A New Hilbert-type Integral Inequality with the Homogeneous Kernel of Real Degree Form and the Integral in Whole Plane

Xie Zitian ${ }^{1}$ K. Raja Rama Gandhi ${ }^{2}$ Zheng Zeng ${ }^{3}$
${ }^{1}$ Department of Mathematics, Zhaoqing University, Zhaoqing, Guangdong, China 526061
${ }^{2}$ Resource person in Oxford University,India and BITS-Vizag, INDIA.
${ }^{3}$ Department of Mathematics, Shaoguan University, Shaoguan, Guangdong, China512005

Keywords: Hilbert-type integral inequality, weight function, H older's inequality, function.
Abstract: In this paper,we build a new Hilbert's inequality with the homogeneg sernel real order and the integral in whole plane. The equivalent inequality is considered. best con ant factor is calculated using Ψ f unction.

1 INTRODUCTION

If $f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} f^{2}(x) \mathrm{d} x<\infty \quad 0<\int_{0}^{\infty} g^{2}(x) d^{d}$; then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} \mathrm{~d} x \mathrm{~d} y<\pi\left(\int_{0}^{\infty} f^{2}(x) \mathrm{d} x\right)^{1 / 2}\left(\int_{0}^{\infty} g^{q}(x) \mathrm{d} x\right)^{1 / 2} \tag{1.1}
\end{equation*}
$$

where the constant factor π is the best possible. Ineque ty (1.1) is yell-known as Hilbert's integral inequality, which has been extended by Hardy-Riesz as If $p>1,1 / p+1 / q=1 f(x), g(x) \geq 0$; such that $0<\int_{0} \quad \Delta x<\infty$, and $0<\int_{0}^{\infty} g^{q}(x) \mathrm{d} x<\infty$; then we have the following Hardy-Hilbert's inte farm olity:

where the constant factor Hilbert's inequality attrac have many generaliza ns a a variations. (1.1) has been strengthened by Yang and others (including double senos inequalt, \quad [3,4,6-21].
In 2008, Zitian Y e and heng Zeno gave a new Hilbert-type Inequality [4] as follows
If $a>0, b>0, c \quad p>1,1 /,+1 / q=1 \quad f(x), g(x) \geq 0$; such that
$\left.0<\int_{0}^{\infty} f\right) \mathrm{d} x<\int_{0}^{2} \mathrm{~d} 0<\int_{0}^{\infty} g^{-1-q / 2}(x)$
then
where the constant factor $K=\frac{\pi}{(a+b)(a+c)(c+b)}$ is the best possible.
In 2010,Jianhua Xhong and Bicheng Yang gave a new Hilbert-type Inequality [5] as follows :
Assume that
$\lambda, p>0(p \neq 1), r>1,1 / p+1 / q=1,1 / r+1 / s=1, \phi(x)=x^{p\left(1-\frac{\lambda}{r}\right)-1}, \varphi(x)=x^{q\left(1-\frac{\lambda}{s}\right)-1}, x \in(0, \infty)$,
$K=\Gamma(\beta+1) \sum_{k=0}^{\infty}(-1)^{k}\binom{\alpha-\lambda}{k}\left[\frac{1}{(k+\lambda / r)^{\beta+1}}+\frac{1}{(k+\lambda / s)^{\beta+1}}\right]$, and $f, g \geq 0$,

$$
0<\|f\|_{p, \phi}:=\left\{\int_{0}^{\infty} x^{p(1-\lambda / r)-1} f^{p}(x) \mathrm{d} x\right\}^{1 / p}<\infty, 0<\|g\|_{q, \varphi}<\infty \text { then }
$$

(1) for $p>1$ we have the following equivalent inequalities:

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln (x / y)|^{\beta} f(x) g(y)}{|x-y|(\max \{|x|,|y|\})^{\alpha}} \mathrm{d} x \mathrm{~d} y<K\|f\|_{p, \phi}\|g\|_{q, \varphi}
$$

(2)For $0<\mathrm{p}<1$ the reverse of (1.5) with the best constant factor K .

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{|\ln (x / y)|^{\beta} f(x) g(y)}{|x-y|(\max \{|x|,|y|\})^{\alpha}} \mathrm{d} x \mathrm{~d} y>K\|f\|_{p, \phi}\|g\|_{q, \varphi}
$$

The main purpose of this paper is to build a new Hilbert-type inequality with the kernel of real order and the integral in whole plane, by estimating the weight ${ }^{f}$ function. The equivalent inequality is considered
We knew that (in this paper, γ is the Euler's constant.)

$$
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\gamma+\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right), \psi(1)=-\gamma, \psi\left(\frac{1}{2}\right)=-\gamma-2 \ln 2 .
$$

