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1 Introduction

We consider the parametric finite optimization problem

Pf,M(t) : min
x

f(t, x) s.t. x ∈ M(t)

with parameter vector t ∈ Rr, decision vector x ∈ Rn, a convex function
f : Rr ×Rn → R and a non-trivial, outer semi-continuous and graph-convex
set-valued mapping M : Rr ⇒ Rn. The latter assumptions on M mean that
its graph,

gphM = {(t, x) ∈ Rr × Rn| x ∈ M(t)},

is a non-empty, closed and convex set, respectively. Following Hogan ([13]),
we call this convexity assumption complete convexity. Obviously, under com-
plete convexity Pf,M(t) is a convex optimization problem for each t ∈ Rr.
For convenience, we will denote the family of optimization problems Pf,M(t),
t ∈ Rr, briefly by Pf,M .

The following will be a blanket assumption throughout this article.

Assumption 1.1 For each t ∈ Rr there exists some level α(t) ∈ R such that
the set {x ∈ M(t)| f(t, x) ≤ α(t)} is bounded.

Note that the set-valued mappingM does not necessarily have to be bounded-
valued under Assumption 1.1, that is, M(t) may be unbounded for some
t ∈ Rr.

While the continuity results discussed below will not need a functional de-
scription of M , our differentiability analysis shall depend on it, in particular
to state the subsequent Assumption 1.2. We will then assume that the graph
of M is given by

gphM = {(t, x) ∈ Rr × Rn| gi(t, x) ≤ 0, i ∈ I}

with a finite index set I = {1, . . . , p}, p ∈ N, and convex functions gi :
Rr ×Rn → R, i ∈ I. Note that M is then outer semi-continuous and graph-
convex, and that for a given parameter vector t ∈ Rr we obtain

M(t) = {x ∈ Rn| gi(t, x) ≤ 0, i ∈ I}

as well as the parametric optimization problem with functional constraints

Pf,g(t) : min
x

f(t, x) s.t. gi(t, x) ≤ 0, i ∈ I.
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In the following, whenever results can be shown without the functional de-
scription of M , we will refer to the parametric problem Pf,M instead of Pf,g.
The inclusion of finitely many affine equality constraints in the description
of gphM is straightforward, but omitted here for the ease of presentation.

For problem Pf,g, the non-triviality ofM will be strengthened to the following
blanket assumption.

Assumption 1.2 The set gphM satisfies the Slater condition, that is, there
exists some (t?, x?) ∈ Rr × Rn with gi(t

?, x?) < 0, i ∈ I.

In the subsequent investigation of problem Pf,M , the (effective) domain of
the set-valued mapping M ,

domM = {t ∈ Rr| M(t) 6= ∅},

will play a crucial role. Note that domM is the orthogonal projection of
the non-empty, closed and convex set gphM to Rr and, thus, itself at least
non-empty and convex.

Due to the continuity of f and Assumption 1.1, the Weierstraß theorem
guarantees solvability of Pf,M(t) for each t ∈ domM . Hence, for t ∈ domM
the optimal value of Pf,M(t) is the real number

f ?(t) = min
x∈M(t)

f(t, x).

As usual, for t 6∈ domM we set f ?(t) = +∞. Hence, the (effective) domain
of f?,

dom f ? = {t ∈ Rr| f ?(t) < +∞}
and domM coincide,

dom f ? = domM, (1)

and thus also dom f ? is a non-empty and convex set. Note that Assump-
tion 1.1 rules out the case f ?(t) = −∞ for any t ∈ Rr.

We will employ the following example throughout this article to illustrate
our results.

Example 1.3 For n = r = 1 and p = 2, the continuously differentiable and
convex functions f(t, x) = x, g1(t, x) = t2 + x2 − 1 and g2(t, x) = −t − x
define the problem

Pf,g(t) : min
x

x s.t. t2 + x2 ≤ 1, −t− x ≤ 0
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with

M(t) =


[
max

{
−t,−

√
1− t2

}
,
√
1− t2

]
, t ∈

[
− 1√

2
, 1
]

∅, else,

domM =

[
− 1√

2
, 1

]
and gphM = {(t, x) ∈ R2| t2 + x2 ≤ 1, −t− x ≤ 0}.

It is easy to see that Assumptions 1.1 and 1.2 hold. The optimal value func-
tion is

f?(t) = max
{
−t,−

√
1− t2

}
with dom f ? =

[
− 1√

2
, 1
]
.

Note that, throughout this article, the domain Rr × Rn of the functions f ,
gi, i ∈ I, could be replaced by any open convex set containing gphM but,
for notational convenience, we will not formulate this explicitly.

The focus of this paper will be on continuity and differentiability properties
of f ? on its whole domain. Our assumptions admit to survey existing and
develop new material without veiling the main ideas by too many techni-
calities. We emphasize that it is not the aim of this paper to prove results
under rather weak assumptions, but to provide useful results which still hold
under natural assumptions and may easily be implemented in practical appli-
cations. Here we think of, in particular, reformulations of generalized Nash
equilibrium problems as single optimization problems, where optimal value
functions enter the objective function ([4, 10]), and structural properties of
generalized semi-infinite optimization problems, where optimal value func-
tions describe the feasible set ([24, 25]).

The article is structured as follows. In Section 2 we study lower and upper
semi-continuity of f ? up to the boundary of dom f ?, along with the inner
semi-continuity of the feasible set mappingM . Given a functional description
ofM , we also provide a functional description of dom f?. Section 3 is devoted
to directional differentiability properties of f? in directions from the radial
cone to dom f?, and to functional descriptions of related cones. Some final
remarks conclude this article in Section 4.
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2 Continuity properties of f ?

There are (at least) two different roads to establish continuity properties of
f ? as, on the one hand, f ? is an optimal value function and, on the other
hand, f ? is a convex function. We start this section by briefly recalling the
latter result.

2.1 Convexity of f ∗

The following proposition is well-known even under weaker assumptions on
Pf,M (cf., e.g., [21, Cor. 3.32]), but we give its short proof for completeness.

Proposition 2.1 The optimal value function f ? of Pf,M is proper and con-
vex on Rr.

Proof. The non-triviality and Assumption 1.1 imply that f? is proper. The
convexity assertion is shown if we can prove that epi f?, the epigraph of f?,
is a convex set ([19]). In fact, choose (t1, α1) and (t2, α2) in epi f ?, that is,
we have f?(ti) ≤ αi, i = 1, 2. In view of (1), for i = 1, 2 the sets M(ti) are
non-empty so that we may choose points xi ∈ M(ti) with f(ti, xi) ≤ αi. The
convexity of gphM yields

(1− λ)x1 + λx2 ∈ M( (1− λ)t1 + λt2 )

for all λ ∈ (0, 1) so that, together with the convexity of f , we arrive at

(1− λ)α1 + λα2 ≥ (1− λ)f(t1, x1) + λf(t2, x2)

≥ f( (1− λ)t1 + λt2, (1− λ)x1 + λx2 )

≥ f?( (1− λ)t1 + λt2 ),

which means (1−λ)(t1, α1)+λ(t2, α2) ∈ epi f ? and, thus, convexity of epi f?.
•

As a convex function, f? is continuous on the topological interior int dom f?

of dom f? ([19, Th. 10.1]). Example 2.3 below will illustrate that f ? is not
necessarily continuous on all of dom f ?. We will give sufficient conditions to
rule out this unsatisfactory situation.
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2.2 Lower semi-continuity of f ∗

To extend the continuity analysis of f ? to all of dom f?, we consider its lower
and upper semi-continuity separately. Note that all continuity properties of
f ? will be meant relative to dom f ?.

