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Abstract  
Correlation of vapour-liquid equilibrium data for hydrocarbon ternary system (ethane-n-pentane-n-heptane) is 
very useful in the design decision of separation process equipment such as separation columns, extractors etc. 
The tool used for the correlation is MATLAB: a very reliable software with adequate neural network conditions 
such as multi-layer feed forward, back propagation etc. A comprehensive Artificial Neural Network (A N N) 
training and simulation model and list of pre-existing vapour-liquid equilibrium data for ethane-n-pentane-n-
heptane system was employed for this work. Neural network was trained in MATLAB 7.10.0 
environment.Several iterations were carried out on the ternary system until the performance goal was met. From 
the analysis of the output result, regression and iteration graphs when compared with experimental data, 
artificial neural network offered very small deviation from the target. This confirms conclusively that artificial 
neural network is a consistent and reliable tool for predicting the vapour-liquid phase equilibrium for binary, 
ternary and quaternary system. The knowledge of correlation also establishes the basic background required for 
the understanding of the vapour-liquid phase behaviour of ternary systems which forms the basis of calculations 
of distillation, extraction and absorption processes etc. 
__________________________________________________________________________________________ 
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INTRODUCTION 
The composition of vapour and liquid equilibrium 
phases is very important for calculations involving 
distillation, extraction and absorption processes 
which find useful application in the chemical process 
industry, petroleum and refining industries. Complete 
vapour-liquid equilibrium data for ternary systems 
are rare in the literature and quaternary data are 
practically non-existent. When designers need such 
information, they frequently attempt to predict the 
ternary or quaternary system from binary data by 
means of thermodynamics equation. Artificial Neural 
Network: a machine learning algorithm offers a more 
reliable and consistent means of correlating vapour-
liquid equilibrium data for both ternary and 
quaternary systems.   This is however done by 
training neural network using pre-existing vapour-
liquid equilibrium, correlating and predicting the 
vapour-liquid equilibrium, comparing correlated and 
predicted values with pre-existing data and carrying 
out validity test to check for network efficiency. 
 
LITERATURE REVIEW 
The term “vapour-liquid equilibrium (V L E)” refers 
to systems in which single liquid phase is in 
equilibrium with its vapour (Mane and Shinde, 2012). 
 
 

 

 

 

 

 

 
Fig. 1.0: Vapour and Liquid in Contact 
 
Consider vapour and liquid in contact with each other 
as shown in Fig 1.0. Liquid molecules are continually 
vapourizing while vapour molecules are continually 
condensing. If three chemical species are present, 
they will generally condense and vapourize at 
different rates. When not in equilibrium, the liquid 
and vapour can be at different mole fractions. At 
equilibrium, the temperatures and pressures as well as 
fractions of different phases cease to change. 
Although, molecules continue to evaporate and 
condense, the rate at which each specie condenses is 
equal to the rate at which it evaporates. Although on 
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a molecular scale nothing has stopped, on a 
macroscopic scale where processes are observed, 
there are no further changes in the temperature, 
pressure and composition. 
 
Equilibrium conditions can be thermal, mechanical or 
chemical potential. In thermal equilibrium, heat 
transfer stops and the temperature of the two phases 
are equal 

liquid vapourT T (at )equilibrium  (1) 
 
In mechanical equilibrium, the forces between vapour 
and liquid balances. In other words, the pressures are 
equal (Seader and Ernest, 2001). In this case, 

liquid vapourP P (at )equilibrium  (2) 
 
A state of phase equilibrium is attained when the rate 
of vapourization of each specie is equal to the rate of 
condensation. Thus there is no change in 
compositions (mole fraction in Fig. 1.0). Ideally, the 
composition of liquid and vapour are not equal. If the 
compositions are equal, no separation can be 
achieved in any equilibrium process. If temperature 
and pressure are constant, equal rates of 
vapourization and condensation require a minimum 
in the fee energy of a system. The resulting condition 
for phase equilibrium is 
(chemical potential ) (liquidi chemical

potential )vapouri    (3)    
 
