conse-
quently can strongly modify the stress field associated w
contact pressure.

Rolling on a Dented Surface.In this part, the loading history
is modified. The load is applied when the dent is not in the con
area. The initial geometry is smooth, and the contact is ela

Fig. 21 Residual stress s11 in MPa in the plane x 3Ä65 mm

Fig. 22 Residual stress s11 in MPa. Profile at x 2Ä0; x 3
Ä75 mm. Comparison between vertical loading and rolling.
Transactions of the ASME
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under a load of 2.5 GPa. The bodies in contact are then rolled.
dent enters the contact, and plastic strains appear. The bodie
rolled until the dent leaves the contact area.

After the rolling on a dented surface, contact pressure and
face geometry are close to that obtained after the vertical load
However, the distribution of plastic strains and residual stres
can be different. The difference between the two cases can be
in Fig. 22. The residual stresss11 is plotted along the rolling
direction and is perfectly symmetric in the vertical loading ca
The stress becomes disymmetric in the rolling case, and the m
mum s11 residual stress is increased by nearly 30 percent. T
result can explain why spalling occurs usually ahead of the d
~along the direction of the load movement! considering the ben-
eficial effect of the compressive residual stress on the fatigue

4 Conclusion

A three-dimensional semi-analytical elastic-plastic contact c
has been developed. Hertz and small strain hypotheses have
used, and further simplifications have not been made. This
has been validated by comparison with numerical results supp
by a FE commercial code. A special care has been brought to
contact resolution by FE. A comparison has also been carried
with experimental data from a nano-indentation test, and
agreement in both cases is very good. The main advantage o
code over classical FE codes is the reduction of the calcula
time, making transient analysis of three dimensional contact p
lems affordable, including when a fine mesh is required.

Opportunities given by this SAC are very wide. First, initi
residual stresses can be introduced. The analysis enables th
fluence of asymmetric residual stress on microyield stress m
surement by nano-indentation~vertical loading! to be studied, fol-
lowing the method developed by El Ghazal@28#. In a second step
since initial hardening and hardening parameters changing
depth can be introduced, this SAC is a convenient tool to ana
the dented contact between two rolling bodies. The capability
treat the dented contact under vertical loading as well as un
rolling conditions has been developed. These two applications
of primarily interest for the study of the rolling contact fatigue
steel with a dented surface. Eventually, this tool should also
useful to better understand the influence of the indentation pro
on RCF mechanisms.
Journal of Tribology
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Appendix 1

Residual Stress Calculation. In this appendix, the expres
sions allowing to calculate residual stresses from plastic strain
a half-space are given. More details are given by Chiu@15,16#.
The tensor A includes 36 different terms:

F s11
r

s22
r

s33
r

s12
r

s13
r

s23
r

G53
A111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2333 A2312 A2313 A2323

4 F
«11

p

«22
p

«33
p

«12
p

«13
p

«23
p

G
The solution is calculated as the superposition of three solut
~Fig. 23!.

Solution 1 corresponds to the solution in an infinite space
presence of a cuboid of constant plastic strain.

Solution 2 corresponds to the solution in an infinite space in
presence of a mirror cuboid of constant plastic strain, such
plastic deformations«13

p and «23
p are set opposites from those o

the main element. The superposition of the two solutions lea
the median plane free of tangential stresses.

Finally, Solution 3 corresponds to a half-space on which
applied the field of normal stress obtained on the median pl
from Solutions 1 and 2 which is the double of each solution tak
separately. At the end, the desired solution of a half-space in
presence of a cuboid of constant plastic strains with a free sur
is obtained.

Solutions 1 and 2 are expressed in a mark bound to the ce
of the cuboid of plastic strain bys i j 5Bi jkl «kl

p . Solution 3 is
expressed in a mark whose origin is placed on the surface
s i j 5Pi jkl «kl

p .
The final solution is expressed by:
Fig. 23 Superposition of solutions
OCTOBER 2002, Vol. 124 Õ 663
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F s11
r

s22
r

s33
r

s12
r

s13
r

s23
r

G5A~x1 ,x2 ,x3 ,h!F «11
p

«22
p

«33
p

«12
p

«13
p

«23
p

G
5B~x1 ,x2 ,x32h!F «11

p

«22
p

«33
p

«12
p

«13
p

«23
p

G
1B~x1 ,x2 ,x31h!F «11

p

«22
p

«33
p

«12
p

2«13
p

2«23
p

G
2P~x1 ,x2 ,x3 ,h!F «11

p

«22
p

«33
p

«12
p

2«13
p

2«23
p

G .

Stress Calculation in an Infinite Space. An infinite space is
considered~Figs. 16-1, 16-2!. Consider the mark (C,jW1 ,jW2 ,jW3),
bound to the center of the cuboid of size 2Dx1.2Dx2.2Dx3 . Con-
sider a pointM (j1 ,j2 ,j3). The coordinates of the vectors linkin
the corners of the element to this point are noted

Cm
W5~g1

m ,g2
m ,g3

m!

C1
W5~j12Dx1 ,j22Dx2 ,j32Dx3!

C2
W5~j11Dx1 ,j22Dx2 ,j32Dx3!

