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Abstract 
 

The results of three-parameter experiments are commonly interpreted by the  
trilinear equation for eight data in a prismatic array. If a center point estimate  
is available, the eight- and nine-point arrays can be represented by new 
exponential-type equations. The equations are easy to generate, they are invariant 
under data translation, and they estimate curvature coefficients.  

 
 
Mathematics Subject Classifications: 65D07, 65D17 
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1. Introduction 
 
 The trilinear equation is the traditional method for representing data arranged at 
the eight vertices of a cube. The equation does not utilize a center point datum and it does  
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not estimate curvature coefficients. This paper illustrates methods for developing 
exponential-type equations for the eight- and nine-point prismatic designs in Fig. 1. The 
new equations are easy to generate and they estimate curvature coefficients. The methods 
typically render a variety of interpolating equations for both designs.  
  
 
2. Representations of trigonometric expressions. Nine-point equations.  
 
 The exponential form of cosh(x+y+z) appears in Eq. (1).  
 
cosh(x + y + z) = (1/2)[exp(x + y + z) + exp(–x – y – z)]                                         (1) 
 
 Let the term “x” represent the product of the partial differentiation operator and a 
constant (j) as in (j)d/dx. The symbols “y” and “z” are similarly interpreted as (k)d/dy and 
(l)d/dz, respectively. The three products are substituted into the respective terms on the 
right-hand side of Eq. (1) as in Eq. (2). The left-hand side of Eq. (2) and the Taylor 
expansion of its right-hand side can be multiplied by unity as represented by the ratio of 
an unknown function F(x,y,z)/F(x,y,z). This operation and some of its consequences have 
been illustrated in Refs. [1-4]. The interpretation of Eq. (2) is Eq. (3). 
 
cosh(x + y + z) = (1/2)[exp((j)d/dx + (k)d/dy + (l)d/dz)  

              + exp(–(j)d/dx – (k)d/dy – (l)d/dz)]                               (2) 
 

cosh(x+y+z)[F(x,y,z)/F(x,y,z)] = [F(x+j,y+k,z+l)+F(x–j,y–k,z–l)] / [2F(x,y,z)]           (3) 
 

Eq. (3) is reinterpreted as Eq. (4) by means of Fig. 1. That is, cosh(x+y+z)F(x,y,z) 
and sinh(x+y+z)F(x,y,z) can be interpreted as relationships among points in a cube. 
Hereafter, the sign of equality is reinterpreted by the phrase “is replaced by.” 
 
cosh(x+y+z)[F(x,y,z)/F(x,y,z)] = (I + A) / (2E)                      (4)  
 

In a similar manner, the expression cosh(x+y–z) is replaced by (D+F)/(2E). 
Likewise, cosh(x–y+z) is replaced by (G+C)/(2E) and cosh(x–y–z) is replaced by 
(B+H)/(2E). The hyperbolic sine is amenable to analogous treatment. Thus, sinh(x+y+z) 
is replaced by (I–A)/(2E) while sinh(x+y–z), sinh(x–y+z), and sinh(x–y–z) are replaced 
by (D–F)/(2E), (G–C)/(2E), and (B–H)/(2E), respectively.  
  

The right hand side of Eq. (1) is subject to a second interpretation as in Eq. (5). 
In an analogous manner, cosh(x+y–z), cosh(x–y+z), cosh(x–y–z) are replaced by the  
expressions (1/2)[JK/L+L/(JK)], (1/2)[JL/K+K/(JL)], (1/2)[J/(LK)+LK/J], respectively. 
 
cosh(x + y + z) = (1/2)[JKL + 1/(JKL)]          (5) 
 



 

General method for exponential-type equations                                                          2145 
  
  

Eight equations that are based on sums and differences of cosines can now be 
described. The first equation is illustrated by Eq. (6). The second equation in the series 
changes the signs of the last terms on the left- and right-hand sides of Eq. (6) from 
positive to negative. It has the signs of both (B+H)/(2E) and [J/(KL)+KL/J)] changed 
from plus to minus as in Eq. (7). The orders of the signs of the terms on both sides of the 
first and second equations are therefore (+,+,+,+) and (+,+,+,–), respectively. The 
remaining six equations have the signs of the terms on both sides of the equations as 
(+,+,–,+), (+,+,–,–), (+,–,+,+), (+,–,+,–), (+,–,–,+), (+,–,–,–), respectively.  
 
