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Abstract— This work investigates properties of signal flow
graphs (SFGs) over max-plus algebra, which are referred to
as synchronous SFGs. New topological methods for evaluat-
ing gains of synchronous matrix SFGs are described. These
methods are based on the existing theory for matrix SFGs
over regular algebra. SFGs are useful in studying complex
engineering systems by representing them as interconnection
of relatively simple subsystems. In particular, synchronous
SFGs can be used to graphically model the timing behavior of
deterministic discrete event systems. The paper illustrates an
application of synchronous SFGs to modeling and performance
evaluation of deterministic manufacturing systems.

I. INTRODUCTION

A (scalar) signal flow graph (SFG), originally developed

by Mason [1], is a graphical representation of a set of linear

equations. In contrast, a matrix signal flow graph (MSFG) is

a pictorial representation of a set of linear matrix equations.

This paper focuses on SFGs over max-plus algebra. Max-

plus algebra is an algebra with only two operations, namely

maximization, denoted by ⊕, and addition, denoted by ⊗,

which are defined for the elements in Rmax = {R ∪ −∞},
where R is the set of all real numbers. For elements a, b ∈
Rmax, we have a ⊕ b = max(a, b) and a ⊗ b = a + b.
Operation ⊕ has null element, ε = −∞, since a ⊕ ε =
a. Similarly operation ⊗ has unit element, e = 0, as a ⊗
e = a. Throughout the paper, a SFG over max-plus algebra

is referred to as a synchronous SFG, because maximization

operation represents synchronization phenomena in discrete

event systems. In contrast, a SFGs over regular algebra is

referred to as a regular SFG.

Pliam [2] have shown that the classic gain formula of

Mason [1] is valid only for SFGs over commutative rings

(e.g., regular SFGs). Gains of signal flow graphs over non-

commutative ring (e.g. regular MSFGs) can be graphically

evaluated using either a Riegle’s formula [3] or topological

procedures described in [4]. A theory of synchronous MSFGs

has not been addressed yet in the literature. This paper

presents new topological methods for evaluating gains of

synchronous MSFGs.

A Discrete Event System (DES) is a system, which is

characterized by a set of states and a set of events [5]. Events

cause the DES to change its state at discrete time instants. A

DES is called deterministic if its future states are uniquely

determined by the current state and the external inputs [6,
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Ch.1]. Max-plus algebra is an attractive tool for modeling

of deterministic DESs because the event timing dynamics

of these systems can be expressed by a set of equations

in max-plus algebra. The max-plus algebraic model of a

deterministic DES is usually obtained from the timed event

graph model of the system [7], [8].

In [9], [10] we proposed a modeling approach for de-

terministic manufacturing systems, which is based on block

diagrams. A block can be a single manufacturing operation,

a single machine, a single part or a factory. Each block

has three inputs and three outputs and is represented by

a set of linear max-plus algebraic equations. A complex

manufacturing system can be modeled as a composition of

simpler manufacturing blocks. The model is hierarchial – a

network of blocks can be combined into one block that has

the same input/output structure. The model is graphically

represented by a synchronous MSFG. In [9] the model was

analyzed using algebraic methods, in this paper we focus on

topological methods based on synchronous MSFGs.

Section II provides background information on max-plus

algebra. Section III introduces definitions for synchronous

MSFGs. Section IV illustrates an essential difference be-

tween regular and synchronous MSFGs. Topological meth-

ods for evaluating gains of synchronous MSFGs are pre-

sented in Section V. Section VI illustrates an application of

synchronous MSFGs to modeling of deterministic manufac-

turing systems. Conclusions are presented in Section VII.

II. MAX-PLUS ALGEBRA BASICS

A comprehensive review of max-plus algebra can be found

in [11], [8].

Max plus algebra is extended to matrices in the same way

as conventional algebra but with + replaced by ⊕ and ×
replaced by ⊗. A set of all n × m matrices is denoted by

R
m×n
max . We say that an n ×m matrix A exists if and only

if A ∈ R
n×m
max . Note that, similar to regular algebra, matrix

multiplication in max-plus algebra is noncommutative.