Experimental determinations of vapour-liquid 
equilibrium (V L E) are indispensable for the design 
of distillation columns and selection of solvents 
(Rattan et al., 2008).  Ternary vapour-liquid equilibra 
is very complex with no reliable analytical or 
compact graphical way of representing experimental 
phase equilibrium hence the need to develop a neural 
network for the prediction of vapour-liquid 
equilibrium. For multi-component mixtures, as well 
as binary mixtures, the vapor–liquid equilibrium data 
are represented in terms of equilibrium constant (K) 
values (Kister and Henry, 1992; Perry and Green, 
1997) defined by: 

i

i

yK
x

     (4) 

 
where yi and xi are the mole fractions of component i 
in the vapour phase y and liquid phase  x respectively. 
Equilibrium data supplies reliable and sufficient 
information regarding: feed F, equilibrium vapour V, 
equilibrium liquid L, feed mole fraction Zi, vapour 
mole fraction yi, liquid mole fraction xi, equilibrium 
constant K, temperature and respective pressure.  
Some equations are useful in deriving models for the 
correlating vapour-liquid equilibrium data, they are 
 
 

Raoult’s Law 
This is particularly useful when composition of 
species is at high concentration 

Sat
i iy P x P     (5) 
SatP is the saturation vapour pressure of pure 

component i 
Modified Raoult’s is given as  

Sat
i iy P x P    (6) 

Equation 6 shows how vapour phase mole fraction 

iy  and liquid phase mole fraction ix are related to 

total pressure P and activity coefficient . 
From equation 6, equilibrium constant K is given as 

Sat
i iP

i PK      (7) 
Activity coefficient can be used to relate fugacity of 
pure species in a mixture by: 

L L
i i i iF x F     (8) 

Fugacity coefficient of pure component i is given as 
 ( , ) ( , )L

iF T P T P P     (9) 
Fugacity of gas mixtures is also given as 

( , ) ( , )V
i i pF T P T P P    (10) 

But 

i py P P
    (11) 

( , ) ( , )V
i i iF T P T P y P    (12) 

    
 

Where 
 

i is the activity coefficient for specie i in the liquid 
mixture 

Sat
iP is the saturation vapour pressure of pure 

component i 
P is the total pressure of the vapour mixture at 

equilibrium 
Henry’s Law 
This may apply when composition of species is at 
low concentration  

i iK H     (13) 
Where H is the Henry’s law constant  
 
Dalton’s Law 
For Dalton’s law 

1 2........total nP P P P     (14) 

1P 2......... nP P are the partial pressures of each 
specie in the vapour phase 
 
Correlation of vapour-liquid equilibrium data is the 
process of comparing, contrasting and predicting 
various data obtained when there is no change in the 
composition of liquid and vapor at a certain 
temperature and pressure using approaches such as: 
graphical, analytical, statistical and artificial neural 
network. Vapour-liquid equilibrium (V L E) data is 
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usually estimated by thermodynamics models based 
on the fundamental phase equilibrium criterion of 
equal chemical potential in both phases (Nguyena et 
al., 2007) cited by (Moghadassi et al., 2011). 
 
Madagaran and Campanella, 2006, successfully used 
NRTL model in combination with (Harden and O’ 
Connell 1975) second virial coefficient model for 
predicting the vapor - liquid equilibrium of the 
quaternary system containing acetic acid, 
isopropanol, water and isopropyl acetate. However, 
in this work prediction of VLE data was done with 
the aid of MATLAB (Matrix Laboratory) with neural 
network conditions. The experimental data are 
correlated to make the best possible interpolation 
using neural network. Neural network is designed by 
arranging neurons in various layers, deciding the type 
of connections among neurons for different layers as 
well as among neurons within a layer, deciding the 
way a neuron receives input and produces output and 
finally determining the strength of connections within 
the network by allowing the network learn the 
appropriate values of connection weights using the 
experimental data 
 
According to (Shifmann et al., 1994; Rocha et al, 
Kumar and Zhang 2006; and Almeida et al., 2010 as 
cited by (Gunther and Fritsch, 2010), resilient back 
propagation is used in training network since this 
algorithm is one of the fastest algorithm for this 

purpose. Also, (Demuth and Beale, 2002) as cited 
(Moghadassi et al., 2011), explains, that the network 
is adjusted based on a comparison between the 
network, outputs and the targets (real values of 
output) until the network outputs match the target. It 
is important to note that the process of designing a 
neural network is an iterative process; developing a 
neural network entails series of trial and error in the 
design decision before coming up with a satisfactory 
design which enhances good correlation results. In 
the process of trial and error, model can be modified 
to facilitate discrimination among simulated system 
and the experiment is re-run. The second alternative 
is new search techniques or more powerful 
experiment designs (Adrian and Moshe, 1995) 
complex, linear and non-linear problems, thus, 
making results of data simulated this way to be very 
reliable.  
 