2[(I+A)/(2E) + (D+F)/(2E) + (G+C)/(2E) + (B+H)/(2E)] =  
[JKL+1/(JKL)] + [JK/L+L/(JK)] + [JL/K+K/(JL)] + [J/(KL)+KL/J]       (6) 
 
2[(I+A)/(2E) + (D+F)/(2E) + (G+C)/(2E) – (B+H)/(2E)] =  
[JKL+1/(JKL)] + [JK/L+L/(JK)] + [JL/K+K/(JL)] – [J/(KL)+KL/J]       (7) 
 
 Sums and differences of the hyperbolic sine also generate eight new equations in 
an analogous manner. The first equation in the series is Eq. (8). The remaining seven 
equations vary the signs of their terms on both sides of the equations. Their signs follow 
the same pattern as the series of eight equations that are based on the sums and 
differences of the cosines.  
 
2[(I–A)/(2E) + (D–F)/(2E) + (G–C)/(2E) + (B–H)/(2E)] =  
[JKL–1/(JKL)] + [JK/L–L/(JK)] + [JL/K–K/(JL)] + [J/(LK)–LK/J]        (8) 
  
 There are now eight equations based on the sums and differences of hyperbolic 
cosines and eight analogous equations based on the sums and differences of hyperbolic 
sines. All of them contain the letters A .. I representing data at the nine vertices of the 
prism in Fig. 1. To account for data translation, let each letter A .. I be augmented by 
adding a term T to it so that A becomes A+T and likewise for the remaining letters. The 
sixteen equations now contain the nine numbers A .. I and the unknowns J, K, L, and T.  
 
 Let the nine data A .. I be positive and real. A subset of four simultaneous 
equations can be chosen from the sixteen described equations. Let the subset contain at 
least one equation from the sine group and one equation from the cosine group. The 
subset can often be solved for J, K, L, and T. The solutions are obtained analytically if 
the software can do that. Otherwise, the values of J, K, L, T are estimated by a numerical 
method. All of J, K, L must be real and positive. Unity is not a permissible value for any 
of J, K, or L. The value of T must be real but it can be positive or negative.   

 
For example, let nine data be obtained by applying the generating function  

M3–3M2+10 to the first nine integers 1 .. 9 assigned to vertices A .. I, respectively, as in 
Fig. 1. Let Eqs. (6) and (8) be chosen as two of the equations to be solved. Each equation  
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has signs (+,+,+,+) on both sides. Let the third and fourth equations be the same 
equations with the signs (+,+,+,–) on each side as described above. That is, a new group 
of four equations is formed by two equations chosen from the cosine group and two 
equations chosen from the sine group. They are called the basis equations.   

 
When solved analytically, the selected subset of four simultaneous equations 

yields several sets of solutions for J, K, L, and T but only two of them contain acceptable 
choices for J, K, L. The proper selection is made by the help of alternative, exponential-
type, eight- or nine-point equations applied to the same data. The eight-point reference 
equation appears as Eq. (14) in Ref. [5]. The nine-point reference equation substitutes the 
eight-point equation with Eqs. (3)-(5) as listed in Ref. [6]. Comparison of the presently 
approximated values of J, K, L to the like numbers in either of the reference equations 
indicates the proper choice: J~1.241, K~1.635, L~3.796. They are not identical to the 
ones found in the reference equations. The comparison test is based on the assumption 
that exponential-type equations for the same data in the same configuration have similar 
values of J, K, L. The assumption applies in many cases.  