Analogous to conventional algebra ⊗ is assumed prece-

dence over ⊕ and if it is clear that the ⊗ symbol is used it

is sometimes omitted, i.e. A⊕BC should be understood as

A ⊕ (B ⊗ C). Throughout the paper all the equations are

assumed to be written in terms of max-plus algebra unless

stated otherwise.

For any square matrix A ∈ R
n×n
max , A in nth power is

defined by An = A⊗A⊗ . . .A→ n times. Define Kleene

star operator on A denoted by A� as

A� = Ae ⊕A1 ⊕ . . .⊕A∞ =

∞⊕
k=0

Ak,
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where Ae = E and E ∈ R
n×n
max refers to identity matrix

which has e’s on the main diagonal and ε’s elsewhere.

Theorem 2.1: [11, Theorem 2.10] x = A� ⊗ b is the

minimum solution to the equation x = A⊗x⊕b, provided

that A� exists.

III. SYNCHRONOUS MSFGS - PRELIMINARY

DEFINITIONS

A directed graph G is defined as an ordered pair (N,E)
where N is a finite set of nodes and E is a set of ordered pairs

of nodes called arcs. A pair (i, j) denotes an arc directed

from node i to node j. An arc progression p from node x1

to xk in a directed graph is a sequence of arcs that connects a

sequence of nodes, i.e. p = {(x1, x2)(x2, x3) . . . (xk−1, xk)}
is an arc progression. A path is an arc progression in which

no node appears more than once. A path in which the

terminal node and the initial node are the same node is a

loop. An arc from a node to itself is called a self-loop.

A synchronous MSFG is a directed graph in which every

node is associated with a vector xj and every arc is associ-

ated with a matrix Ai,j such that for every node xj , there

corresponds the matrix equation in max-plus algebra xj =⊕
(Aj,ixi), where the summation is over all arcs terminating

on xj . A synchronous MSFG topologically portrays a set of

linear matrix equations in max-plus algebra.

Given a MSFG, a node that has no terminating arcs

is referred to as a source node, and a node that has no

originating arcs is referred to as a sink node. The rectangular

matrix associated with an arc is called the transmittance
of the arc. Throughout the paper, it is assumed that if

in a arc in a graph is not labeled with the weight, then

its transmittance equals E (an identity matrix in max-plus

algebra of appropriate dimensions).

The graph gain or graph transmission from the source

node xi to the sink node xj is defined by the matrix Tj,i,

which relates xi to xj by xj = Tj,ixi.

A note on the notation. For a positive integer K, define

K = {1, 2, . . . ,K}. Let s be an ordered set or a vector. Then

|s| gives the number of elements in s. The i-th element of s
is denoted by [s]i, for any i ∈ |s|. Similarly, given a matrix

A, [A]j,i refers to the element of A in j-th row and i-th
column. In contrast, Tj,i is a matrix.

IV. REGULAR VS. SYNCHRONOUS MSFGS

Regular MSFGs belong to the class of SFGs over non-

commutative ring [12]. The classic gain formula of Mason

applies only to SFGs over commutative rings [2]. Gains

of MSFGs can be evaluated using a formula developed by

Riegle [3]. In addition, there are three other topological

methods for evaluating gains of regular MSFGs [3]: a) by

repeated application of basic graph reduction rules, b) by the

return loop method, and c) by optimal topological procedure.

The theory of synchronous MSFGs has not been studied

before. The gain methods for regular MSFGs cannot be

applied to synchronous MSFGs directly. This is because

topological methods for evaluating gains of a regular MSFGs

require additive inverse operations as well as evaluating
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Fig. 1. An illustration of the basic reduction rules.

matrix inverses, when the graph contains loops. These oper-

ations are not directly defined in max-plus algebra. 1 Hence,

the difference between regular and synchronous MSFGs lies

in the treatment of loops as described below. Consider the

following equation in regular algebra

x2 = Ax2 +Bx1. (1)

Solving for x2 we get x2 = (I−A)−1Bx1, where I is the

identity matrix. Now, consider the analog of (1) in max-plus

(dioid) algebra:

x2 = Ax2 ⊕Bx1. (2)

From Theorem 2.1, its minimum solution is x2 = A�Bx1.
Therefore, A� in max-plus algebra is analogous to (I−A)−1

in regular algebra.