The lower semi-continuity of f ? is shown under different even weaker as-
sumptions in [16, Cor. 2.1] and in [21, Cor. 3.32]. We emphasize that we
could give an elementary proof based on Lemma 2.5 below for the case of a
bounded-valued feasible set mapping M . In fact, there we will show that un-
der complete convexity the pointwise bounded-valuedness of M implies even
local boundedness of M on its domain, that is, the boundedness holds locally
uniformly in the sense that each t̄ ∈ domM possesses a neighborhood V such
that

⋃
t∈V M(t) is bounded. Without any convexity assumptions a standard

result ([12, Th. 5]) then implies lower semi-continuity of f ? on its domain,
as long as f is lower semi-continuous and M is outer semi-continuous.

We do not give this proof explicitly here for two reasons. First, our blanket
Assumption 1.1 is more general than bounded-valuedness of M and, second,
for convex-valued feasible set mappings M it turns out to be unnecessary
to argue via their local boundedness. Instead, we only provide the following
result which immediately follows from [16, Cor. 2.1] under our assumptions.

Proposition 2.2 The optimal value function f ? of Pf,M is lower semi-con-
tinuous on dom f ?.

2.3 Upper semi-continuity of f ∗

and inner semi-continuity of M

The following example is a slight modification of [17, Ex. 2] and shows that
f ? is not necessarily continuous on all of dom f?.

Example 2.3 For n = 1 and r = 2 consider the problem Pf,M described
by f(t, x) = −x, g1(t, x) = (t1 − x)2 + t22 − (1 − x)2, g2(t, x) = −x, and
g3(t, x) = 1− x. Then, although g1 is not convex, the set-valued mapping M
is graph-convex as well as non-trivial, outer semi-continuous and bounded-
valued. Hence, by Proposition 2.2, the optimal value function f ? of Pf,M is
lower semi-continuous on dom f∗ = {t ∈ R2| ‖t‖2 ≤ 1}.

Take, however, t̄ = (1, 0) from the boundary of dom f ? and any sequence
tk → t̄ with ‖tk‖2 = 1 for all k ∈ N. Then we obtain M(tk) = {0} and
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f ?(tk) = 0 for all k ∈ N as well as M(t̄) = [0, 1] and f ?(t̄) = −1, so that f ?

is not continuous at t̄.

Example 2.3 shows, in particular, that upper semi-continuity of f ? cannot be
expected at points from the boundary of dom f ? without further assumptions.

While the fact that f? is an optimal value function was used to prove its
lower semi-continuity in Proposition 2.2, there exist well-known sufficient
conditions for upper semi-continuity of convex functions which we may al-
ternatively apply to f ? in view of Proposition 2.1. For example, by [5, Th.
2] any convex function is upper semi-continuous at any point at which its
domain is locally polyhedral, where the latter means that the domain lo-
cally coincides with a polyhedron. In particular, for r = 1 the set dom f ? is
convex in R1, that is, an interval and, hence, locally polyhedral everywhere.
In [11, Prop. 3.1.2] it is also shown directly that any convex function of
a single variable is upper semi-continuous on its whole domain. Together
with Proposition 2.2 these conditions are easily seen to be sufficient for the
continuity of f ?.

In the following, we will complement and improve these results for our spe-
cial situation in which f ? is, in fact, also an optimal value function. The
key property which is needed to extend upper semi-continuity of an optimal
value function f ? to all of dom f? is the inner semi-continuity of the set-
valued mapping M on domM . Note that inner semi-continuity can hold at
boundary points of domM if it is considered relative to the latter set, that is,
for each sequence tk → t̄ with tk ∈ domM for all k ∈ N, and each x̄ ∈ M(t̄)
there exists a sequence xk → x̄ with xk ∈ M(tk) for almost all k ∈ N.

In fact, by [12, Th. 6] inner semi-continuity of M relative to domM at
some point t̄ is sufficient for upper semi-continuity of f ? at t̄ relative to
dom f?. Hence the subsequent discussion of sufficient conditions for inner
semi-continuity of f? extends known results which show the upper semi-
continuity of f ? directly.

Example 2.4 In the situation of Example 2.3, the set valued-mapping M is
not inner semi-continuous relative to domM at t̄ = (0, 1), as it is easily seen
by choosing x̄ = 1 and the same type of sequence (tk) as above.

A standard sufficient condition for inner semi-continuity of M at t̄ is the
Slater condition for M(t̄) ([12, Th. 12]). This is not helpful in our present
analysis for two reasons. First, here we do not assume a functional description
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of M and, second, even if we did, the Slater condition would necessarily be
violated at all boundary points of dom f ?, as we will discuss in detail in
Section 2.4 below. In particular, this cannot help to establish the upper semi-
continuity of f ? outside of the set int dom f ?, where it is clear anyway, due
to the convexity of f ?. Instead, the following Proposition 2.7 will formulate
alternative sufficient conditions for the inner semi-continuity of M .

For the preparation of one of its parts, we first show the announced lemma
concerning local boundedness of M .

Lemma 2.5 In problem Pf,M with a graph-convex and outer semi-continuous
mapping M , let M(t̄) be non-empty and bounded. Then M also is locally
bounded at t̄.

Proof. Let t̄ ∈ domM be given and assume that
⋃

t∈V M(t) is unbounded
for any neighborhood V of t̄. Then there exist a sequence tk → t̄ as well as
points xk ∈ M(tk) with limk→∞ ‖xk‖ = +∞. For all sufficiently large k ∈ N
we may define the element dk := xk/‖xk‖ of the unit sphere. As the latter
is compact, without loss of generality the sequence (dk) converges, and its
limit d̄ satisfies ‖d̄‖ = 1.

Next, the boundedness of M(t̄) means that there is some R > 0 such that
all x ∈ M(t̄) satisfy ‖x‖ ≤ R and, due to t̄ ∈ domM , we may choose
some x̄ ∈ M(t̄). As the sequence of positive numbers λk := 3R/‖xk‖, k ∈
N, converges to zero, for all sufficiently large k ∈ N we find λk ∈ [0, 1]
and may consider the convex combination (1 − λk)(t̄, x̄) + λk(tk, xk) of the
points (t̄, x̄), (tk, xk) ∈ gphM . By the graph-convexity of M , this convex
combination is also an element of gphM and, by the outer semi-continuity
of M , also its limit

lim
k→∞

(1− λk)(t̄, x̄) + λk(tk, xk) = lim
k→∞

(
1− 3R

‖xk‖

)
(t̄, x̄) +

3R

‖xk‖
(tk, xk)

= (t̄, x̄+ 3Rd̄)

is. This leads to x̄+ 3Rd̄ ∈ M(t̄) and, thus, to the contradiction

R ≥ ‖x̄+ 3Rd̄‖ ≥
∣∣ 3R‖d̄‖ − ‖x̄‖

∣∣ = 3R− ‖x̄‖ ≥ 2R.

•

Remark 2.6 A quantitative version of Lemma 2.5 is given in [18, Ch. III.1,
Lemma 1.1].
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Proposition 2.7 Let t̄ ∈ domM . Then M is inner semi-continuous relative
to domM at t̄ under any of the following conditions:

a) domM is locally polyhedral at t̄,

b) we have t̄ ∈ int domM ,

c) the parameter dimension is r = 1,

d) M(t̄) is a singleton.

Proof. To see the sufficiency of condition a) choose some r > 0 and the
neighborhood B∞(t̄, r) = {t ∈ Rr| ‖t − t̄‖∞ ≤ r} of t̄ such that domM ∩
B∞(t̄, r) is polyhedral and, hence, itself a polytope P . In fact, the local
polyhedrality of domM at t̄ implies that r may be chosen so small that
P = domM ∩ B∞(t̄, r) coincides with (t̄ + T (t̄, domM)) ∩ B∞(t̄, r) where
T (t̄, domM) denotes the contingent cone to domM at t̄.

