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This research aims at establishing a novel hybrid artificial intelligence (AI) approach, named as firefly-tuned least squares support
vector regression for time series prediction (FLSVRTSP). The proposed model utilizes the least squares support vector regression
(LS-SVR) as a supervised learning technique to generalize the mapping function between input and output of time series data.
In order to optimize the LS-SVR’s tuning parameters, the FLSVRTSP incorporates the firefly algorithm (FA) as the search engine.
Consequently, the newly construction model can learn from historical data and carry out prediction autonomously without any
prior knowledge in parameter setting. Experimental results and comparison have demonstrated that the FLSVRTSP has achieved
a significant improvement in forecasting accuracy when predicting both artificial and real-world time series data. Hence, the
proposed hybrid approach is a promising alternative for assisting decision-makers to better cope with time series prediction.

1. Introduction

Generally, time series forecasting involves the prediction of
future values of data based on discovering the pattern in the
historical data series and extrapolating that pattern into the
future. Time series forecasting is a widely discussed issue
and its applications appear in various fields of business and
engineering [1]. The reason is that prediction of future events
is crucial for many kinds of planning and decision-making
processes. Applications regarding time series data can be
easily found in the literature, such as wind energy forecasting
[2], water resource management [3], traffic accident predic-
tion [4], and cash flow forecasting in construction projects
[5]. Hence, it is not surprising that time series analyses and
predictions are on the rise among researchers.

Notably, constructing a predictive model for time series
forecasting is a challenging task. It is because real-world

time series data are often characterized by nonlinearity,
being nonstationary, and irregularity [6]. Random noise
and effect of unidentified factors are the main causes that
degrade the prediction accuracy. Moreover, in most cases,
the underlying model that generates the series is unknown
and the process of discovering such model is oftentimes
hindered by the stochastic nature of the time-dependent data
[7]. Particularly, for each time series, determination of a
suitable embedding dimension is also ofmajor concern [8, 9].
Therefore, these challenges necessitate the development of
advanced approaches.

Over the recent years, there has been increasing efforts
dedicated in establishing AI based models to predict real-
world time-dependent data. Various AI approaches such as
the artificial neural network (ANN), adaptive network based
fuzzy inference system (ANFIS), support vector machine
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(SVM), and least squares support vector machine (SVM)
approaches have been applied to cope with time series
prediction in various domains [2, 4, 10].These previousworks
have illustrated that application of these techniques, as a
solution to the challenges of time series problems, is not only
feasible but also very effective.

Among the AI methods, the least squares support vector
regression (LS-SVR) is an advanced machine learning tech-
nique for solving regression analysis [11]. This method has
been proved to possess many advanced features [12, 13]. In
the LS-SVR’s training process, a least squares cost function is
proposed to obtain a linear set of equations in the dual space.
Consequently, to derive the solution, it is required to solve a
set of linear equations, instead of the quadratic programming
as in the standard SVM. Moreover, this linear system can
be efficiently solved by iterative methods such as conjugate
gradient.

Studies have been carried out to demonstrate the excellent
generalization, prediction accuracy, and fast computation
of the LS-SVR [13–15]. Since time series forecasting can
be formulated as a regression analysis problem, it is very
potential to apply the LS-SVR to tackle the problem at hand.
Nevertheless, the implementation of the LS-SVR requires
an appropriate setting of its tuning parameters, namely, the
regularization parameter and the kernel function parameter.
Improper specification of these tuning parameters can sig-
nificantly degrade the performance of the machine learning
technique.

In the field of AI, the task of parameter setting is well-
known as the model selection process [16]. This problem
is critical and it has increasingly drawn attentions of many
scholars in a variety of disciplines [2, 14, 17]. In practice,
identifying the most suitable set of model’s parameters often
requires either prior knowledge of the problem domain or
tedious trial-and-error processes. To overcome this issue,
hybridizing the machine learning techniques with a swarm-
based optimization algorithm is a feasible resolution for the
problem at hand [16, 18].