 
The selected values of J, K, L, and the eight vertex measurements, are substituted 

into Eqs. (18)-(26) in Ref. [5]. If E is an estimate, as might be obtained by an alternative 
approach, a new interpolating equation for the eight-point cube is obtained. It need not 
reproduce the center point estimate closely. If E is a measurement, a new equation for the  
nine-point cube is obtained. If the new equation does not reproduce the center point 
satisfactorily, the equation can be prefixed by a polynomial multiplier as illustrated in 
Ref. [6]. Alternatively, another new equation for the nine-point prismatic array can often 
be generated from a new selection of four basis equations. The sets of eight cosine-
related and eight sine-related equations permit many possible choices.   

 
In the present case, the interpolating equation rendered by the described method is 

Eq. (9). Its coefficients have been rounded for simplicity. Eq. (9) reproduces the data at 
the corners of the cube. Its estimate of E is 61 whereas the true value is 60. The error is 
less than 2%. 
 
R = 39.06 – (31.09)(1.241)(x+1) – (23.14)(1.635)(y+1) – (8.630)(3.796)(z+1)  
       + (14.97)(1.241)(x+1)(1.635)(y+1) + (7.466)( 1.241)(x+1)(3.796)(z+1)  
       + (4.413)( 1.635)(y+1)(3.796)(z+1) + (4.952)( 1.241)(x+1)( 1.635)(y+1)( 3.796)(z+1) 
                          (9) 

 
The “true” surface is the generating function applied to (5+x/2+y+5z/2). The 

sums of the squares of the deviations of interpolating equations from the true surfaces 
make  interesting  comparisons. That  sum  is  3015  using  the  previously  published  
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exponential-type, eight-point equation [5]. For the analogous nine-point equation, the 
sum is 1318 [6]. The same sum, as rendered by Eq. (9), is 1164. By sum-of-squares-of 
deviations test, Eq. (9) is the preferred interpolating instrument. Neither the nine-point 
equation nor Eq. (9) was corrected by a polynomial expression as illustrated in Ref. [6]. 
 
 Let the generating function be changed to M3–4M2+10. In this case, Eq. (14) in 
Ref. [5] yields an interpolating equation containing complex-number coefficients. The 
analogous nine-point equation contains real coefficients [6]. The new interpolating   
equation that is generated from the chosen subset of four simultaneous equations is Eq. 
(10). The sum of squares of the deviations is 1833 for the nine-point equation [6], and 
1539 for Eq. (10), respectively. The interpolating equation formed from cosine-related 
Eqs. (6) and (7), and their two arbitrarily selected sine-related analogs, is presently the 
preferred choice. The error of Eq. (10) at the center point about 3%.   
 
R = 32.73 – 22.28(1.271)(x+1) – 15.37(1.765)(y+1) – 4.038(5.042)(z+1)   
      + 8.853(1.271)(x+1)(1.765)(y+1) + (3.432)(1.271)(x+1)(5.042)(z+1)  
      + (1.793)(1.765)(y+1)(5.042)(z+1)  
      + (1.885)(1.271)(x+1)(1.765)(y+1)(5.045)(z+1)     (10) 

 
The examples were based on two equations taken from the cosine group with sign 

designations (+,+,+,+) and (+,+,+,–). Two analogous equations were taken from the sine 
group to complete the set. These choices were arbitrary. Many equation selections can be 
solved by analytical as well as by numerical methods, but the numerical approach is 
usually easier and faster. In difficult cases, choose another subset of four simultaneous  
equations. The possible choices consist of one equation from the sine or cosine group, 
and three equations from the other group, or two equations from each group. No method 
is presently known for finding the optimum selection in a particular case. 

 
Sometimes a particular choice of four simultaneous basis equations fails to yield 

solutions for J, K, L, and T by the analytical approach. A solution may nevertheless be 
obtained by that method: change the precision in the calculations and then convert the 
equations to rational forms. Then try to solve them. The numerical method has the 
disadvantage that software typically requires specification of the limits of J, K, and L. 
The limits can be wide. They are easy to adjust but they should not include unity. The 
limits of T usually do not need to be specified. The numerical method of solving the four 
simultaneous equations is usually the first approach because it is easy.  