For any sequence tk → t̄ with tk ∈ domM , k ∈ N, we have tk ∈ P for almost
all k. For any of the latter k, we put τ k = ‖tk − t̄‖∞ and t̃k = t̄ + rsk with
sk = (tk − t̄)/τ k if tk 6= t̄, and sk = 0, else. With λk = τ k/r ∈ [0, 1] we may
then write tk = (1− λk)t̄+ λk t̃k, that is, tk is a convex combination of t̄ and
t̃k. We clearly have t̃k ∈ B∞(t̄, r) and, due to tk ∈ t̄ + T (t̄, domM) and the
cone property of T (t̄, domM), also t̃k ∈ t̄ + T (t̄, domM), that is, t̃k ∈ P .
Hence, if {texj , j ∈ J} denotes the extreme point set of P , there are weights

µk
j ≥ 0, j ∈ J , with

∑
j∈J µ

k
j = 1 and t̃k =

∑
j∈J µ

k
j t

ex
j .

Next, choose any x̄ ∈ M(t̄). In view of P ⊆ domM we may also choose
points xex

j ∈ M(texj ), j ∈ J , and put

xk := (1− λk)x̄+ λk
∑
j∈J

µk
j x

ex
j .

The point (tk, xk) then is a convex combination of the points (t̄, x̄), (texj , xex
j ),

j ∈ J , from gphM , so that the graph-convexity of M yields xk ∈ M(tk).
Finally, the boundedness of the sequence (µk) and limk→∞ λk = 0 imply
limk→∞ xk = x̄.

The sufficiency of conditions b) and c) immediately follows from the suffi-
ciency of condition a) since, on the one hand, domM is locally polyhedral
at any t̄ ∈ int domM and, on the other hand, as a convex set in R1, domM
is an interval and, hence, locally polyhedral everywhere.
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For the sufficiency proof of condition d), let x̄ denote the single element of
M(t̄). For any sequence tk → t̄ with tk ∈ domM for all k ∈ N, choose an
arbitrary point xk ∈ M(tk). By Lemma 2.5 the sequence (xk) is bounded
and, hence, possesses a cluster point. Due to the outer semi-continuity of M ,
this cluster point must coincide with x̄. Moreover, any other cluster point of
(xk) must also coincide with x̄ so that, altogether, we find limk→∞ xk = x̄. •

Remark 2.8 Example 2.4 rules out that the decision variable dimension n =
1 is a sufficient condition for inner semi-continuity of M .

Remark 2.9 The sufficiency of condition a) for inner semi-continuity of M
in Proposition 2.7 is also mentioned in a remark following [12, Cor. 14.1],
but without proof. Moreover, recall from our discussion above that, while
condition a) is well-known to imply upper semi-continuity of f?, this does
not immediately imply the inner semi-continuity of M .

Remark 2.10 The sufficiency of condition d) for inner semi-continuity of
M in Proposition 2.7 is also a special case of [15, Th. 1] where, apart from
the case of singletons, unbounded images of M are considered.

Remark 2.11 Condition d) in Proposition 2.7 is mild in the following sense.
Assume even that gphM is a bounded set, that is, a so-called convex body in
Rr+n. Consider any point t̄ from the boundary of domM . Then {t̄}×M(t̄) is
contained in the boundary of gphM . Hence, if M(t̄) is not a singleton, then
the boundary of gphM contains a line segment. By [22, Th. 2.3.1], however,
the set of unit vectors in Rr × Rn that are parallel to a line segment in the
boundary of gphM has (r + n − 1)−dimensional Hausdorff measure zero.
This means that ‘most’ small rotations of gphM will result in a situation
where M(t) is a singleton for all boundary points t of domM or, in other
words, the existence of non-singleton sets M(t) violating the Slater condition
is unstable in this sense.

Theorem 2.12 Let t̄ ∈ dom f ?. Then f? is continuous relative to dom f?

at t̄ under any of the conditions a), b), c), or d) from Proposition 2.7.

Proof. Under any of the four conditions the inner semi-continuity of M
relative to domM at t̄ follows from Proposition 2.7. As discussed above,
[12, Th. 6] then yields upper semi-continuity of f ? relative to domM at t̄.
Thus, together with the identity domM = dom f ? and Proposition 2.2, the
assertion is shown. •
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Remark 2.13 Condition a) in Theorem 2.12 holds, for example, if under
a functional description of M in Pf,g all functions gi, i ∈ I, are affine, as
orthogonal projections of polyhedral sets are locally polyhedral everywhere.
This case is covered in [1, Th. 4.3.7]. However, dom f ? may also be locally
polyhedral everywhere for nonlinear constraints, as Example 1.3 shows. Also
condition c) covers continuity of the optimal value function f ? of Pf,M on all
of dom f ?. On the other hand, condition b) re-establishes continuity of f? on
the interior of dom f ? (which is already known by the convexity of f?), while
condition d) covers a large (in the sense of Remark 2.11) set of boundary
points of dom f?, as will become more apparent in the subsequent section.

Remark 2.14 Note that the results developed so far do not rely on a func-
tional description of M . This means, in particular, that they remain valid
in the semi-infinite case, when M is described by possibly infinitely many
inequality constraints (i.e, for |I| ≤ +∞ in a functional description).

2.4 The domain of f ∗

In the remainder of this article let us consider a problem Pf,g with a feasible
set mapping described in functional form with finitely many inequality con-
straints. On the one hand, this admits a better understanding of the above
continuity results and, on the other hand, it also prepares the differentiability
analysis in Section 3.

In fact, the functional description of gphM allows us to state and investigate
a functional description of the set dom f ? in terms of the non-smooth, albeit
convex, function

G(t, x) := max
i∈I

gi(t, x).

First note that we obviously haveM(t) = {x ∈ Rn|G(t, x) ≤ 0} for all t ∈ Rr

as well as gphM = {(t, x) ∈ Rr×Rn|G(t, x) ≤ 0}. As dom f ? coincides with
domM , the orthogonal projection of gphM to the ‘t−space’, we arrive at

dom f ? = {t ∈ Rr| ∃x ∈ Rn : G(t, x) ≤ 0}. (2)

This is the motivation to study the family of unconstrained ‘feasibility check’
problems

F (t) : min
x∈Rn

G(t, x)

with t ∈ Rr. If the problem F (t) was solvable for any t ∈ Rr then, in view
of (2), its optimal value function

G?(t) := min
x∈Rn

G(t, x) (3)
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would allow the description

dom f ? = {t ∈ Rr| G?(t) ≤ 0}.

Example 2.15 In the situation of Example 1.3 the problem F (t) is solvable
for any t ∈ R, and we find

G?(t) = min
x∈R

max{t2 + x2 − 1, −t− x}

=

{
1
2
−
√

5
4
− t− t2 − t , t ∈ [−1−

√
5

2
, −1+

√
5

2
]

t2 − 1 , else.

The next lemma makes sure that this is, indeed, the case whenever M is
bounded-valued. Note that, by the outer semi-continuity of M , each set
M(t) then actually is compact. In fact, we will strengthen Assumption 1.1
to bounded-valuedness of M whenever we use the function G?, that is, in the
present section as well as in Section 3.4 below.

Lemma 2.16 Let M be bounded-valued. Then for each t ∈ Rr the problem
F (t) is solvable.