Swarm intelligence is a design framework based on social
insect behavior [19]. Social insects such as ants, bees, firefly,
and wasps are unique in the way these simple individuals
cooperate to accomplish complex, difficult tasks. This coop-
eration is distributed among the entire population, without
any centralized control. Each individual simply follows a
small set of rules influenced by locally available information.
This emergent behavior results in great achievements that no
single member could complete by themselves [20]. Firefly
algorithm (FA) is one of the recent swarm intelligence meth-
ods which was based on the flashing patterns and behavior
of tropical fireflies [21]. According to previous works, the
algorithm is very efficient and can outperform conventional
algorithms in solving many optimization problems [22, 23].

Therefore, the purpose of this study is to fuse the LS-
SVR and FA techniques to establish a new hybrid AI model
for prediction of time series. Our research goal is to build a
model that possesses the capability of delivering accurate as
well as operating autonomously without human interference.
The second section of this paper reviews the methods needed
to accomplish the research objective. In the third section, the

framework of the proposed FLSVRTSP is described in detail.
The fourth section demonstrates the experimental results.
Conclusion on our study is mentioned in the final section.

2. Literature Review

2.1. Time Series Prediction. Time series forecasting is an
important subject in which past observations of an interested
variable are recorded and analyzed to establish a prediction
model [24].Thedevelopedmodel is built with the expectation
that it can describe the underlying relationship between
patterns in the past and value of the variable in the future
(see Figure 1). At the current time 𝑡, and given the recorded
observations of a time series, 𝑋

𝑡
, 𝑋
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, 𝑋
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, . . . , 𝑋
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the
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the embedding dimension; ℎ denotes the forecasting horizon.
If ℎ is one, the problem is known as single-step-ahead fore-
cast. Meanwhile, problem involved greater value of ℎ is often
referred as multiple-step-ahead forecast [25].

Generally, in time series prediction, the historical time
series are transformed into high dimensional space to facili-
tate the exploration of implicit pattern lying in the series.This
process of transformation, widely known as state reconstruc-
tion [8, 9], is dependent on the embedding dimension (𝑚).
Equation (1) illustrates the state reconstruction process for
one-step-ahead forecasting in which the original time series
𝐷 (with 𝑁 element) is transformed into an input matrix 𝑋
of the size (𝑁 − 𝑚)-by-𝑚 and an output matrix 𝑌 of the size
(𝑁 − 𝑚)-by-1:
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(1)

In time series analysis, the parameter𝑚 is crucial because
of its influence on the prediction performance. For each time
series data, the embedding dimension can be calculated using
the “false nearest neighbor” (FNN) approach established
by Kennel et al. [26]. However, from the perspective of
machine learning, this parameter can play the role as a tuning
parameter in the prediction model and its optimal value can
be searched by an optimization technique [27].

2.2. Least Squares Support Vector Regression (LS-SVR). This
section of the paper describes the mathematical formulation
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Figure 1: Time series prediction model.

of the LS-SVR. Consider the following model of interest,
which infers the mapping between a response variable and
one or more independent variables [11, 13, 28]:

𝑦 (𝑥) = 𝑤
𝑇
𝜙 (𝑥) + 𝑏, (2)

where 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅, and 𝜙(𝑥) : 𝑅𝑛 → 𝑅𝑛ℎ is the mapping
to the high dimensional feature space.

In LS-SVR for regression analysis, given a training dataset
{𝑥
𝑘
, 𝑦
𝑘
}
𝑁

𝑘=1
, the optimization problem is stated as follows:
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(3)

where 𝑒
𝑘
∈ 𝑅 are error variables; 𝛾 > 0 denotes a regulariza-

tion constant.
In (3), it is noticed that the objective function is composed

of a sum of squared fitting error and a regularization term.
This cost function is similar to standard procedure in training
feedforward neural networks and is related to a ridge regres-
sion. However, when 𝑤 becomes infinite, one cannot solve
this primal problem. Hence, it is necessary to establish the
Lagrangian and derive the corresponding dual problem.