 
Methods for choosing among candidate interpolating equations include comparing 

their center point estimates to the true values. Alternatively, compare the first partial 
derivatives dF/dx, dF/dy, and dF/dz of the candidate equations to the like derivatives as 
rendered by alternative methods of representing the nine-point cube [3-8].  
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3. The eight-point cube 

 
The eight-point cube can be interpolated by a method analogous to the nine-point 

method described above. In the eight-point method, five basis equations are selected from 
the groups of sine- and cosine-related equations. They are solved for the five unknowns  
J,K,L,T,E. The solution of five simultaneous equations for five unknowns typically 
presents more difficulties than the solution of four simultaneous equations for four 
unknowns. The numerical approach to solving the five equations seems to be faster and 
easier than the analytical method. In many cases, only the ranges of J, K, L need to be 
specified. Many cases can be solved without specifying the numerical ranges of T and E.  

 
To illustrate the eight-point method, let three of the five basis equations be taken 

from the cosine group with signs (+,+,+,+), (+,+,–,+), and (+,–,+,+). The remaining two 
basis equations are taken from the sine group with signs (+,+,+,–) and (+,+,–,–). This  
selection is arbitrary. Let the generating function M3 be applied to the numbers 1 .. 4 as A 
.. D and 6 .. 9 as F .. I in Fig. 1. The five basis equations are solved for J,K,L,T, and E. 
Eq. (11) is the resulting eight-point equation that interpolates them. Its sum-of-squares-
of-deviations from the surface representing the generating function is 1428. Eq. (11) 
estimates the center point as E=121.2.  

 
Eq. (12) is the analogous nine-point equation based on the same data but with the 

addition of the center point datum. It is developed from two equations from each of the 
sine and cosine groups as the basis equations. The two equations from each group have 
signs [(+,+,+,–), (+,+,–,–)]. The four basis equations are solved simultaneously for J, K,  
L, and T. The sum-of-squares-of-deviations of Eq. (12) from the surface representing the 
generating function is 833 and it estimates the center point as E=128.1. The true value is 
E=125. The nine-point method is superior in this case. It has the advantage of the extra 
datum at center point E. Other choices of the basis equations yield other results.  
 
R = 47.13 – (65.25)(1.208)(x+1) – (55.01)(1.436)(y+1) – (24.28)(2.884)(z+1)  
       + (44.75)(1.208)(x+1)(1.436)(y+1) + (18.94)(1.208)(x+1)(2.884)(z+1)  
       + (17.89)(1.436)(y+1)(2.884)(z+1) + (16.83)(1.208)(x+1)(1.436)(y+1)(2.884)(z+1)    (11) 
 
R = 73.49 – (89.14)(1.172)(x+1) – (73.83)(1.407)(y+1) – (35.60)(2.671)(z+1)  
       + (55.42)(1.172)(x+1)(1.407)(y+1) + (25.68)(1.172)(x+1)(2.671)(z+1)  
       + (18.16)(1.407)(y+1)(2.671)(z+1) + (26.82)(1.172)(x+1)(1.407)(y+1)(2.671)(z+1)    (12) 
 
 
4. Discussion of the exponential-type equations 

 
The second column of Table 1 represents the sums-of-squares-of-deviations of an 

earlier method for representing an eight-point cube: Eq. (14) in Ref. [5]. The third  
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column represents similar results using another eight-point, exponential-type equation 
that is based on three equations chosen from the cosine group and two equations taken 
from the sine group as described above. Comparison of the tabulated results in Table 1 
suggests that there is little difference between the two methods. That is an artifact of the 
particular choice of the five basis equations.  
 

The described methods are potentially useful for the eight- and nine-point 
prismatic arrays. They typically generate several exponential-type equations that 
reproduce the data at the corner points of the prism. They are exact on simple exponential 
functions like 2x and they are invariant under data translation. Both methods estimate the 
datum at the center point of the prism. The user decides if the estimate is satisfactory, or 
if the interpolating equation should be prefixed by a polynomial multiplier, or if a new set 
of simultaneous basis equations should be tested [6].  
  