Recent XIE Zitin and ZHOU Qinghua prove that the expression 9
the Ψ
tion admits a finite expression in elementary function for rational number z,and pro e
$\left.\psi\left(\frac{a}{b}\right)=\Gamma^{\prime}\left(\frac{a}{b}\right) / \Gamma\left(\frac{a}{b}\right)=-\ln b-\gamma-\ln 2-\frac{\pi}{2} \cot \frac{a \pi}{b}+\sum_{k=1}^{b-1} \cos \frac{2 k o}{b} \sin \frac{k \lambda^{\prime}}{b}\right)$ and have

$$
\begin{aligned}
& \psi\left(\frac{1}{3}\right)=-\gamma-\ln 3-\ln 2-\frac{\pi}{2} \cot \frac{\pi}{3}+\cos \frac{2 \pi}{3} \ln \sin \frac{\pi}{3}+\cos { }^{\tau} \ln \sin \frac{2 \pi}{} \\
& =-\gamma-\frac{3}{2} \ln 3-\frac{\pi}{2 \sqrt{3}} ; \\
& \psi\left(\frac{2}{3}\right)=-\gamma-\frac{3}{2} \ln 3+\frac{\pi}{2 \sqrt{3}} \text {; } \\
& \psi\left(\frac{1}{4}\right)=-\gamma-3 \ln 2-\frac{\pi}{2} \text {; } \\
& \psi\left(\frac{3}{4}\right)=-\gamma-3 \ln 2+\frac{\pi}{2}, \\
& \psi\left(\frac{1}{6}\right)=-\gamma-2 \ln \quad-\frac{\sqrt{2}}{2} . \\
& \psi\left(\frac{5}{6}\right)=\square \ln 2+ \\
& \psi\left(\frac{1}{5}\right)=-\frac{\sqrt{2}}{4} \ln (\sqrt{5}-1)-\frac{\sqrt{5}}{2} \ln 2-\frac{\pi}{40}(5+3 \sqrt{5}) \sqrt{10-2 \sqrt{5}} ; \\
& \psi\left(\frac{4}{5}\right)=-\gamma-\frac{5}{4}-\frac{\sqrt{5}}{2} \ln (\sqrt{5}-1)-\frac{\sqrt{5}}{2} \ln 2+\frac{\pi}{40}(5+3 \sqrt{5}) \sqrt{10-2 \sqrt{5}}
\end{aligned}
$$

In the following, we always suppose that:

$$
\begin{aligned}
& 1 / p+1 / q=1, p>1, \min \{a \lambda+b \mu, a \mu+b \lambda\}>-1, a \mu+b \lambda \neq 0, a \lambda+b \mu \neq 0, \mu>0, \lambda>0 . \\
& a+b=1 .
\end{aligned}
$$

2 SOME LEMMAS

We start by introducing some Lemmas.
Lemma 2.1 If $s>0, r \neq 0, r>-s$, then

1) $\int_{0}^{1} x^{r-1} \ln \left(1-x^{s}\right) d x=-\frac{1}{r}\left[\gamma+\psi\left(\frac{r+s}{s}\right)\right]$
2) $\int_{0}^{1} x^{r-1} \ln \left(1+x^{s}\right) d x=\frac{1}{r} \ln 2-\frac{1}{2 r}\left[\psi\left(\frac{r+2 s}{2 s}\right)-\psi\left(\frac{r+s}{2 s}\right)\right]$

Proof. we obtain,'

$$
\begin{aligned}
& \text { 1) }-\int_{0}^{1} x^{r-1} \ln \left(1-x^{s}\right) d x=\int_{0}^{1} x^{r-1} \sum_{l=1}^{\infty} \frac{x^{l s}}{l} d x \\
& =\sum_{l=1}^{\infty} \int_{0}^{1} \frac{x^{l s+r-1}}{l} d x=\sum_{l=1}^{\infty} \frac{1}{l(r+l s)} \\
& =\frac{1}{r} \sum_{l=1}^{\infty}\left(\frac{1}{l}-\frac{1}{l+r / s}\right) \\
& =\frac{1}{r}\left[\gamma+\psi\left(\frac{r+s}{s}\right)\right]
\end{aligned}
$$

$$
\text { 2) } \int_{0}^{1} x^{r-1} \ln \left(1+x^{s}\right) d x=\int_{0}^{1} x^{r-1} \sum_{l=1}^{\infty}(-1)^{l-1} \frac{x^{l s}}{l} d x
$$

$$
=\sum_{l=1}^{\infty} \int_{0}^{1}(-1)^{l-1} \frac{x^{l s+r-1}}{l} d x=\sum_{l=1}^{\infty} \frac{(-1)^{l-1}}{l(r+l s)}
$$

$$
=\lim _{N \rightarrow \infty}\left\{\frac{1}{r} \sum_{l=1}^{2 N+1}(-1)^{l-1} \frac{1}{l}-\frac{1}{2 r}\left[\sum_{n=0}^{N}\left(\frac{1}{n+1}-\frac{1}{n+\frac{r+2 s}{2}}\right)-\sum_{n=0}^{N}\right.\right.
$$

$$
=\frac{1}{r} \ln 2-\frac{1}{2 r}\left[\psi\left(\frac{r+2 s}{2 s}\right)-\psi\left(\frac{r+s}{2 s}\right)\right]
$$