The Lagrangian is given as follows:
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(4)

where 𝛼
𝑘
are Lagrange multipliers. The conditions for opti-

mality are given by:
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(5)

After elimination of 𝑒 and𝑤, (5) can be represented as the
following linear system:

[

[
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And the kernel function is applied as follows:
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𝑘
)
𝑇

𝜙 (𝑥
𝑙
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𝑘
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The resulting LS-SVR model for function estimation is
expressed as:

𝑦 (𝑥) =

𝑁

∑
𝑘=1

𝛼
𝑘
𝐾(𝑥
𝑘
, 𝑥
𝑙
) + 𝑏, (8)

where 𝛼
𝑘
and 𝑏 are the solution to the linear system (6). The

kernel function that is often utilized is radial basis function
(RBF) kernel. Description of RBF kernel is given as follows:

𝐾(𝑥
𝑘
, 𝑥
𝑙
) = exp(
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󵄩󵄩󵄩󵄩
2

2𝜎2
) , (9)

where 𝜎 is the kernel function parameter.
When the RBF kernel is used, there are two tuning

parameters (𝛾, 𝜎) that are needed to be determined in LS-
SVR. The regularization parameter (𝛾) controls the penalty
imposed to data points that deviate from the regression
function. Meanwhile, the kernel parameter (𝜎) influences the
smoothness of the regression function. It is worth noticing
that proper setting of these tuning parameters is required to
achieve desirable performance of the prediction model.

2.3. Firefly Algorithm (FA). The FA is a stochastic, nature-
inspired, and metaheuristic algorithm that can find both
the global optima and the local optima simultaneously and
effectively [21]. The flashing lights of fireflies are an amazing
sight in the summer sky in tropical and temperate regions.
The pattern of flashes is often unique for a particular species.
In essence, each firefly is attracted to brighter ones as it
randomly explores while searching for prey.

The FA algorithm uses the following three idealized rules:
(1) all fireflies are unisex, so each firefly is attracted to other
fireflies regardless of their sex, (2) the attractiveness of a
firefly is proportional to its brightness and decreases as the
distance increases. A fireflymoves randomly if no other firefly
is brighter, and (3) the brightness of a firefly is affected or
determined by the landscape of the objective function [22,
29]. The FA algorithm can be illustrated in Pseudocode 1.
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Begin FA
Define objective function 𝑓(𝑥), where 𝑥 = (𝑥

1
, . . . , 𝑥

𝑑
)

Generate an initial population of fireflies
Formulate the light intensity 𝐼
Define the absorption coefficient 𝛾
While (𝑡 <Max Generation)
For 𝑖 = 1 to 𝑛 (all 𝑛 fireflies)

For 𝑗 = 1 to 𝑛 (all 𝑛 fireflies)
If (𝐼
𝑗
> 𝐼
𝑖
), move firefly 𝑖 towards firefly 𝑗

End if
Evaluate new solutions and update light intensity;

End for 𝑗
End for 𝑖
Rank the fireflies and find the current best
End while;
End FA

Pseudocode 1: FA pseudocode.

The brightness of an individual firefly can be defined
similarly to the fitness value in the genetic algorithm [30].The
light intensity 𝐼(𝑟) varies according to the inverse square law
as follows:

𝐼 (𝑟) =
𝐼
𝑠

𝑟2
, (10)

where 𝐼
𝑠
= the light intensity at the source. For a given

medium with a fixed light absorption coefficient 𝛾, the light
intensity 𝐼 varies with the distance 𝑟. Thus, the light intensity
𝐼 can be computed in the following way:

𝐼 = 𝐼
𝑆
𝑒
−𝛾𝑟

. (11)

The combined effect of both the inverse square law and
absorption can be approximated as the following Gaussian
form as follows:

𝐼 (𝑟) = 𝐼
𝑆
𝑒
−𝛾𝑟
2

. (12)

As the attractiveness of a firefly is proportional to the light
intensity seen by adjacent fireflies, the attractiveness 𝛽 of a
firefly is defined as:

𝛽 = 𝛽
0
𝑒
−𝛾𝑟
2

. (13)

The distance between any two fireflies 𝑖 and 𝑗 at 𝑥
𝑖
and 𝑥

𝑗
,

respectively, is the Cartesian distance as follows:
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2

(in 2D case) .