Proof. Let t̄ ∈ Rr. The proof is complete if we can show that the objective
function G(t̄, ·) of F (t̄) possesses a non-empty and compact lower level set

Gα
≤(t̄, ·) = {x ∈ Rn| G(t̄, x) ≤ α}

with some α ∈ R. For t̄ ∈ dom f? this is clear with the choice α = 0, as
G0

≤(t̄, ·) coincides with the non-empty and compact set M(t̄).

Hence, in the following let t̄ 6∈ dom f ?, and let (t?, x?) be a Slater point of
gphM . In view of dom f? = domM we have M(t̄) = ∅ and, thus ᾱ :=
G(t̄, x?) > 0. Then the lower level set Gᾱ

≤(t̄, ·) is non-empty as it contains
x?, and it is closed as G is continuous as a convex function on the open set
Rr × Rn.

Assume that Gᾱ
≤(t̄, ·) is unbounded. Then there exists a sequence of points

xk ∈ Gᾱ
≤(t̄, ·), k ∈ N, with limk→∞ ‖xk‖ = +∞. The convexity of G yields

for any λ ∈ (0, 1) and any k ∈ N

G( (1− λ)(t?, x?) + λ(t̄, xk) ) ≤ (1− λ)G(t?, x?) + λG(t̄, xk)

≤ (1− λ)G(t?, x?) + λ ᾱ.
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Hence, for some sufficiently small λ̄ ∈ (0, 1) and all k ∈ N we arrive at

G( (1− λ̄)(t?, x?) + λ̄(t̄, xk) ) ≤ 0

and, thus,
(1− λ)x? + λxk ∈ M( (1− λ) t? + λ t̄ ).

Since the sequence of points (1 − λ)x? + λxk, k ∈ N, is unbounded, this
contradicts the boundedness of the set M( (1− λ) t? + λ t̄ ). •

As explained above, Lemma 2.16 immediately yields part a) of the following
result. In part c), bd dom f? denotes the topological boundary of dom f ?.

Theorem 2.17 Let M be bounded-valued. Then the optimal value function
f ? of Pf,g satisfies

a) dom f? = {t ∈ Rr| G?(t) ≤ 0},

b) dom f? is a closed set, and

c) bd dom f ? = {t ∈ Rr| G?(t) = 0}.

Proof. First note that domG? = Rr holds. Along the lines of the proof
of Proposition 2.1 one easily sees that the function G? is convex and, thus,
continuous on Rr. This yields the assertion of part b) as well as the inclusion
bd dom f ? ⊆ {t ∈ Rr| G?(t) = 0} in part c).

For the proof of the reverse inclusion choose a Slater point (t?, x?) of gphM .
Then we have G?(t?) < 0 so that, in particular, the functional description of
dom f? from part a) satisfies the Slater condition. Furthermore, choose any
t̄ ∈ Rr with G?(t̄) = 0 and put s = t̄− t?. We will show that dom f? can be
left from t̄ along the direction s, so that t̄ lies in bd dom f?. In fact, for any
τ > 0 choose λ = 1/(1 + τ) which obviously lies in the interval (0, 1). Then
the convexity of G? yields

0 = G?(t̄) = G?( (1− λ)(t̄− s) + λ(t̄+ τs) )

≤ (1− λ)G?(t?) + λG?(t̄+ τs) < λG?(t̄+ τs),

so that t̄+ τs 6∈ dom f ? in view of part a). •

It is not hard to see that G?(t) = 0 holds if and only if M(t) is non-empty
and violates the Slater condition. With the definition

slaterM = {t ∈ Rr| M(t) satisfies the Slater condition}

the next corollary is, thus, basically a reformulation of Theorem 2.17.
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Corollary 2.18 Let M be bounded-valued. Then the optimal value function
f ? of Pf,g satisfies

a) int dom f ? = slaterM and

b) bd dom f ? = domM \ slaterM .

Example 2.19 Exactly at the two boundary points of

dom f ? =

[
− 1√

2
, 1

]
the set M(t) violates the Slater condition, where M(− 1√

2
) = { 1√

2
} and

M(1) = {0}.

Remark 2.20 In view of Proposition 2.7, Theorem 2.12, and Corollary 2.18,
the inner semi-continuity of (a bounded-valued) M and the continuity of f ?

are not only clear on the set slaterM , but they also hold at each t̄ with M(t̄)
violating the Slater condition, as long as either the parameter dimension is
r = 1, or domM is locally polyhedral at t̄, or M(t̄) is a singleton. Recall that
the latter condition is weak in the sense of Remark 2.11.

3 Differentiability properties of f ?

Throughout this section we will consider problems of the form Pf,g and as-
sume that all functions f , gi, i ∈ I, are continuously differentiable on Rr×Rn.
We will require Assumption 1.1, but the bounded-valuedness of M will only
be needed in Section 3.4.

3.1 Standard results

As the optimal value function f ? of Pf,g is convex by Proposition 2.1, its
directional differentiability in the extended-valued sense at every t ∈ dom f?

is clear without further assumptions from [19, Th. 23.1], as f ? takes finite
values on its domain. Here, the (weak) directional derivative of f ? at t in
direction s ∈ Rr is defined as

(f ?)′(t, s) = lim
τ↘0

f ?(t+ τs)− f?(t)

τ
,

14



and for given t ∈ dom f ? the function (f?)′(t, ·) is a convex function with
effective domain

C(t, dom f ?) = {s ∈ Rr| ∃ τ > 0 : t+ τs ∈ dom f ?},

that is, (f?)′(t, s) < +∞ holds if and only if s lies in the so-called radial cone
C(t, dom f ?) to dom f ? at t ([19]). Note, however, that (f?)′(t, s) = −∞ may
occur for s ∈ C(t, dom f ?), as Example 1.3 shows for t = 1 and s = −1. Also
note that (f ?)′(t, 0) = 0 trivially holds for any t ∈ dom f ?.

Our focus is on formulas for (f?)′(t, s) which use the information that f? is not
only a convex function but also an optimal value function. Such formulas are
standard in the case t ∈ int dom f ?, and we briefly recall them in the sequel.
For their statement, let

M?(t) = {x ∈ M(t)| f(t, x) ≤ f?(t)}

denote the set of optimal points of Pf,g(t), let

L(t, x, λ) = f(t, x) + 〈λ, g(t, x)〉

denote the Lagrange function of Pf,g(t), and let

KKT (t) = {λ ∈ Rp| ∇xL(t, x, λ) = 0, λ ≥ 0, 〈λ, g(t, x)〉 = 0}

be the set of Karush-Kuhn-Tucker multipliers for x ∈ M?(t). Note that
KKT (t) does not depend on x as Pf,g(t) is a convex problem ([7, 13]), and
that for each t ∈ Rr the set KKT (t) is a polyhedron, but not necessarily a
polytope, that is, non-empty and bounded.

Lemma 3.1 We have slaterM = {t ∈ Rr| KKT (t) is a polytope}.

Proof. By a result from [6], KKT (t) is a polytope if and only if MFCQ
holds at some x ∈ M?(t). The latter is equivalent to the Slater condition
holding in M(t), which shows the assertion. •

Note that the theory of perturbation functions also allows to interpret the
set KKT (t) as the subdifferential of a certain convex function (e.g., [19, Th.
29.1]) which paves the way for an alternative proof of Lemma 3.1 without us-
ing the differentiability structure via MFCQ. In order to avoid technicalities,
however, we continue without discussing its details.
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Theorem 3.2 (e.g. [7, 13, 20]) f ? is directionally differentiable at each
t ∈ slaterM with

(f?)′(t, s) = min
x∈M?(t)

max
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 (4)

for all s ∈ Rr.