The algorithm for training data set is the Levenberg 
Marquardt algorithm. The simulation is run as a loop 
for specific time and the output generated by 
simulation are compared with the target. This process 
is repetitive and continuous with the parameter 
changed and model run iteratively until there is high 
degree of coherence between the chosen target and 
the simulation result 
 
 

 
Table 1.0: Experimental Vapour-liquid Equilibrium Data for the Ethane-Pentane-Hextane Ternary System at a 
Temperature of 338.555 K 

Pressure 
(kPa) 

Ethane vapour 
mole fraction (y2) 

Pentane vapour 
mole fraction (y5) 

Heptane vapour 
mole fraction (y7) 

 Ethane liquid 
mole fraction (y2) 

Pentane liquid 
mole fraction (y5) 

Heptane liquid 
mole fraction (y7) 

1640.0 0.964 0.006 0.030  0.482 0.034 0.484 
2050.0 0.973 0.005 0.022  0.575 0.026 0.399 
2460.0 0.977 0.005 0.018  0.650 0.022 0.328 
2870.0 0.979 0.005 0.016  0.715 0.020 0.328 
3280.0 0.977 0.005 0.018  0.778 0.016 0.206 
3690.0 0.973 0.005 0.022  0.840 0.014 0.146 
3874.5 0.924 0.009 0.067  0.924 0.009 0.067 
1640.0 0.972 0.013 0.015  0.461 0.076 0.463 
2050.0 0.976 0.011 0.013  0.557 0.071 0.372 
2460.0 0.978 0.010 0.012  0.642 0.065 0. 293 
2870.0 0.978 0.010 0.012  0.721 0.055 0.224 
3280.0 0.976 0.011 0.013  0.790 0.044 0.166 
3690.0 0.971 0.011 0.018  0.859 0.030 0.111 
3895.0 0.929 0.018 0.053  0.929 0.018 0.053 
1640.0 0.940 0.044 0.016  0.440 0.200 0.360 
2050.0 0.955 0.322 0.013  0.554 0.169 0.277 
2460.0 0.961 0.028 0.011  0.639 0.147 0.214 
2870.0 0.962 0.027 0.011  0.710 0.125 0.160 
3280.0 0.962 0.027 0.011  0.780 0.100 0.120 
3690.0 0.956 0.029 0.015  0.853 0.071 0.076 
3874.5 0.914 0.046 0.040  0.914 0.046 0.040 
1640.0 0.935 0.053 0.012  0.437 0.285 0.278 
2050.0 0.949 0.042 0.009  0.536 0.242 0.222 
2460.0 0.953 0.038 0.009  0.622 0.204 0.174 
2870.0 0.955 0.035 0.010  0.703 0.166 0.131 
3280.0 0.953 0.036 0.011  0.775 0.127 0.098 
3690.0 0.944 0.044 0.012  0.846 0.098 0.056 
3825.3 0.900 0.070 0.030  0.900 0.070 0.030 
Source: (Dasturt and Thodos, 1964) 
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RESULTS AND DISCUSSION 

 
      Fig. 1.0: Performance Trainlm Graph 
 

 
Fig. 2.0: Regression Graph 
 

 
Fig. 3.0: Output-target Graph (Ethane) 
 

            

 
     Fig. 5.0: Output-target Graph (Hexane) 
 
Table 2.0: Table showing vapour mole fraction and 
temperature values from experimental data (target) 
Ethane (y2) Pentane 

(y5) 
Hexane 
(y6) 

Temperature 
(K) 

0.964 0.006 0.030 338.555 
0.973 0.005 0.022 338.555 
0.977 0.005 0.018 338.555 
0.979 0.005 0.016 338.555 
0.977 0.005 0.018 338.555 
0.973 0.005 0.016 338.555 
0.924 0.009 0.067 338.555 
0.972 0.013 0.015 338.555 
0.976 0.011 0.013 338.555 
0.978 0.010 0.012 338.555 
0.978 0.010 0.012 338.555 
0.976 0.011 0.013 338.555 
0.971 0.011 0.018 338.555 
0.929 0.018 0.053 338.555 
0.940 0.044 0.016 338.555 
0.955 0.322 0.013 338.555 
0.961 0.028 0.011 338.555 
 
Table 3.0: Table showing predicted values of vapour 
mole fraction and temperature with the use of 
Artificial Neural Network (A N N) 
Ethane 
(y2) 