Table 2 compares the sums-of-squares-of-deviations of three exponential-type 
surfaces as rendered by three nine-point equations. The entries in the second column are 
obtained from the nine-point exponential-type method described in Ref. [6]. That nine-
point equation was not corrected by a polynomial multiplier [6]. The letter M represents a 
number at a vertex of the cube. In the present cases, the numbers A .. I are the first nine  
integers 1-9, respectively. The notation M2 indicates that every number A .. I was squared 
to generate the trial data. Thus, M(4)=16. Monotonic data are not typical of laboratory 
experience, nor are they required by the present methods, but they make convenient 
examples.  

 
The entries in the third and fourth columns in Table 2 are based on the illustrated 

nine-point method. The third column lists results obtained from two equations taken the 
cosine group. One has terms with signs (+,+,+,+) on both sides while the other one has  
signs (+,+,+,–) on  both sides. The remaining two equations are chosen from the sine 
group with the same sign assignments. This selection is represented by Method (1) in 
Table 2. The table also lists sums-of-squares-of-deviations obtained by another group of  
four simultaneous equations. The first two equations are chosen from the cosine group 
with signs (+,+,+,–) and (+,+,–,–) on both sides, respectively. The remaining two 
equations are taken from the sine group with the same sign assignments. Results obtained 
by the second choice are denoted Method (2) in Table 2. All of the equations estimate 
curvature, something formerly believed to be impossible on eight-point prismatic designs 
and seldom illustrated with nine-point designs.   
 

The eight-point method described by Eq. (14) in Ref. [5] yields complex-number 
coefficients in certain cases. However, other exponential-type equations derived from the 
same data, as illustrated in this manuscript, may not be compromised by the same 
problem. In some cases, the values of J,K,L may lie outside the arbitrary limits typically 
needed by numerical methods for solving simultaneous equations. The numerical  
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approach is then certain to fail. More than one set of estimates of J,K,L may satisfy a 
numerical algorithm within the limits of its precision. Different interpolating equations 
could be obtained from the same choice of basis equations and the same data.   

 
There are many ways to generate polynomial-, trigonometric-, and exponential-

type equations for eight- and nine-point prismatic arrays as in Fig. 1 [5-9]. The variety of 
alternatives offered by operational methods may interest the experimentalists. It may not 
be apparent which one of the many equations represents the best selection in a particular 
case. The problem has not attracted attention. Decisions based on laboratory results may 
represent the most practical solution to this question. The presence of improper curvature  
effects, such as unwarranted extrema, is a criterion for rejection of an equation but the 
criterion is tedious to apply [9]. The easy default is the trilinear equation but its 
popularity is not evidence that it invariably makes the best use of experimental data. The 
literature citations are restricted to methods that estimate curvature coefficients for the 
eight- and nine-point prismatic arrays. They are primarily related to the shifting operator. 
It is difficult to otherwise find so many simple, easily-applied alternatives. There appear 
to be more equations for the eight-point cube than for the four-point rectangle [5,7,10]. 
 
 
5. Rotational invariance  

 
There are eight equations in each of the cosine and sine groups. The former 

contain differences between terms and the latter contain differences between terms and 
within terms. If a numerically substituted cube is rotated about its center point, the sums 
and differences on the left-hand sides of the equations are affected but J, K, and L on the 
right-hand sides are not affected. This asymmetry has a consequence: the interpolated 
number at an arbitrary point within the cube is not reproduced as the cube is rotated.  

 
Suppose x, y, and z are positive numbers that are the arguments of exponential-

type functions such as exp(x). Let those functions of x, y, and z be designated J, K, and L, 
respectively. If x, y, and z change their signs, J, K, and L become the reciprocals of their 
former values so they are represented by 1/J, 1/K, and 1/L, respectively. Let L represent  
the effect of the z-coordinate (the vertical coordinate) that increases from bottom to top in 
the initial orientation of a particular cubical array. Let the cube be rotated so that the  
bottom and top faces are interchanged. Now the effect of z decreases from bottom to top. 
In other words, L in the old orientation becomes 1/L in the new orientation. Similar 
remarks apply to the effects of the x- and y-coordinates so that they are also represented 
by J or 1/J, and K or 1/K, depending on how the cube is oriented.  