(14)

Themovement of the 𝑖th firefly when attracted to another
more attractive (brighter) 𝑗th firefly is as follows:

𝑥
𝑖
= 𝑥
𝑖
+ 𝛽
0
𝑒
−𝛾𝑟
2

𝑖𝑗 (𝑥
𝑗
− 𝑥
𝑖
) + 𝛼 (rand − 0.5) , (15)

where 𝑥
𝑔+1

𝑖
and 𝑥

𝑔

𝑖
represent the position of the flies 𝑖 at

𝑔 + 1 and 𝑔 generations. 𝑥𝑔
𝑗
denotes the position of the flies

𝑖 at 𝑔 + 1 and 𝑔 generations 𝛾 is absorption coefficient and
typically varies from 0.1 to 10 in most application; 𝛽

0
= the

attractiveness at 𝑟
𝑖𝑗
= 0; 𝛼 = 𝑎 trade-off constant to determine

the randombehavior ofmovement; rand represents a random
number drawn from Gaussian distribution. In essence, (15)
describes the mechanism for updating a firefly in the current
population.Themovement of a firefly towards another firefly
is dependent upon to the attractiveness 𝛽 and a quantity
𝛼 (rand−0.5) that reflect the randomness in animal behavior.

3. The Proposed Firefly-Tuned Least Squares
Support Vector Regression for Time Series
Prediction (FLSVRTSP)

This section dedicates in describing the proposed prediction
model, named as FLSVRTSP, in detail. The establishment of
themodel (see Figure 2) is accomplished by a fusion of the LS-
SVR and FA algorithms. The FLSVRTSP employs the LS-SVR
as the supervised learning algorithm for mining the implicit
patterns in the series. Furthermore, the FA, an evolutionary
optimization algorithm, is utilized to automatically identify
the optimal values of tuning parameters. The construction
of the prediction model is dependent on a set of tuning
parameters. The embedding dimension (𝑚) is needed in the
state reconstruction process. The regularization parameter
(𝛾) and the kernel function parameter (𝜎) are required for the
FLSVRTSP.

(1) Input Data. The FLSVRTSP takes a univariate time series
as its input.The data can be recorded at regular time interval,
for example, daily, monthly, and quarterly, and so forth. The
whole data set is divided into training set, validating set and
testing set. In our study, the ratio of the validating set to the
training set is 1/5.

(2) Tuning Parameter Initialization. The aforementioned tun-
ing parameters of the model are randomly generated within
the range of lower and upper boundaries (see Table 1) in the
following manner:

𝑋
𝑖,0
= LB + rand [0, 1] × (UB − LB) , (16)

where 𝑋
𝑖,0

is the tuning parameter 𝑖 at the first generation.
rand [0, 1] denotes a uniformly distributed random number
between 0 and 1. LB and UB are two vectors of lower bound
and upper bound for any parameter.

(3) State Reconstruction. With the embedding dimension 𝑚

being specified, the time series is transformed to the input
matrix 𝑋 and the desired output vector 𝑌 (see (1)). After
being transformed, the data is used for the LS-SVR’s training
process.

(4) LS-SVR Training. In this step, the LS-SVR is deployed to
learn the mapping function between the input (𝑋) and the
output (𝑌) derived at the previous step. The training process
requires the two parameters 𝛾 and 𝜎 that are acquired from
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Figure 2: Firefly-tuned least squares support vector regression for
time series prediction (FLSVRTSP).

Table 1: Ranges of the FLSVRTSP’s tuning parameters.

Tuning parameter Notation Lower bound Upper bound
Embedding dimension 𝑚 1 20
Regularization parameter 𝛾 0.001 10000
Kernel function parameter 𝜎 0.001 1000

the FA searching. The regularization parameter (𝛾) controls
the penalty imposed to data points that deviate from the
regression function. Meanwhile, the kernel parameter (𝜎)
affects the smoothness of the regression function. It is worth
noticing that proper setting of these tuning parameters is
required to ensure desirable performance of the prediction
model.