V. TOPOLOGICAL METHODS FOR EVALUATING GAINS OF

SYNCHRONOUS MSFGS

Using the fact that A� in max-plus algebra is analogous to

(I −A)−1 in regular algebra, the gain methods for regular

MSFGs can be straightforwardly extended to synchronous

MSFGs. The following develops extensions of (a) basic block

diagram reduction rules and (b) the return loop method to

synchronous MSFGs.

A. Basic Graph Reduction Rules

By the successive application of basic graph reduction

rules, a synchronous MSFG can be reduced to a simplified

graph from which the desired graph gains can be obtained di-

rectly. The basic graph reduction rules for both synchronous

1The residuation theory in max-plus algebra can deal with inverse
problems [7]
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and regular MSFGs are illustrated in Figure 1. It should

be noted that the expressions for the transmittances of arcs

of regular (synchronous) MSFGs in Figure 1 are written

in regular (max-plus) algebra. The following lists the basic

graph reduction rules for synchronous MSFGs.

1) Series reduction is illustrated in Figure 1(a).

2) Parallel reduction is illustrated in Figure 1(b).

3) Absorption of a node is illustrated in Figure 1(c). The

node x5 is absorbed.

4) Removal of a self-loop is illustrated in Figure 1(d).

The self-loop A55 at node x5 is removed. Note the

difference between removal of a self-loop in regular

vs. synchronous MSFG.

Proofs are straightforward and omitted (e.g. refer to [3] for

the case of regular MSFGs and refer to the previous section

for the removal of a self-loop in synchronous MSFGs).

B. Return Loop Method

The return loop method is an alternative to the repeated

application of the basic reduction rules. The original return

loop method for regular MSFGs is described in [4]. In

this section, an extension of the return loop method to

synchronous MSFGs is described. First we introduce some

preliminary definitions. Let p be a path from an input node

k to an output node j.

• The path product of p is the product of arc transmit-

tances of p multiplied in reverse order from node j to

node k.

• A node in a MSFG is said to be split when it is replaced

by two nodes, a source node and a sink node such

that arcs terminating on the original node are made to

terminate on the new sink and all the arcs outgoing

from the original node are made to originate at the new

source [4].

• The node transmission Ni of a node i is the graph

transmission between the source and the sink which is

created by splitting the node i.
• The node transmission Np

i of a node i on path p (from

k to j) is Ni calculated under the condition that all

nodes on p between node i and the output node j are

split.

• The node factor N̂p
i of a node i on path p is (Np

i )
�.

The following is the return loop method that yields the

graph transmission (graph gain) between the source node k
and the sink node j.

1) Find all of the paths from the source node k to the

sink node j.

2) The contribution of the gain by a path p is equal to

the path product of p interrupted by the node factor of

every node on the path p. The node factor of node i
is inserted between the arc transmittances of the path

product touching node i.
3) The graph gain Tj,k is equal to the (max-plus alge-

braic) sum of the contributions of the gain by each

path from i to j, where the summation is over all such

paths.

The proof of the return loop method for synchronous MSFGs

depends entirely on the proof presented by Riegle and Lin

[4] for regular MSFGs. The only noteworthy dissimilarity

between the methods is as follows. For regular MSFGs the

node factor of the node i on path p is defined as (I−Np
i )
−1

(where I is the identity matrix in regular algebra), whereas

for synchronous MSFGs the node factor of the node i on p
is defined as (Np

i )
�.

VI. APPLICATION OF SYNCHRONOUS MSFGS TO

MODELING OF MANUFACTURING SYSTEMS

A deterministic manufacturing systems can be modeled

by a synchronous MSFG using the hierarchical approach

proposed in [9]. In [9] the approach was analyzed using

algebraic methods, in this paper we focus on topological

methods based on synchronous MSFGs.