C3
W5~j11Dx1 ,j21Dx2 ,j32Dx3!

C4
W5~j12Dx1 ,j21Dx2 ,j32Dx3!

C5
W5~j12Dx1 ,g21Dx2 ,j31Dx3!

C6
W5~j12Dx1 ,j22Dx2 ,j31Dx3!

C7
W5~j11Dx1 ,j22Dx2 ,j31Dx3!

C8
W5~j11Dx1 ,j21Dx2 ,j31Dx3! .

Elastic strains at pointM generated by a cuboid of constant a
unity plastic strain«11

p are given by:

«11115
1

8p3 (
m51

8 FD ,1111
m 1

22n

12n
~D ,1122

m 1D ,1133
m !G2H~M !

«221152
1

8p3 (
m51

8

2D ,1122
m 1

n

12n
~D ,2222

m 1D ,2233
m !

«331152
1

8p3 (
m51

8

2D ,1133
m 1

n

12n
~D ,2233

m 1D ,3333
m !
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«12115
1

8p2 (
m51

8
n

12n
D ,1112

m 1
11n

12n
~D ,2221

m 1D ,3312
m !

«13115
1

8p3 (
m51

8
n

12n
D ,1113

m 1
11gn

12n
~D ,3331

m 1D ,2213
m !

«23115
1

8p3 (
m51

8
y

12n
~D ,2223

m 1D ,3332
m ! .

In the presence of unity shear strain («12
p 1«21

p )52, elastic defor-
mations at pointM are given by:

«11125
1

8p3 (
m51

8
22n

12n
D ,1112

m 12~D ,2221
m 1D ,3312

m !

«22125
1

8p3 (
m51

8
22n

12n
D ,1222

m 12~D ,1112
m 1D ,3312

m !

«33125
1

8p3 (
m51

8
22n

12n
D ,3312

m

«12125
1

8p3 (
m51

8 F22n

12n
D ,1122

m 1D ,1111
m 1D ,2222

m 1D ,1133
m 1D ,2233

m G
2H~M !

«13125
1

8p3 (
m51

8

2
11n

12n
D ,1123

m 1D ,2223
m 1D ,3332

m

«23125
1

8p3 (
m51

8

2
11n

12n
D ,2213

m 1D ,1113
m 1D ,3331

m .

With H(M )51 if M is inside the cuboid andH(M )50 otherwise.
The functionsD are defined by:

D ,1111
m 52p2F tan21Fg2

mg3
m

g1
mR G2

g1
mg2

mg3
m

2R S 1

g1
m2

1g2
m2

1
1

g1
m2

1g3
m2D G

D ,1112
m 52p2F ~g3

m!. lnS R1ug3
mu

~g1
m2

1g2
m2

!1/2D 2
g1

m2
g3

m

~g1
m2

1g2
m2

!R
G

D ,1122
m 5

p2g1
mg2

mg3
m

~g1
m2

1g2
m2

!R
with R5Ag1

m2
1g2

m2
1g3

m2

D ,1123
m 52

p2g1
m

R
.

The rest of derivatives are obtained by circular permutation
the subscripts.

From Hooke’s law, it is then possible to find out stresses and
to determine the components of the tensorB for every pointM.

Expression of the Solution „3…. The cuboid of constant
strains has a size of 2Dx1.2Dx2.2Dx3 . The coordinates of the
vector linking the corners of the mirror element to the projecti
of M on the plane (O,xW1 ,xW2) are notedCm

W5(cmx ,cmy ,cmz)

C1
W5~x12Dx1 ,x22Dx2 ,h2Dx3!

C2
W5~x11Dx1 ,x22Dx2 ,h2Dx3!

C3
W5~x11Dx1 ,x21Dx2 ,h2Dx3!
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C4
W5~x12Dx1 ,x21Dx2 ,h2Dx3!

C5
W5~x12Dx1 ,x21Dx2 ,h1Dx3!

C6
W5~x12Dx1 ,x22Dx2 ,h1Dx3!
t
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C7
W5~x11Dx1 ,x22Dx2 ,h1Dx3!

C8
W5~x11Dx1 ,x21Dx2 ,h1Dx3!

The terms of the tensorP can be expressed with:
F Pxxkl

Pyykl

Pzzkl

Pxykl

Pxzkl

Pyzkl

G52.F 2z. f kl~0,2,1!1 f kl~0,2,2!12n f kl~2,0,2!

2z. f kl~2,0,1!1 f kl~2,0,2!12n f kl~0,2,2!

f kl~0,0,0!1z. f kl~0,0,21!

~122n!. f kl~1,1,2!2z. f kl~1,1,1!

2 i .z. f kl~0,1,0!

2 i .z. f kl~1,0,0!

G
with

f kl~r ,s,q!5 (
m51

8

~21!mE E
2`

1` s̄kl~x,y,cmz!exp@2xz1 i ~j2cmx1j3cmy!j2
r j3

sdj2dj3

xq .

and x5Aj2
21j3

2 .