(5) FA Searching. The FA automatically explores the various
combinations of the tuning parameters (𝛾 and 𝜎). At each
generation, the optimizer carries out the mutation, crossover,
and selection processes to guide the population to the optimal
solution. By evaluating the fitness of each individual, the
algorithm discards inferior combinations of 𝛾 and 𝜎, and
allows robust combinations of these parameters to be passed
on the next generations.

(6) Fitness Evaluation. In the FLSVRTSP, in order to determine
the optimal set of tuning parameters, the following objective
function is used in the step of fitness function evaluation:

𝐹fitness = 𝐸tr + 𝐸va. (17)

In (17), 𝐸tr and 𝐸va denotes the training error and vali-
dating error, respectively. The training and validating errors

herein are root mean squared error (RMSE) calculated as
follows:

RMSE = √
𝑁

∑
𝑡=1

(𝑌𝑡
𝑃
− 𝑌𝑡
𝐴
)
2

𝑁
, (18)

where𝑌𝑡
𝑃
and𝑌𝑡
𝐴
denote predicted and actual value for output

𝑡th. In addition,𝑁 is the number of data points.
The fitness function, in essence, represents the trade-off

between model generalization and model complexity. It is
worth noticing that well-fitting of the training set may reflect
the model complexity. However, complex model tends to
suffer from over-fitting [31]. Thus, incorporating the error of
the validating data can help identify the model that features
the balance of minimizing training error and generalization
property.

(7) Stopping Condition. The FA’s optimization process termi-
nates when the maximum number of generation is achieved.
If the stopping condition has not met, the FA continues it
searching progress.

(8) Optimal PredictionModel. When the program terminates,
the optimal set of tuning parameters has been successfully
identified. The FLSVRTSP is ready to carry out forecasting
tasks.

4. Experimental Results

In this section, the newly developed FLSVRTSP is applied
to forecast three time series: the Mackey-Glass series, the
daily water discharge at Palo Verde drain (http://water-
data.usgs.gov/), and the monthly USD/TWD exchange rate
(http://fx.sauder.ubc.ca/data.html).TheMackey-Glass chaot-
ic time series is defined by (19) [10]. Herein, the parameter 𝜏
is set to be 17. In our study, 500 data cases are generated in
which 400 cases are used for training and validating process.
The rest of the data is used for testing the model as follows:

𝑑𝑥 (𝑡)

𝑑𝑡
= 0.2

𝑥 (𝑡 − 𝜏)

1 + 𝑥 (𝑡 − 𝜏)
10
− 0.1𝑥 (𝑡) . (19)

The daily water flow data set consists of 273 data cases of
daily water discharge (cubic feet per second) at Palo Verde
outfall drain, from 1/1/2011 to 9/30/2011 (see Figure 3). The
number of data cases used for testing is 30. The monthly
USD/TWD exchange rate includes 260 records from 1/1990
to 8/2011 (see Figure 4). In the experiment, 36 data cases are
utilized for testing process. For these two time series, one-
step-ahead prediction is carried out.

Moreover, the back propagation neural network (BPNN),
the adaptive network based fuzzy inference aystem (ANFIS)
[32], and the evolutionary support vector machine inference
model (ESIM) [33] are used for result comparison. For the
BPNN, it is needed to specify the number of hidden layers
and hidden neurons. For the ANFIS, the type of membership
function and the number of membership functions for each
input are required for constructing the predictionmodel.The
determination of these parameters is often carried out by
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Figure 3: Water flow time series.

0 20

36

40

34

60

32

80

30

100

28

120

26

140
24

160 180 200 220 240 260

Time period

Figure 4: USD/TWD exchange rate time series.

repetitive trial-and-error tuning processes. In this study, for
each time series, we select themodel configuration that yields
the smallest prediction error of validating data.