A. Manufacturing Block

A manufacturing system is modeled by a generic block

with three inputs and three outputs. In order to operate, the

system requires a set of parts and a set of resources. After

the system has processed the parts and the resources, they

are are released by the system. Let m denote an ordered

set of system’s resources, such as machines, buffers, etc. Let

nin be the ordered set of parts that enter the system and let

nout be the ordered set of parts that leave the system. The

order of elements in either m, nin or nout can be chosen

arbitrary. Let i ∈ {
1, 2, . . . , |nin|}, k ∈ {1, 2, . . . , |m|} and

j ∈ {1, 2, . . . , |nout|}. The inputs and outputs of the block

are vector valued. The inputs, u, v and w are defined as

• [u]i is the time when [nin]i becomes available for the

system;

• [v]j is the time when [nout]j is removed from the

system;

• [w]k is the time when [m]k becomes available for the

system.

The outputs, x, y and z are defined as:

• [x]j is the time when [nout]j is ready to leave the

system;

• [y]i is the time when [nin]i actually enters the system;

• [z]k is the time when [m]k is “set free” by the system.

Since the system is deterministic, the relationship between

the input and the output can be expressed by the following

equation in max-plus algebra:
⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
Fxu Fxv Fxw

Fyu Fyv Fyw

Fzu Fzv Fzw

⎤
⎦
⎡
⎣
u
v
w

⎤
⎦ = F

⎡
⎣
u
v
w

⎤
⎦ , (3)

where F is a matrix that describes input-output relation.

It is clear that (3) can be graphically represented by a

synchronous MSFG with three inputs and three outputs.

B. Interconnection of Blocks

Let Sc be a system composed from a set of M manufac-

turing subsystems {S1, S2, . . . , SM}. Let mc, nin
c , nout

c be

ordered sets of resources and parts associated with Sc. Let
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Fig. 2. Interconnection of blocks: (a) part-flow interconnection and (b)
machine-flow interconnection.

the inputs and the outputs of Sc, namely uc, vc, wc and xc,

yc, zc, be defined with respect to mc, nin
c , nout

c .

The blocks are interconnected through part-flow and ma-

chine flow interconnections. Consider a part n, which enters

Si from an upstream Sj . Then we have [vj ]l = [yi]k, as

shown in Figure 2(a). This type of horizontal interconnec-

tion of blocks is referred to as part-flow interconnection.

Likewise, consider a resource m, which is first used by Sj

and then it is used by Si. Then we have [wi]k = [zj ]l as

shown in Figure 2(b). This type of vertical interconnection

of blocks is referred to as resource-flow interconnection.

C. Basic Manufacturing Blocks

In this subsection timing models of basic manufacturing

blocks are presented, namely the models of:(a) single re-

source manufacturing a part, and (b) unit capacity buffer

storing a part. A complete discussion of basic manufacturing

blocks is presented in [9].

1) Single machine processing single part: Consider ma-

chine m processing part n. Let t be processing time of n on

m. Suppose that the system is modeled by using equation

of the form (3) having inputs u, v, w and outputs x, y,

z, which are all scalars because there is only one resource

and one part. The part n enters the system as soon as both

m and n are available, therefore y = u ⊕ w. The part is

ready to leave the system as soon as its processing is done

on the machine, therefore x = t(u ⊕ w). The machine is

“set free” by the system as soon as n is removed from the

system, therefore z = v. Synchronous MSFG of the system

is provided in Figure 3(a).

2) Unit capacity buffer: McCormick et al. [13] show that

a buffer of unit capacity can be represented by a resource

having zero processing time for jobs that enter the buffer.

Therefore for buffer of unit capacity the synchronous MSFG

in Figure 3(a) becomes the one shown in Figure 3(b).

D. Line Applications

Line applications include models of a single part processed

by a set of M resources and models of a single resource

processing a set of N parts. They are called line applica-

tions because in the former case basic blocks are stacked

v

z

tu

y

y

w

x

(a) A machine process-
ing a part.

v

z

u

y

y

w

x

(b) A unit capacity
buffer storing a part.

Fig. 3. Basic manufacturing blocks
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z2
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[zp]2

v2

t2

w2

[wp]2

u2

y2

zM

xM

[zp]M

vM

tM

wM

...

...