In fact, under complete convexity it is shown in [13] that the right hand side
of (4) does not depend on the actual choice of x ∈ M?(t). The combination
of Theorem 3.2 with Corollary 2.18a) hence yields the following result.

Corollary 3.3 f ? is directionally differentiable at each t ∈ int dom f? with

(f?)′(t, s) = max
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 (5)

for all s ∈ Rr, where x ∈ M?(t) may be chosen arbitrarily.

Example 3.4 In Example 1.3, the only nondifferentiability point of f? in
int dom f ? is t = 1/

√
2. To determine the directional derivative (f?)′(1/

√
2, s)

for s ∈ R, note that we have M?(1/
√
2) = {−1/

√
2}, so that both inequality

constraints are active at x ∈ M?(1/
√
2). With L(t, x, λ) = x + λ1(t

2 + x2 −
1) + λ2(−t− x) this leads to

KKT

(
1√
2

)
=

{(
θ

1−
√
2θ

) ∣∣∣ θ ∈
[
0,

1√
2

]}
and, thus, for t = 1/

√
2 and any s ∈ R

max
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 = max
θ∈[0,1/

√
2]
(2
√
2θ − 1)s = |s|.

Due to Corollary 3.3, this results in (f?)′(1/
√
2, s) = |s| for all s ∈ R.

3.2 The optimal value condition

In the sequel we will develop the proof of a more general result than Corol-
lary 3.3, which streamlines the ideas from [13] under our slightly stronger
assumptions. In fact, we will prove an analogue of formula (5) also for
t ∈ dom f ? ∩ bd dom f? and appropriate choices of s. We note that for
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nonconvex problems explicit estimates for upper and lower directional deriva-
tives of f ? at boundary points of dom f ? are given in [14] under the constant
rank constraint qualification and under the notions of upper and lower sta-
bility, respectively, which are, however, not easily verified. A related result
is presented in [9], but under a uniform Mangasarian-Fromovitz constraint
qualification which is, again, not easily checked. Directional differentiability
results at boundary points of dom f ? are also given in [8], but without ex-
plicit formulas. For a discussion of our improvements of the results from [13]
see Remark 3.24 below.

As a first step, for given t ∈ dom f ? and x ∈ M?(t) consider the radial cone

C((t, x), gphM) = {(s, d) ∈ Rr × Rn| ∃ τ > 0 : (t, x) + τ(s, d) ∈ gphM}

to gphM at (t, x). Note that, by convexity of gphM , for (t, x) ∈ gphM the
pair (s, d) is in C((t, x), gphM) if and only if (t, x) + τ(s, d) ∈ gphM holds
for all τ ∈ (0, τ̄) with some τ̄ > 0. In the following, prt shall denote the
orthogonal projection into the ‘t−space’ Rr.

Lemma 3.5 For any t ∈ dom f? we have

C(t, dom f?) = prt C((t, x), gphM),

where x ∈ M?(t) may be chosen arbitrarily.

Proof. For any s ∈ C(t, dom f ?) there exists some τ > 0 with t + τs ∈
dom f? = domM . Hence there exists some x(τ) ∈ M(t + sτ), and we may
put d(τ) := (x(τ) − x)/τ for which (s, d(τ)) ∈ C((t, x), gphM) is easily
seen. This shows C(t, dom f ?) ⊆ prt C((t, x), gphM). The reverse inclusion
is trivial. •

By Lemma 3.5 a direction s lies in C(t, dom f ?) if and only if the fiber

C(t,x)(s) = {d ∈ Rn| (s, d) ∈ C((t, x), gphM)}

is non-empty. In other words, we have C(t, dom f?) = domC(t,x), which yields
dom (f ?)′(t, ·) = domC(t,x) for arbitrary x ∈ M?(t).

Next, for t ∈ dom f?, x ∈ M?(t) and s ∈ C(t, dom f ?) consider the optimiza-
tion problem

LP C
(t,x)(s) : min

d∈Rn
〈∇f(t, x), (s, d)〉 s.t. d ∈ C(t,x)(s)

with optimal value function vC(t,x)(s) = infd∈C(t,x)(s)〈∇f(t, x), (s, d)〉. Note

that, by the above discussion, LP C
(t,x)(s) is consistent for s ∈ C(t, dom f ?), so

that vC(t,x)(s) < +∞ is guaranteed.
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Proposition 3.6 f? is directionally differentiable at each t ∈ dom f ? in each
direction s ∈ C(t, dom f ?) with

(f ?)′(t, s) = vC(t,x)(s),

where x ∈ M?(t) may be chosen arbitrarily.

Proof. Choose any t ∈ dom f ? and x ∈ M?(t). As f ? is convex, its direc-
tional differentiability at t is clear, and from s ∈ C(t, dom f?) we also know
that (f ?)′(t, s) < ∞ holds.

Next, in view of C(t,x)(s) 6= ∅ we may choose some d ∈ C(t,x)(s), that is, we
have (s, d) ∈ C((t, x), gphM) and, hence, x+τd ∈ M(t+τs) for all τ ∈ (0, τ̄)
with some τ̄ > 0. For these τ the optimal value function f ? satisfies

f ?(t+ τs) ≤ f(t+ τs, x+ τd),

and due to f ?(t) = f(t, x) also

f ?(t+ τs)− f?(t)

τ
≤ f(t+ τs, x+ τd)− f(t, x)

τ
.

Taking the limit τ ↘ 0 leads to

(f ?)′(t, s) ≤ 〈∇f(t, x), (s, d)〉

and, as d ∈ C(t,x)(s) was arbitrary, also (f?)′(t, s) ≤ vC(t,x)(s). Note that this

also covers the cases (f?)′(t, s) = −∞ and vC(t,x)(s) = −∞.

To see the reverse inequality, choose any ε > 0. Then, due to s ∈ C(t, dom f?),
for all sufficiently small τ > 0 the set M(t + τs) is non-empty, and there is
some point x(ε, τ) ∈ M(t+ τs) with

f ?(t+ τs) + τε ≥ f(t+ τs, x(ε, τ)).

With the same construction as in the proof of Lemma 3.5 we obtain a direc-
tion d(ε, τ) = (x(ε, τ) − x)/τ ∈ C(t,x)(s). Together with the convexity of f
this yields

f ?(t+ τs)− f ?(t)

τ
+ ε ≥ f( (t, x) + τ(s, d(ε, τ)) )− f(t, x)

τ
≥ 〈∇f(t, x), (s, d(ε, τ))〉 ≥ vC(t,x)(s).

After taking the limits τ ↘ 0 and ε ↘ 0 we arrive at (f?)′(t, s) ≥ vC(t,x)(s).

Again, it is not hard to see that these arguments cover the cases (f?)′(t, s) =
−∞ and vC(t,x)(s) = −∞. This concludes the proof. •
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To derive the statement of Corollary 3.3 from Proposition 3.6, we need an ex-
plicit expression for the optimal value function of LP C

(t,x)(s). This expression
is readily available if we consider a slightly different optimization problem,
where the fiber C(t,x)(s) of the radial cone C((t, x), gphM) is replaced by the
fiber

T(t,x)(s) = {d ∈ Rn| (s, d) ∈ T ((t, x), gphM)}
of the contingent cone T ((t, x), gphM). This results in the optimal value
function vT(t,x) of the problem

LP T
(t,x)(s) : min

d∈Rn
〈∇f(t, x), (s, d)〉 s.t. d ∈ T(t,x)(s).

Lemma 3.7

a) For any t ∈ dom f ? with KKT (t) 6= ∅, x ∈ M?(t) and s ∈ C(t, dom f?)
we have

vT(t,x)(s) = max
λ∈KKT (t)

〈∇tL(t, x, λ), s〉.

b) For any t ∈ dom f ? with KKT (t) = ∅, x ∈ M?(t) and s ∈ C(t, dom f?)
we have

vT(t,x)(s) = −∞.