Pentane 
(y5) 

Hexane 
(y6) 

Temperature (K) 

0.9693 0.0062 0.0293 338.5552 
0.9753 0.0056 0.0200 338.5550 
0.9777 0.0048 0.0188 338.5551 
0.9798 0.0051 0.0165 338.5551 
0.9761 0.0050 0.0178 338.5549 
0.9728 0.0050 0.0160 338.5550 
0.9247 0.0087 0.0664 338.5552 
0.9671 0.0126 0.0150 338.5551 
0.9773 0.0100 0.0128 338.5550 
0.9782 0.0096 0.0123 338.5550 
0.9764 0.0104 0.0120 338.5551 
0.9757 0.0107 0.0130 338.5549 
0.9693 0.0109 0.0188 338.5548 
0.9279 0.0186 0.0531 338.5545 
0.9466 0.0441 0.0162 338.5553 
0.9549 0.3200 0.0130 338.5549 
0.9612 0.0279 0.0112 338.5550 
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From the experimental data, the values of pressure 
and liquid phase composition of the ternary system 
were given as input to the network while the target 
was taken to be the respective temperatures and 
vapour phase composition. 
 
After 151 iterations, the performance goal was met 
(target reached) as shown in Fig. 1.0, with the trainlm 
line meeting the target line. The negligible value of 
the mean square error (M S E) as shown in Fig. 1.0 is 
an indication of the efficiency of the artificial neural 
network used since weights and biases which ensures 
good agreement between the output and the target has 
been fine tuned during the iteration process. 
Comparing table 2.0 and 3.0, the output (predicted 
values) of vapour phase compositions and 
temperature gives set of data that is close to the target 
(experimental vapour phase compositions and 
temperature data). 
 
From fig. 2.0, 3.0, 4.0 and 5.0 (regression and output-
target graphs), deviations of data points from the line 
of best fit are small. This indicates that there is 
agreement between correlation results and 
experimental data. The degree of correlation will only 
be significant when correlation coefficient R is 1 or 
close to 1.Correlation coefficient R in fig. 2.0 
(Regression graph) is 1 while the values of R in Fig. 
3.0, 4.0 and 5.0 are close to 1, confirming that there is 
good correlation between the input, target and output 
parameter. The linearity of regression graph (fig. 2.0) 
also indicates that that network is well trained and 
that the predicted values agree with the target. Liquid 
mole fraction of ethane, pentane and hexane picked at 
random at a particular pressure,  [0.775; 0.127; 
0.098;3280], were given as input to the trained 
network which predicted its equivalent composition 
of the vapour phase and temperature as [0.9532; 
0.0359; 0.0111; 3380.555]. These values agree with 
the experimental data. In addition, in order to further 
affirm the predictive capability and efficiency of the 
developed network, arbitrary values of liquid mole 
fraction and pressure within the range of the 
experimental data were chosen for ethane, pentane 
and hexane as input to the network. P= [0.450 0.230 
0.320 1845; 0.750 0.018 0.300 2666; 0.500 0.232 
0.245 3419; 0.900 0.089 0.068 3698]. Simulation 
were carried out and the vapour phase composition 
and temperatures predicted as [0.9420 0.0400 0.0170 
337.798; 0.9721 0.0048 0.0170 338.275; 0.9371 
0.0933 0.0100 338.231; 0.9251 0.0890 0.0690 
338.755] fell within the range of the experimental 
data, thus, confirming the reliability and efficiency of 
the network.   
 
LIMITATION OF STUDY 
Complete vapour-liquid equilibrium data for ternary 
systems are rare in the literature and quaternary data 
are practically non-existent. 
 

CONCLUSION AND RECOMMENDATIONS 
MATLAB software with neural network conditions 
and back propagation was used to correlate vapour-
liquid equilibrium data for hydrocarbon ternary 
system. Training of network and experimental data 
was acheieved with the use of Levenbeberg 
algorithm. Observations from successive iterations 
reveal that neural network predicts more accurately 
when the network and experimental data are well 
trained. 
 
Conclusively, good correlation results was achieved 
as  predicted values agree reasonably with 
experimental data, hence, neural network is a viable 
correlation and prediction tool for vapour-liquid 
equilibrium data. 
 
However, many research works on the correlation of 
vapour-liquid equilibrium data for binary systems 
have been reported,  research can also be extended to 
the use of neural network in correlating of vapour-
liquid equilibrium data for quaternary and multi-
component systems. 
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