[wp]M

uM

yM

xp

vp

(a)

wp

zp

A

(b)

Fig. 4. Model of a part processed by a set of M machines. (a) portrays
how individual operations can be stacked together horizontally, (b) shows a
reduced version of the SMSFG assuming that up = ε.

horizontally and in the latter case basic blocks are stacked

vertically.

1) One Part and M Resources: Consider a system

consisting of a part processed by a set of M resources

{m1,m2, . . . ,mM}. It is assumed that there are no buffers

between the machines. Let ti be processing time of the part

on machine mi. An operation of the part being processed on

mi is modeled by a synchronous SFG of the form shown in

Figure 3(a), with inputs ui, vi and wi and outputs xi, yi and

zi. The system can be represented by a sequence of blocks

sacked horizontally, where inputs and outputs are

up = u1, wp =

⎡
⎢⎢⎢⎣

w1

w2

...

wM

⎤
⎥⎥⎥⎦ , xp = xM , zp =

⎡
⎢⎢⎢⎣

z1
z2
...

zM

⎤
⎥⎥⎥⎦ .

as shown in the synchronous SFG in Figure 4(a). We assume

that the part is always available to the system, i.e. up = ε.

The graph in Figure 4(a) can be reduced to the syn-

chronous MSFG shown in Figure 4(b), where

A =

⎡
⎢⎢⎢⎢⎢⎣

t1 e ε ε
t1t2 t2 e ε
t1t2t3 t2t3 t3 ε

...
...

...
. . .

t1t2 . . . tM t2t3 . . . tM t3t4 . . . tM . . . tM

⎤
⎥⎥⎥⎥⎥⎦
.

Note that A is determined graphically from the graph in

Figure 4(a). For example [A]2,1 = t1t2 is the gain of the

graph from [wp]1 to [zp]2.

2) N Parts and One Resource: Consider a system con-

sisting of a machine that processes a set of N parts

{n1, n2, . . . , nN}. It is assumed that there are no buffers in

the system. Let ti be processing time of ni on the machine.
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Fig. 5. A machine processing a set of parts: (a) portrays how individual
operations can be stacked together vertically, (b) shows a more compact
version of the synchronous MSFG.

Then operation of part ni being processed on the machine

is modeled by a basic synchronous SFG of the form shown

in Figure 3(a), with inputs ui, vi and wi and outputs xi,

yi and zi. The system can be represented by a sequence of

blocks stacked vertically as shown in the synchronous SFG

in Figure 5(a). Note that the inputs and outputs of the system

are as follows

um =

⎡
⎢⎢⎢⎣

u1

u2

...

uN

⎤
⎥⎥⎥⎦ , wm = w1, xm =

⎡
⎢⎢⎢⎣

x1

x2

...

xM

⎤
⎥⎥⎥⎦ , zm = zN .

The graph in Figure 5(a) can be reduced to the synchronous

MSFG shown in Figure 5(b), where

P =

⎡
⎢⎢⎢⎣

t1 ε ε
ε t2 ε

. . .

ε ε tM

⎤
⎥⎥⎥⎦ ,H =

⎡
⎢⎢⎢⎣

ε ε ε
e ε ε

. . .

ε e ε

⎤
⎥⎥⎥⎦ ,

J =

⎡
⎢⎢⎢⎣

e
ε
...

ε

⎤
⎥⎥⎥⎦ ,G =

[
ε . . . ε e

]
.

E. Modeling a Permutation Flow Shop

Consider a flow-shop system with M machines. The

system is supposed to produce N parts. It is assumed

that there are no buffers between the machines. Let m =
[m1,m2, . . . ,mM ] be an ordered set of machines and n =

z1

u1

y1

P1 x1

v1H

G

J

z2

u2

y2

P2

w2

x2

v2H

zM

uM

yM

PM

wM

xM

vMH

w1

uf

[wf]2 [wf]M

yf

xf

vf

[wf]1

[zf]2 [zf]M[zf]1

...

...

J J

G G

Fig. 6. Synchronous MSFG representation of a permutation flow shop.
Each Gi, i ∈ {1, 2, . . . ,M}, models mi ∈ m processing a sequence of
parts n.

[n1, n2, . . . , nN ] be an ordered set of jobs. Each ni ∈ n
is processed by the machines in the order specified by m.