Proof. As gphM satisfies the Slater condition, the Abadie constraint qual-
ification is satisfied at (t, x) in gphM , that is, the contingent cone coincides
with the outer linearization cone

L((t, x), gphM) = {(s, d) ∈ Rr × Rn| 〈∇gi(t, x), (s, d)〉 ≤ 0, i ∈ I0(t, x)},

where I0(t, x) = {i ∈ I| gi(t, x) = 0} denotes the active index set at (t, x).
The problem LP T

(t,x)(s) = LPL
(t,x)(s) is, thus, a standard linear programming

problem with dual problem

D(t,x)(s) : max
λ∈Rp

〈∇tL(t, x, λ), s〉 s.t. λ ∈ KKT (t).

Moreover, the primal problem LPL
(t,x)(s) is consistent since, due to s ∈

C(t, dom f ?), there exists some d ∈ Rn with (s, d) ∈ C((t, x), gphM) ⊆
T ((t, x), gphM) = L((t, x), gphM). The strong duality theorem of linear
programming now immediately yields the assertions of parts a) and b). •

Note that, by the usual convention sup∅ = −∞, the assertion of Lemma 3.7
may as well be written as vT(t,x)(s) = supλ∈KKT (t) 〈∇tL(t, x, λ), s〉 for any

t ∈ dom f?, x ∈ M?(t) and s ∈ C(t, dom f ?).
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Moreover, recall from Lemma 3.1 that KKT (t) 6= ∅ certainly holds for all
t ∈ int dom f? = slaterM . On the other hand, for t ∈ dom f ? ∩ bd dom f?,
the set KKT (t) either is empty or unbounded. We emphasize that, for
t ∈ dom f? ∩ bd dom f ? with unbounded set KKT (t) and s ∈ C(t, dom f ?),
Lemma 3.7 states that vT(t,x)(s) is finite.

We sum up our discussion so far in the following result.

Proposition 3.8 f? is directionally differentiable at each t ∈ dom f ? in each
direction s ∈ C(t, dom f ?) \ {0} with

(f ?)′(t, s) = sup
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 < +∞ (6)

whenever x ∈ M?(t) may be chosen such that the optimal value condition
vC(t,x)(s) = vT(t,x)(s) holds.

Note that, for s 6∈ C(t, dom f ?), the formal validity of (6) cannot be expected
as then (f?)′(t, s) = +∞ holds while the right-hand side of (6) may be strictly
smaller than +∞, e.g. due to KKT (t) = ∅. For a similar reason, the trivial
direction s = 0 is excluded in the assertion of Proposition 3.8.

3.3 The fiber condition

It remains to be discussed under which conditions in Proposition 3.8 x ∈
M?(t) may be chosen such that the optimal value condition vC(t,x)(s) = vT(t,x)(s)

is satisfied. Note that the underlying optimization problems LP C
(t,x)(s) and

LP T
(t,x)(s) only differ in their feasible sets C(t,x)(s) and T(t,x)(s), where the

latter set is closed as a fiber of the closed set T ((t, x), gphM). Sufficient
for the optimal value condition hence is the identity clC(t,x)(s) = T(t,x)(s),
where cl denotes the topological closure. In the following, we refer to the
latter identity as the fiber condition. Recall that we have dom (f ?)′(t, ·) =
domC(t,x), so that no void sets are involved in the fiber condition for the
directions s of interest. Also note that, for unbounded problems LP T

(t,x)(s),

the fiber condition yields vC(t,x)(s) = vT(t,x)(s) = −∞. This proves the following
reformulation of Proposition 3.8.

Proposition 3.9 f? is directionally differentiable at each t ∈ dom f ? in
each direction s ∈ C(t, dom f ?) \ {0} with (f ?)′(t, s) given by (6) whenever
x ∈ M?(t) may be chosen such that the fiber condition clC(t,x)(s) = T(t,x)(s)
holds.
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It is not hard to see that the inclusion clC(t,x)(s) ⊆ T(t,x)(s) always holds,
while simple examples show that the reverse inclusion might fail. In the
following we shall, hence, identify situations in which T(t,x)(s) ⊆ clC(t,x)(s)
holds.

First note that at least cl C((t, x), gphM) is known to coincide with
T ((t, x), gphM) ([2]), so that the closedness of C((t, x), gphM) implies that
the fibers C(t,x)(s) and T(t,x)(s) coincide and, thus, the optimal value condition
holds. Moreover, the closedness of C((t, x), gphM) is known to follow from
the local polyhedrality of gphM at (t, x) (this can readily be seen using the
arguments from the proof of Proposition 2.7c) ). The cone C((t, x), gphM)
then is polyhedral, so that its orthogonal projection C(t, dom f?) also is poly-
hedral and, in particular, closed. This proves the following result.

Proposition 3.10 f ? is directionally differentiable at each t ∈ dom f ? in
each direction s ∈ cl C(t, dom f ?) \ {0} with (f?)′(t, s) given by (6) whenever
x ∈ M?(t) may be chosen such that gphM is locally polyhedral at (t, x).

The next proposition will provide a different sufficient condition for the fiber
condition. We prepare it with the following lemma which is of independent
interest. Here,

L<((t, x), gphM) = {(s, d) ∈ Rr × Rn| 〈∇gi(t, x), (s, d)〉 < 0, i ∈ I0(t, x)}

denotes the inner linearization cone to gphM at (t, x).

Lemma 3.11 At each t ∈ dom f? we have

int C(t, dom f ?) = prtL<((t, x), gphM),

where x ∈ M?(t) may be chosen arbitrarily.

Proof. Choose some t ∈ dom f ? and any x ∈ M?(t). By Taylor expansion
one easily verifies the relation L<((t, x), gphM) ⊆ C((t, x), gphM) which
implies prtL<((t, x), gphM) ⊆ C(t, dom f?) in view of Lemma 3.5. Since
prtL<((t, x), gphM) is open as the orthogonal projection of an open set, we
arrive at the inclusion prtL<((t, x), gphM) ⊆ int C((t, x), gphM).

We split the proof of the reverse inclusion into two steps by showing the
chain of inclusions int C(t, dom f ?) ⊆ C(t, int dom f ?) ⊆ prtL<((t, x), gphM).
In fact, let s ∈ int C(t, dom f?). Due to s ∈ C(t, dom f ?), we have t +
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τ0s ∈ dom f? for some τ0 > 0. Assume that τ0 cannot be chosen such
that even t + τ0s ∈ int dom f? holds. Then there exists some τ̄ > 0 with
t + τs ∈ dom f ? ∩ bd dom f? for all τ ∈ (0, 2τ̄ ], in particular for τ = τ̄ .
Thus, by [19, Cor. 11.6.1] there exists some nontrivial normal direction
η ∈ Rr to dom f ? at t + τ̄ s, so that we obtain t + τ̄ s + ση 6∈ dom f? for all
σ > 0. With s(σ) := s+ (σ/τ̄)η we may then write t+ τ̄ s+ ση = t+ τ̄ s(σ)
for any σ > 0. Next, in view of s ∈ int C(t, dom f ?) there exists some
σ̄ > 0 with s(σ̄) ∈ C(t, dom f ?), so that there exists some τ(σ̄) ∈ (0, τ̄) with
t+ τ(σ̄)s(σ̄) ∈ dom f ?. For λ := τ̄ /(2τ̄ − τ(σ̄)) this yields λ ∈ (0, 1) so that,
as the convex combination of the points t + 2τ̄ s, t + τ(σ̄)s(σ̄) ∈ dom f ?, the
point

(1− λ)(t+ 2τ̄ s) + λ(t+ τ(σ̄)s(σ̄)) = t+ τ̄ s+
τ(σ̄)σ̄

2τ̄ − τ(σ̄)
η

lies in dom f?. At the same time, with the choice σ := (τ(σ̄)σ̄)/(2τ̄−τ(σ̄)) >
0 it does not lie in dom f?, a contradiction. This shows s ∈ C(t, int dom f ?).