These functionsf kl can be expressed as the sum of functionsVu,n,k

f xx~0,0,0!5
l

8p2 (
m5

8 H 2V21,21,0~z1cmz!1V3,21,4~z1cmz!2V3,21,4~z!1
cmz

2
~V21,21,21~z1cmz!

1V3,21,3~z1cmz!!2
V21,1,1~z1cmz!

12y
2

4n2122n2

2n~12n!

cmz

2
V1,21,1~z1cmz!

1
n

12n
.S V21,3,4~z1cmz!2V21,3,4~z!1

Cmz

2
V21,3,3~z1cmz! D

1
1

2n S V1,1,4~z1cmz!2V1,1,4~z!1
cmz

2
V1,1,3~z1cmz! D J .

f yy ~0, 0, 0! deducts by permuting the subscriptsu andn of functionsVu,n,k

f zz~0,0,0!5
l

8p2 (
m51

8 H 2
12n

n FV21,21,0~z1cmz!1
cmz

2
V21,21,21~z1cmz!G

1
n

12n F 2V1,1,4~z1cmz!1CmzV1,1,3~z1cmz!1V3,21,4~z1cmz!1V21,3,4~z1cmz!

1
cmz

2
~V3,21,3~z1cmz!1V21,3,3~z1cmz!!22V1,1,4~z!2V3,21,4~z!2V21,3,4~z! G J

f xy~0,0,0!5
l

8p2 (
m51

8

~122n!.S V0,0,1~z1cmz!

n
1

CmlV0,0,1~z1cmz!12.~V0,0,2~z1cmz!2V0,0,2~z!!

12n D
f xz~0,0,0!5

l

8p2 (
m51

8
122n

n~12n!
~V0,21,1~z1cmz!1CmlV0,21,0~z1cmz!! .
nd
f yz ~0, 0, 0! deducts by permuting the subscriptsu andn of func-
tions Vu,n,k . f xy , f xz , and f yz take into account the symmetry o
the plastic deformations tensor. Functionsf kl ~r,s,q! deduct from
f kl ~0, 0, 0! by addingr, s, andq on the corresponding subscrip
of function Vu,n,k .

The functionsVu,n,k are given by:

Vu,n,k5E E
2`

1` exp@2xz1 i ~j2cmx1j3cmy!j2
uj3

ndj2dj3

xk

V0,0,k52pJ12k,0

V0,1,k52p i sinF.J22k,1
f

s

V1,1,k522p sinF.cosF.J32k,2 r5Ax21y2; F5tan21~y/x!

V0,2,k5p@J32k,01cos~2F!.J32k,2#

V2,2,k5p/4@J52k,02cos~4F!.J52k,4#

V0,3,k5~p/2!i sinF@3J42k,12~4 sin2 F23!.J42k,3#

V1,3,k5p sin 2F@sin2 FJ52k,01~328 sin2 F!r21.J42k,1

212 cos~2F!r22J32k,2# .

Jn,m5*0
`r ne2rzJm(rr )dr 5G(n1m11)/(r21z2)(n11)/2Pn

2m(z/
Ar21z2), wherePn

2m is the associated Legendre polynomial a
J is the Bessel function of the first kind.
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When (n1m11)50, this function is not defined.
The function J2m21,m5*0

`(e2rz21)Jm(rr )/r m11dr5*0
z*0

`

2e2rzJm(rr )/r mdr will be used instead

V21,0,152p iH 1,0

V21,0,052p izH3,0

V21,0,2152p i ~3z2H5,02H3,0!

V21,1,1522pH3,0

V21,1,0526pyzH5,0

V21,1,2522py~H0,22zH1,2!

and functionsH are:

H0,25
tan21~x/y!

y

H1,25
tan21~xz/yAz21r2!

zy

H3,05
x

~y21z2!Az21r2

H1,05 ln
x1Az21r2

~y21z2!1/2

H5,05
y21z2

3 F2H3,01
x

~z21r2!3/2G .

Finally, functionsV follow the recursive relation:

Vu12,n,k1Vu,n12,k5Vu,n,k22

The different components of tensorP can then be computed.

Appendix 2

Stress Calculation in a Half-Space Loaded on Surface.For
an element of uniform normal pressureP of size 2a.2b centered
on the originO, stresses at a pointM (x1 ,x2 ,x3) are given by
~Vergne@17#!:

s i j
pr5

P

2p
Gi j ~OMW !

s i j
pr5

P

2p
@gi j ~x11a,x21b,x3!2gi j ~x11a,x22b,x3!

1gi j ~x12a,x22b,x3!2gi j ~x12a,x21b,x3!# .

The functionsg are defined by:

g11~x,y,z!52n tan21S z21y22ry

zx D12~12n!tan21S r2y1z

x D
1

xyz

r~x21z2!

g22~x,y,z!52n tan21S z21y22ry

zx D12~12n!tan21S r2x1z

y D
1

x1yz

r~y21z2!

g33~x,y,z!5tan21S z21y22ry

zx D2
x1yz

r S 1

x21z2 1
1
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g12~x,y,z!52
z

r
2~122n!ln~r1z!

g13~x,y,z!5
z2y

r~x21z2!

g23~x,y,z!5
z2x

r~y21z2!

with r5Ax21y21z2 .
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