Each machine processes parts according to sequence n –

this sequence is the same for all the machines in the system.

Each job nj ∈ n requires a processing time ti,j on machine

mi ∈m.

A manufacturing process of machine mi ∈m processing

a sequence of parts n can be modeled by a synchronous

MSFG, Gi, of the form shown in Figure 5(b), where

Pi =

⎡
⎢⎢⎢⎣

ti,1 ε ε
ε ti,2 ε

. . .

ε ε ti,M

⎤
⎥⎥⎥⎦ ,H =

⎡
⎢⎢⎢⎣

ε ε ε
e ε ε

. . .

ε e ε

⎤
⎥⎥⎥⎦ .

The flow shop system can be represented as a serial inter-

connection of synchronous MSFGs Gi, i ∈ {1, 2, . . . ,M}
as illustrated in Figure 6. It is assumed that the parts are

removed from the system as soon as they are ready to leave

it, therefore vf = xf .

Example Consider a permutation flow shop with 3 machines

processing 4 parts. Processing time matrix for the system is

T =

⎡
⎣
t1,1 t1,2 t1,3 t1,4
t2,1 t2,2 t2,3 t2,4
t3,1 t3,2 t3,3 t3,4

⎤
⎦ =

⎡
⎣
3 2 1 2
2 3 1 1
1 4 2 1

⎤
⎦ . (4)

The system can be modeled by a synchronous MSFG in

Figure 6, where

P1 =

⎡
⎢⎢⎣
3 ε ε ε
ε 2 ε ε
ε ε 1 ε
ε ε ε 2

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣
2 ε ε ε
ε 3 ε ε
ε ε 1 ε
ε ε ε 1

⎤
⎥⎥⎦ ,

P3 =

⎡
⎢⎢⎣
1 ε ε ε
ε 4 ε ε
ε ε 2 ε
ε ε ε 1

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣
ε ε ε ε
e ε ε ε
ε e ε ε
ε ε e ε

⎤
⎥⎥⎦ ,

J =

⎡
⎢⎢⎣
e
ε
ε
ε

⎤
⎥⎥⎦ , G =

[
ε ε ε e

]
.

(5)
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Applying the return loop method to find the gain of the

graph from uf to xf we have

Txf ,uf
= (P3(P2(P1H)�H)�H)�P3

⊗ (P2(P1H)�H)�P2(P1H)�P1.

wf

w1

z1

A1

w2

z2

A2

AN

...

wN

zN

zf

Fig. 7. Alternative
way to model a per-
mutation flow shop.

Suppose that all the machines are ini-

tially available, i.e. wf = [ ε ε ε ε ]T

and that all parts are available to

the system at time zero, i.e. uf =
[ e e e e ]T . Then

xf = Txf ,uf
uf

=

⎡
⎢⎢⎣
6 ε ε ε
12 9 ε ε
14 11 4 ε
15 12 5 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
e
e
e
e

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
6
12
14
15

⎤
⎥⎥⎦ .

Therefore, the system’s makespan

equals 15 (time units).

In the modeling method described

above, we first obtained synchronous

MSFG models of each machine and

then stacked these synchronous MSFGs

horizontally to obtain the model of the

flow shop. Alternatively, the system can

be modeled from a different perspec-

tive. Figure 7 illustrates the idea. The system is modeled as

a set of synchronous MSFGs stacked vertically, where each

synchronous MSFG represents a manufacturing process of a

part processed by a set of machines (e.g. Figure 4).

Example Consider the flow shop defined in the previous

example. It can be modeled by the synchronous MSFG

shown in Figure 7, where

A1 =

⎡
⎣

t1,1 e ε
t1,1t2,1 t2,1 e

t1,1t2,1t3,1 t2,1t3,1 t3,1

⎤
⎦ =

⎡
⎣
3 e ε
5 2 e
6 3 1

⎤
⎦ ,

A2 =

⎡
⎣
2 e ε
5 3 e
9 7 4

⎤
⎦ ,A3 =

⎡
⎣
1 e ε
2 1 e
4 3 2

⎤
⎦ ,A4 =

⎡
⎣
1 e ε
3 1 e
4 2 1

⎤
⎦ .