In the second step we will show that s lies in prt L<((t, x), gphM). In fact,
as seen in the first step there exists some τ0 > 0 with t+ τ0s ∈ int dom f ? =
slaterM , so that we may choose some x0 ∈ Rn with gi(t + τ0s, x

0) < 0 for
all i ∈ I. Next, with any x ∈ M?(t) we put d0 = (x0 − x)/τ0 which yields
gi((t, x) + τ0(s, d

0)) < 0 for all i ∈ I. For any i ∈ I0(t, x) the convexity of gi
now implies 〈∇gi(t, x), (s, d

0)〉 < 0, that is, (s, d0) ∈ L<((t, x), gphM) and,
thus, s ∈ prt L<((t, x), gphM). •

Lemma 3.12 For all t ∈ dom f ? and s ∈ int C(t, dom f ?) we have

T(t,x)(s) ⊆ clC(t,x)(s).

Proof. In view of Lemma 3.11 we may first choose some d0 with (s, d0) ∈
L<((t, x), gphM). Furthermore, choose any d1 ∈ T(t,x)(s). Since the Slater
condition holds in gphM , the latter fiber coincides with the fiber L(t,x)(s) of
the outer linearization cone L((t, x), gphM) to gphM at (t, x).

Hence, for any θ ∈ (0, 1) the vector dθ = (1− θ)d0 + θd1 satisfies

〈∇gi(t, x), (s, d
θ)〉 = (1− θ)〈∇gi(t, x), (s, d

0)〉+ θ〈∇gi(t, x), (s, d
1)〉 < 0

for all i ∈ I0(t, x), that is, also (s, dθ) is an element of L<((t, x), gphM). By
Taylor expansion one can now see that gi((t, x) + τ(s, dθ)) < 0 holds for all
i ∈ I0(t, x) and sufficiently small τ > 0, so that (s, dθ) ∈ C((t, x), gphM)
and, thus, dθ ∈ C(t,x)(s) hold. Taking the limit θ → 1 shows d1 ∈ clC(t,x)(s).

•
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We, thus, arrive at the following result.

Proposition 3.13 f ? is directionally differentiable at each t ∈ dom f ? in
each direction s ∈ int C(t, dom f ?) \ {0} with (f?)′(t, s) given by (6), where
x ∈ M?(t) may be chosen arbitrarily.

Remark 3.14 Corollary 3.3 is a direct consequence of Proposition 3.13 as
for t ∈ int dom f ? we have C(t, dom f ?) = Rr.

Remark 3.15 For t ∈ dom f ?∩bd dom f ? the condition s ∈ prtL<((t, x), gphM)
is also known as Gollan’s condition ([8]) or, in more general settings, as di-
rectional regularity ([3]).

3.4 Functional descriptions of tangent cones in the pa-
rameter space

In this section we derive functional descriptions of the sets cl C(t, dom f?)
and int C(t, dom f ?) from Propositions 3.10 and 3.13, respectively. To this
end, recall from Section 2.4 that for bounded-valued feasible set mappings
M we know the functional description of the domain of f ?,

dom f ? = {t ∈ Rr| G?(t) ≤ 0},

with the function G? from (3). Thus, we will use the bounded-valuedness of
M as a blanket assumption throughout Section 3.4.

Recall that G? is convex and, from Lemma 2.16, that domG? = Rr holds.
Hence, G? is directionally differentiable on Rr and, in particular, at each t ∈
bd dom f ?. As in [23], we may thus define the inner and outer linearization
cones to dom f? at t ∈ bd dom f ?, that is,

L<(t, dom f ?) = {s ∈ Rr| (G?)′(t, s) < 0}

and
L(t, dom f ?) = {s ∈ Rr| (G?)′(t, s) ≤ 0},

respectively. For t ∈ int dom f? we put L<(t, dom f ?) = L(t, dom f ?) = Rr.

To derive a formula for the directional derivatives of G?, observe that by the
epigraph reformulation G?(t) coincides with α?(t) for all t ∈ Rr, where α?(t)
is the optimal value of the (solvable) problem

Fepi (t) : min
(x,α)

α s.t. gi(t, x) ≤ α, i ∈ I.
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With its Lagrangian

`(t, x, α, µ) := α(1− 〈µ, e〉) + 〈µ, g(t, x)〉,

where e denotes the all ones vector in Rp, it is not hard to see that its set of
Karush-Kuhn-Tucker multipliers at an optimal point (x, α) is

kkt(t) := {µ ∈ Σ| ∇xg(t, x)µ = 0, 〈µ, g(t, x)〉 = 0}

where
Σ = {µ ∈ Rp| µ ≥ 0, 〈µ, e〉 = 1}

denotes the standard simplex in Rp. Here we used that for t ∈ bd dom f ? any
optimal point (x, α) of Fepi (t) satisfies α = G?(t) = 0 by Theorem 2.17c).
Furthermore, it is ∇t`(t, x, α, µ) = ∇tg(t, x)µ. Thus, by Corollary 3.3, at
any t ∈ int domα? = int domG? = Rr the function α? is directionally differ-
entiable with

(α?)′(t, s) = max
µ∈kkt(t)

〈∇tg(t, x)µ, s〉

for all s ∈ Rr, where (x, α) is any optimal point of Fepi (t). As the functions
G? and α? coincide, the same formula holds for the directional derivatives
of G? with any optimal point x of F (t). The inner and outer linearization
cones to dom f? at t ∈ bd dom f ? thus have the description

L<(t, dom f ?) = {s ∈ Rr| max
µ∈kkt(t)

〈∇tg(t, x)µ, s〉 < 0}

and
L(t, dom f?) = {s ∈ Rr| max

µ∈kkt(t)
〈∇tg(t, x)µ, s〉 ≤ 0},

respectively, where x is any optimal point of F (t).

Example 3.16 In the situation of Example 1.3 we can compute the inner
and outer linearization cones at the boundary points of dom f ? = [−1/

√
2, 1]

as follows. At t = −1/
√
2 the unique optimal point of F (t) is x = 1/

√
2 with

active index set I0(t, x) = {1, 2}. This results in

kkt

(
− 1√

2

)
=

{(
1

1 +
√
2
,

√
2

1 +
√
2

)ᵀ}

and

max
µ∈kkt(t)

〈∇tg(t, x)µ, s〉 = − 2
√
2

1 +
√
2
s
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for all s ∈ R. We arrive at L<(−1/
√
2, dom f ?) = {s ∈ R| s > 0} and

L(−1/
√
2, dom f ?) = {s ∈ R| s ≥ 0}.

For t = 1, with the unique optimal point x = 0 of F (t) and kkt(1) = {(1, 0)ᵀ}
one analogously sees L<(1, dom f ?) = {s ∈ R| s < 0} and L(1, dom f ?) =
{s ∈ R| s ≤ 0}.

In analogy to the projection result for the radial cone in Lemma 3.5, the inner
and outer linearization cones are orthogonal projections of the corresponding
cones in the product space Rr × Rn.