It is noticed that the embedding dimensions (𝑚) for
the BPNN, ANFIS, and ESIM models are calculated by the
FNN approach [26]. Using this approach, the embedding
dimensions for theMackey-Glass series, the water flow series,
and the USD/TWD exchange rate series are 3, 3, and 4,
respectively. Meanwhile, in the FLSVRTSP, the FA automat-
ically identifies the optimal embedding dimensions. The
optimal tuning parameters of the FLSVRTSP for these three
time series are shown in the Table 2.

For performance comparison, root mean square error
(RMSE) andmean absolute error (MAE) for training and test-
ing data sets are calculated. The forecasting results obtained
from the BPNN, ANFIS, ESIM approaches, and the proposed
FLSVRTSP are provided in Table 3. It is observable that the
FLSVRTSP has achieved a significant improvement in terms of
prediction accuracy.The prediction errors of testing data sets
yielded by the newly developed model are smaller than that
obtained by other AI approaches. This means that FLSVRTSP

Table 2: Optimal tuning parameters of the FLSVRTSP.

Parameter Notation Mackey-Glass Water flow Exchange
rate

Embedding
dimension 𝑚 4 3 4

Regularization
parameter 𝛾 11.6 632.53 509.1

Kernel
function
parameter

𝛿 0.71 5.47 1.29

has better generalization property and it has successfully
diminished the problem of over-fitting.

In prediction of Mackey Glass series, RMSE, andMAE of
the FLSVRTSP for testing data are 0.005 and 0.004, respec-
tively. The ANFIS shows relatively good forecasting result
while performance of the ESIM is poor. In the case of the
water flow series, the FLSVRTSP and the ESIMoutperform the
BPNN and the ANFIS. However, the FLSVRTSP prediction is
slightly better than that of the ESIM.Herein, RMSE andMAE
of the FLSVRTSP for testing data of the water flow series are
10.33 and 8.35.

In the task of forecastingUSD/TWDexchange rate series,
although the ANFIS model delivers the smallest error in
the training data set, its performance on the testing data
set is undesirable. Moreover, the FLSVRTSP yields the best
outcome since its RMSE and MAE for the testing data are
0.36 and 0.29. The experimental results have shown that a
hybridization of the LS-SVR and FA algorithms can deliver
more superior performance comparedwith other benchmark
approach.The FA algorithm has autonomously identified the
most appropriate values of the LS-SVR’s tuning parameters as
well as the embedding dimension.This eliminates the tedious
effort for setting the model parameters and also enhances the
model prediction performance.

5. Conclusion

This paper has presented a novel hybrid AI model, named
as the FLSVRTSP, to assist decision-makers in dealing with
time series forecasting. The FLSVRTSP was developed by a
fusion of the LS-SVR and FA techniques. The LS-SVR is
employed to infer the input/output mapping function of time
series data. Meanwhile, the FA searching algorithm is utilized
to identify the most appropriate set of tuning parameters.
This mechanism eliminates the need of expertise or trial-
and-error process in parameter setting.Moreover, simulation
and performance comparison, for simulated and real-world
time series data, have proven the aptitude of the FLSVRTSP.
These facts demonstrate the strong potential of the proposed
model as an alternative for time series forecasting. The
future direction of the current work may include improving
the current model for solving multistep-ahead time series
prediction and applying the hybrid intelligent model to
forecast other real-world time series.
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Table 3: Result comparison.

Time series Result comparison BPNN ANFIS ESIM FLSVRTSP

Mackey-Glass
Training RMSE 0.029 0.013 0.073 0.005

MAE 0.024 0.008 0.059 0.003

Testing RMSE 0.027 0.011 0.069 0.005
MAE 0.023 0.007 0.057 0.004

Water flow
Training RMSE 26.66 20.66 25.34 25.15

MAE 21.18 15.69 19.31 19.08

Testing RMSE 15.33 14.13 10.71 10.33
MAE 12.55 11.30 8.88 8.35

Exchange rate
Training RMSE 0.42 0.20 0.44 0.39

MAE 0.31 0.13 0.32 0.26

Testing RMSE 0.60 0.67 0.42 0.36
MAE 0.47 0.52 0.33 0.29
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