We have

Tzf ,wf
= A4A3A2A1 =

⎡
⎣
12 9 7
14 11 9
15 12 10

⎤
⎦

and zf = Tzf ,wf
wf Assume that the system’s input wf =

[ e e e ]T , i.e. all the machines are available to the system

at time zero. Then,

zf =

⎡
⎣
12
14
15

⎤
⎦

The makespan of the system is 15 time units.

The modeling method illustrated in Figure 6 is referred

to as machine-based modeling approach, because we are

essentially stacking machines horizontally. The other mod-

eling method shown in Figure 7 is referred to as part-
based modeling approach, because it essentially involves

stacking parts vertically. Both modeling approaches can

be used to analyze the system. In fact they both give

the same result for the makespan (15 time units) for the

example presented in this section. However one approach

may be more efficient computationally depending on the

application. For example, a part-based approach can be used

for scheduling applications because changing the order of

parts on a machine, simply corresponds to swapping order

of blocks in the vertical stack of blocks in Figure 7. A

machine-based modeling approach, on the other hand, can be

used for buffer allocation problems, because adding a buffer

between the machines amounts to inserting a unit capacity

buffer (represented by a SFG shown in Figure 3(b)) into the

horizontal stack of machines in Figure 6.

VII. CONCLUSION

Synchronous MSFGs are MSFGs over max-plus algebra.

The paper has presented the theory and applications of syn-

chronous MSFGs. New topological methods for evaluating

gains of synchronous MSFGs have been described. It has

been shown that A∗ in max-plus algebra is equivalent to

(I−A)−1 in regular algebra. This observation allowed us to

extend the existing theory for regular MSFGs to synchronous

MSFGs. An application of synchronous MSFGs to modeling

and performance evaluation of manufacturing systems has

been illustrated.

REFERENCES

[1] S.J. Mason. Feedback theory–some properties of signal-flow graphs.
In Proc. Institute of Radio Engineers, volume 41, pages 1144–1156,
Sept. 1953.

[2] J.O. Pliam. An algebraic approach to signal flow graph theory.
Master’s thesis, University of Minnesota, May 1992.

[3] D.E. Riegle. Topological properties of matrix signal flow graphs. PhD
thesis, Purdue University, June 1971.

[4] D.E. Riegle and P.M. Lin. Matrix signal flow graphs and an optimum
topological method for evaluating their gains. IEEE Transactions on
Circuit Theory, CT-19(5):427–435, 1972.

[5] B. Hruz and M.C. Zhou. Modeling and Control of Discrete-event
Dynamic Systems with Petri Nets and Other Tool. Springer-Verlag,
London, UK, 2007.

[6] Christos G. Cassandras and Stephane Lafortune. Introduction to
Discrete Event Systems. Springer US, Boston, MA, USA, 2007.

[7] G. Cohen, S. Gaubert, and J. Quadrat. Max-plus algebra and system
theory: Where we are and where to go now. Elsevier Annu. Rev.
Control, 23:207–219, 1999.

[8] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization
and Linearity. John Wiley and Sons, West Sussex, England, 1992.

[9] A. Imaev and R.P. Judd. Block diagram-based modeling of manufac-
turing systems using max-plus algebra. In Proceedings of the American
Control Conference, June 10 - Jun 12 2009.

[10] A. Imaev. Hierarchical modeling of manufacturing systems using max-
plus algebra. PhD thesis, Ohio University, 2009.

[11] B. Heidergott, G.J. Olsder, and J. van der Woude. Max Plus at Work:
Modeling and Analysis of Synchronized Systems: A Course on Max-
Plus Algebra and Its Applications. Princeton University Press, 2005.

[12] J.O. Pliam. Ring graphs and gain formulas, an algebraic approach to
topology. In IEEE International Symposium on Circuits and Systems,
pages 327–330, May 1989.

[13] S. Thomas McCormick, M. Pinedo, Scott Shenker, and Barry Wolf.
Sequencing in an assembly line with blocking to minimize cycle time.
Oper. Res., 37(6):925–935, 1989.

6661