Lemma 3.17 For any t ∈ dom f ? we have

L<(t, dom f?) = prt L<( (t, x), gphM)

as well as
L(t, dom f ?) = prt L( (t, x), gphM),

where x ∈ M?(t) may be chosen arbitrarily.

Proof. First consider the case t ∈ int dom f?. Then we have L<(t, dom f ?) =
L(t, dom f?) = Rr so that, in view of prt L<( (t, x), gphM) ⊆ prt L( (t, x), gphM)
the assertions follow if we can show the relation Rr ⊆ prt L<( (t, x), gphM).
In fact, for any s ∈ Rr there exists some τ0 > 0 with t+ τ0s ∈ int dom f ?. As
in the second step of the proof of Lemma 3.11 one can construct some d0 ∈ Rn

with (s, d0) ∈ L<( (t, x), gphM) which shows s ∈ prt L<( (t, x), gphM) and,
thus, Rr ⊆ prt L<( (t, x), gphM).

To see the assertions in the case t ∈ bd dom f ?, note that by linear program-
ming duality the identity

max
µ∈kkt(t)

〈∇tg(t, x)µ, s〉 = min
d∈Rn

max
i∈I0(t,x)

〈∇gi(t, x), (s, d)〉

holds. •

Next, we clarify the relation of the linearization cones L<(t, dom f?) and
L(t, dom f?) to the radial cone C(t, dom f?).

Proposition 3.18 At each t ∈ dom f? we have

int C(t, dom f ?) = L<(t, dom f ?).
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Proof. The assertion immediately follows from the combination of Lemma 3.11
with Lemma 3.17. •

Proposition 3.19 At each t ∈ dom f? we have

cl C(t, dom f?) = L(t, dom f?).

Proof. For t ∈ dom f? choose any x ∈ M?(t). Then the relations

L<((t, x), gphM) ⊆ C((t, x), gphM) ⊆ L((t, x), gphM)

are easily verified. They imply the relations

prt L<((t, x), gphM) ⊆ prt C((t, x), gphM) ⊆ prt L((t, x), gphM)

which, in view of Lemma 3.5 and Lemma 3.17, lead to

L<(t, dom f ?) ⊆ C(t, dom f?) ⊆ L(t, dom f ?). (7)

After taking the closures of the sets in (7), and using the closedness of
L(t, dom f?), the assertion follows if we can show the inclusion L(t, dom f?)
⊆ clL<(t, dom f?).

Again, first consider the case t ∈ int dom f?. Then we have L<(t, dom f ?) =
L(t, dom f?) = Rr, so that the assertion trivially follows.

For t ∈ bd dom f ?, first note that L<(t, dom f ?) 6= ∅ holds due to the ex-
istence of a Slater point in dom f ? and [23, Th. 3.1]. Choose any s0 ∈
L<(t, dom f ?) and s1 ∈ L(t, dom f?). With a similar construction as in the
proof of Lemma 3.12 we put sθ = (1 − θ)s0 + θs1 for any θ ∈ (0, 1). The
sub-additivity of the maximum operator then implies

max
µ∈kkt(t)

〈∇tg(t, x)µ, s
θ〉 ≤ (1− θ) max

µ∈kkt(t)
〈∇tg(t, x)µ, s

0〉

+θ max
µ∈kkt(t)

〈∇tg(t, x)µ, s
1〉 < 0,

so that sθ ∈ L<(t, dom f ?) holds for all θ ∈ (0, 1). Taking the limit θ → 1
yields s1 ∈ clL<(t, dom f ?), which completes the proof. •

Remark 3.20 From, e.g., [2] it is known that cl C(t, dom f ?) coincides with
the contingent cone T (t, dom f ?), so that Proposition 3.19 also shows that the
Abadie condition T (t, dom f ?) = L(t, dom f ?) holds any t ∈ dom f ?. This
can as well be shown directly by using [23, Prop. 3.1].
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The combination of Propositions 3.18 and 3.19 with Propositions 3.13 and
3.10, respectively, yield our main results.

Theorem 3.21 f? is directionally differentiable at each t ∈ bd dom f ? in
each direction s with maxµ∈kkt(t) 〈∇tg(t, x̂)µ, s〉 < 0 (x̂ being any optimal
point of F (t)), with

(f ?)′(t, s) = sup
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 < +∞

where x ∈ M?(t) may be chosen arbitrarily.

Theorem 3.22 f? is directionally differentiable at each t ∈ bd dom f ? in
each direction s 6= 0 with maxµ∈kkt(t) 〈∇tg(t, x̂)µ, s〉 ≤ 0 (x̂ being any optimal
point of F (t)), with

(f ?)′(t, s) = sup
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 < +∞

whenever x ∈ M?(t) may be chosen such that gphM is locally polyhedral at
(t, x).

Example 3.23 In the situation of Example 1.3, consider the parameter t =
−1/

√
2 ∈ bd dom f ?. As M(t) does not contain a Slater point, KKT (t) can-

not be a polytope. In fact, with M?(t) = 1/
√
2 one computes the unbounded

Karush-Kuhn-Tucker set

KKT

(
− 1√

2

)
=

{(
θ

1 +
√
2θ

) ∣∣∣ θ ≥ 0

}
.

In view of Theorem 3.21 and Example 3.16, this results in

(f ?)′(t, s) = sup
λ∈KKT (t)

〈∇tL(t, x, λ), s〉 = sup
θ≥0

(−2
√
2θ − 1)s = −s

for all s > 0.

For t = 1, the other boundary point of dom f ?, it is easily seen that KKT (t)
is void, so that Theorem 3.21 yields (f?)′(t, s) = −∞ for all s < 0.

Remark 3.24 Our improvement of the results from [13] is threefold. First,
in [13, Eq. (17a)] the explicit formula for the directional derivative is given

27



only in primal form, but not in the dual form using Karush-Kuhn-Tucker mul-
tipliers. Second, in [13, Cor. 3.2(a)] the directional differentiability result in
the case t ∈ bd dom f? is stated for s ∈ C(t, int dom f ?), while we state it for
the more natural choice s ∈ int C(t, dom f?), as well as for s ∈ cl C(t, dom f?)
under a polyhedrality assumption. Most importantly, however, using tech-
niques from nonsmooth analysis, we give functional descriptions of the cones
int C(t, dom f?) and cl C(t, dom f ?) which makes the directional differentiabil-
ity results more tractable for applications.

4 Final remarks

In the nonpolyhedral case, the radial cone C(t, dom f?) at some boundary
point t of dom f ? may still be closed (as, e.g., the Lorentz cone), or it may not
be closed while still some directions s ∈ C(t, dom f ?) ∩ bd C(t, dom f?) exist.
Directional derivatives in such boundary directions cannot be calculated via
Theorems 3.21 or 3.22, but the according assertion is still true under the
fiber condition in view of Proposition 3.9. The identification of computable
sufficient conditions for the fiber condition in this situation is subject of
future research.

As the optimal value function f ? is convex under the complete convexity as-
sumption, one may also wish to investigate its convex subdifferential. In view
of the intimate relationship of the latter with directional derivatives, explicit
representations of convex subdifferentials of f? are easily obtained using the
results of the present article. Moreover, in polyhedral settings one may invoke
[19, Th. 23.10] for results on the polyhedrality of the subdifferential.

Finally, we mention that Example 2.3 is slightly unsatisfactory for the illus-
tration of the lack of inner semi-continuity of M under our assumptions. In
fact, while it covers the setting of abstract feasible set mappings, we were not
able to construct a description of a completely convex feasible set mapping
by convex functions whose graph satisfies the Slater condition, but inner
semi-continuity fails at some point in the (boundary of) the domain. We
leave the quest for such an example or (more interestingly) the proof that it
cannot exist as an open question for future research.
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