 
Let the generating function be M3+10. If this function is applied to the numbers 

[1,2,3,4,5,6,7,8,9] at vertices A .. I, respectively, the trial data become [11,18,37, ...],  
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respectively. Let one of the four simultaneous, basis equations be taken from the cosine 
group with signs (+,+,+,+) on both sides and let the second equation be taken from the 
sine group the same sign assignments. The third and fourth equations are taken one each 
from the cosine and sine groups with signs assignments (+,+,+,–) on both sides, 
respectively. The interpolating equation is Eq. (13) in which J~1.191, K~1.460, L~2.698. 
At the point x=0.9, y=0.8, and z=0.7, the predicted response is R=491.99, nearly. 
 
R = 63.84 – (72.06)J(x+1) – (58.15)K(y+1) – (29.23)L(z+1) + (43.14)J(x+1)K(y+1) 
       + (25.49)J(x+1) L(z+1) + (17.82)K(y+1)L(z+1) + (20.16)J(x+1)K(y+1) L(z+1)     (13) 
  

Let the cube be rotated so that the data at the vertices A .. I become the generating 
function applied to [8,3,9,4,5,6,1,7,2], respectively. The numbers that were formerly  
increasing from left to right, the x-direction, are now increasing from front to back, the y-
direction. The new K is therefore assigned as the old J. The parameter L was formerly 
associated with numbers that were increasing from bottom to top. The same numbers are 
now found in the side planes, the x-direction, but in a decreasing order from left to right. 
This means the new J is assigned as the reciprocal of the old L. The numbers that were 
formerly increasing in the y-direction are now decreasing in the z-direction. The new L is 
therefore the reciprocal of the old K. We now have the new values J~0.3706, K~1.191, 
L~0.6848. The new interpolating equation for the rotated cube is obtained from the new 
J, K, L and the new corner-point data by means of Eqs. (18)-(26) in Ref. [5]. It is Eq. 
(14). Note that the new values of J, K, L are determined by assignments based on their 
previous values and the new orientation of the cube, not by solving a new subset of four 
simultaneous basis equations for the rotated cube.   
 
R = 63.84 – (212.8)J(x+1) – (72.06)K(y+1) – (124.0)L(z+1) + (185.5)J(x+1)K(y+1)  
      + (276.6)J(x+1)L(z+1) + (91.97)K(y+1)L(z+1) + (312.9)J(x+1)K(y+1)L(z+1)  (14) 
 

The point with former (x,y,z) coordinates (0.9,0.8,0.7) has new (x,y,z) coordinates 
(–0.7,0.9,–0.8), respectively. The response at the point with the new coordinates 
substituted into Eq. (14) is R=491.99, nearly. Both the original and the rotated cubes 
exhibit the same sums-of-squares-of-deviations from the original and the rotated 
reference surfaces. The example illustrates the how the exponential-type equations adapt 
to rotation of the prismatic design in Fig. 1. These remarks apply to the eight- and nine-
point methods.  
 
 
6. Curvature coefficients 
 
 Let the numbers 1 .. 4 and 6 .. 9 be placed at vertices A .. D and F .. I, 
respectively, in Fig. 1. Let trial generating functions be denoted by the letter M. Let those 
functions be applied to the numbers positioned at vertices A .. I in the eight-point cube in 
Fig. 1. The coordinate system is –1 .. 1. Taylor expansions of M(5+x/2+y+5z/2) yield the  



 

2152                                                                                                                     G. L. Silver 
 
 
 
reference values of the curvature (quadratic-term) coefficients. Those coefficients are 
estimated by eight-point operational equations by means of their Taylor expansions [5].  
 
 

Table 3 illustrates comparisons of curvature coefficients for seven generating 
functions that are listed in the first column of the table. The top numbers in each block in 
the second, third, and fourth columns of Table 3 represent the reference values of the x2-, 
y2-, and z2-coefficients. The middle numbers in each block are estimates of those 
numbers as rendered by an operational, polynomial-type equation, Eq. (10) in Ref. [5]. 
The bottom numbers are the estimates as obtained by the eight-point method described in 
Section 3 above. The comparisons suggest that polynomial-type equations render better 
estimates when applied to data generated by polynomial-type functions such as M2. 
Taylor expansions of the 8-point exponential-type equations also estimate the quadratic-
term coefficients. Generally, those estimates are more accurate when the data are 
generated by exponential-type functions like 2M. These observations are not surprising. 
Laboratory experience may be the easiest way to make decisions about which form is 
best for routine applications. That experience is useful for making the choice of the basis 
equations, too.  

 
 

 
Table 1. Sums of squares of deviations of two eight-point, exponential-type  
equations from typical trial surfaces. The data at vertices A-D and F-I in  
Fig. 1 are the integers 1-4 and 6-9, respectively, treated by the generating  
functions. The second column of the table lists results as obtained by Eq.  
(14) in Ref. [5]. The third column lists results obtained by the method  
described in Section 3 in the text.  

 
 

Function* Eight-point [5] Eight-point (text) 
M2 6.77 6.64 
M3 1566 1428 
M3 + 2M 905 797 
sinh(M/4) 0.00316 0.00308 
cosh(M/4) 0.00565 0.00544 
(M)ln(M+1) 0.153 0.154 
(12/10)M 0 0 
(M)(12/10)M 0.0788 0.0754 

 
      *The function is applied to the integers 1-4 at vertices A-D, and 6-9  
        at vertices F-I, respectively. 
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Table 2. Sums-of-squares-of-deviations of nine-point, exponential-type equations from 
typical trial surfaces. The data at vertices A-I in Fig. 1 are the integers 1-9, respectively. 
The second column lists results as obtained by the approach in Section 3 of Ref. [6]. (A 
polynomial multiplier was not applied.) Method (1) uses two equations from the cosine 
group with signs (+,+,+,+) and (+,+,+,–) on both sides of the equations and two 
analogous equations from the sine group. Method (2) uses two equations from cosine 
group with signs (+,+,+,–) and (+,+,–,–) on both sides and two analogous equations from 
the sine group of basis equations.   
 
 
 
 

Function* Nine-point [6] Method (1) Method (2) 
M2 5.73 5.46 5.50 
M3 1067 976 833 
M3 + 2M 400 333 289 
sinh(M/4) 0.00276 0.00263 0.00267 
cosh(M/4) 0.00415 0.00375 0.00372 
(M)ln(M+1) 0.146 0.147 0.208 
(12/10)M 0 0 0 
(M)(12/10)M 0.0683 0.0647 0.0601 

 
 
     *The function is applied to the integers 1-9, denoted M, at vertices A-I in Fig. 1.  
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Table 3. Estimates of quadratic-term coefficients as obtained by Taylor expansions of the 
generating functions and two operational equations. The top, middle, and bottom 
numbers in each block represent the reference coefficients, the approximations as 
rendered by Eq. (10) in Ref. [5], and the approximations as rendered by exponential-type 
equations prepared as described in Section 3 of the text, respectively. The entries apply to 
an eight-point prismatic array as in Fig. 1. See Section 6 above.  
 
 
 
Function (M) x2-coefficient y2-coefficient z2-coefficient 
M2 0.25 

0.25 
0.20 

1.00 
1.00 
0.85 

6.25 
6.25 
6.37 

M3 3.75 
3.75 
2.65 

15.0 
15.0 
10.3 

93.8 
93.8 
86.5 

2M 1.92 
6.88 
1.92 

7.69 
22.3 
7.69 

48.0 
54.6 
48.0 

sinh(M/2) 0.19 
0.40 
0.20 

0.76 
1.42 
0.78 

4.73 
4.78 
4.73 

 (M!)(1/2) 1.12 
14.2 
1.36 

4.48 
35.5 
5.73 

28.0 
53.9 
31.4 

tan(9Mo) 0.012 
0.11 
0.024 

0.049 
0.26 
0.13 

0.31 
0.42 
0.52 

tan–1(M3) –(4.8)(10–4) 
–0.032 
–0.0011 

–0.0019 
–0.050 
–0.0066 

–0.012 
–0.057 
–0.022 
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Fig. 1. The nine-point prismatic array. 
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