The lemma is proved.
In particular, if $r>-1, r \neq 0$, then

$$
\begin{align*}
& \int_{0}^{1} u^{r-1} \ln \frac{u^{2}+u+1}{u^{2}-u+1} d u \\
= & \int_{0}^{1} u^{r-1} \ln \left(1-u^{3}\right) d y \\
= & \frac{1}{r}\left[\psi(r+1)-\psi u^{-1} \ln (1\right. \\
& \left(\psi \operatorname{ng} \psi \psi+\int_{0}^{1} u^{r-1} \ln \left(1+u^{3}\right) d u-\int_{0}^{1} u^{r-1} \ln (1+u) d u\right] \\
= & \left.\left.\frac{1}{r}[\psi(r)-\psi) \frac{r+6}{6}\right)-\psi\left(\frac{r+3}{6}\right)-\psi\left(\frac{r+2}{2}\right)+\psi\left(\frac{r+1}{2}\right)\right]+\frac{1}{2 r}\left[\psi\left(\frac{r}{6}\right)-\psi\left(\frac{r+3}{6}\right)-\psi\left(\frac{r}{2}\right)+\psi\left(\frac{r+1}{2}\right)\right] \\
= & \frac{1}{r}\left[\psi(r)-\psi\left(\frac{r}{3}\right)\right]+\frac{1}{2 r}\left[2 \psi\left(\frac{r}{6}\right)-\psi\left(\frac{r}{6}\right)-\psi\left(\frac{r+3}{6}\right)-2 \psi\left(\frac{r}{2}\right)+\psi\left(\frac{r}{2}\right)+\psi\left(\frac{r+1}{2}\right)\right] \\
& \left(u \operatorname{sing} \psi\left(x+\frac{1}{2}\right)+\psi(x)=2 \psi(2 x)-\psi\left(\frac{r+1}{2}\right)\right. \\
= & \frac{2}{r}\left[\psi(r)-\psi\left(\frac{r}{3}\right)\right]+\frac{1}{r}\left[\left(\frac{r}{6}\right)-\psi\left(\frac{r}{2}\right)\right] \tag{2.2}
\end{align*}
$$

Lemma 2.2 Define the weight functions as follow:

$$
\begin{aligned}
& w(x):=\int_{-\infty}^{\infty} \frac{|x|^{a(\mu-\lambda)}}{|y|^{1-b(\mu-\lambda)}} \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y,} \\
& \tilde{w}(y):=\int_{-\infty}^{\infty} \frac{|y|^{b(\mu-\lambda)}}{|x|^{1-\alpha(\mu-\lambda)}} \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d x,}
\end{aligned}
$$

Then

$$
\begin{align*}
& w(x)=\tilde{w}(y) \\
& =\frac{2}{a \lambda+b \mu}\left[\psi(a \lambda+b \mu)-\psi\left(\frac{a \lambda+b \mu}{3}\right)\right]+\frac{1}{a \lambda+b \mu}\left[\psi\left(\frac{a \lambda+b \mu}{6}\right)-\psi\left(\frac{a \lambda+b \mu}{2}\right)\right] \\
& +\frac{2}{a \mu+b \lambda}\left[\psi(a \mu+b \lambda)-\psi\left(\frac{a \mu+b \lambda}{3}\right)\right]+\frac{1}{a \lambda+b \mu}\left[\psi\left(\frac{a \mu+b \lambda}{6}\right)-\psi\left(\frac{a \mu+b \lambda}{2}\right)\right] \tag{2.3}\\
& :=k
\end{align*}
$$

Proof We only prove that $w(x)=k$ for $x \in(-\infty, 0)$
Using lemma 2.1,setting $y=u x$, and $y=-u x$

$$
\begin{aligned}
& w(x):=\int_{-\infty}^{0} \frac{(-x)^{a(\mu-\lambda)}}{(-y)^{1-b(\mu-\lambda)}} \frac{(\min \{(-x),(-y)\})^{\lambda}}{(\max \{(-x),(-y)\})^{\mu}} \ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}} d y \\
& \quad+\int_{0}^{\infty} \frac{(-x)^{a(\mu-\lambda)}}{y^{1-b(\mu-\lambda)}} \frac{(\min \{(-x), y\})^{\lambda}}{(\max \{(-x), y\})^{\mu}} \ln \frac{x^{2}-y^{2}}{x^{2}+\frac{y^{2}}{4}} d y
\end{aligned}
$$

$$
:=w_{1}+w_{2}
$$

$$
\begin{aligned}
& \text { Then } \\
& w_{1}=\int_{0}^{1} u^{-1+a \lambda+b \mu} \ln \frac{u^{2}+u+1}{u^{2}+1} d u+\int_{1}^{\infty} u^{-1-a \lambda-b \mu} \ln \frac{u}{u}+u_{-1}-a,
\end{aligned}
$$

$$
=\int_{0}^{1} u^{-1+a \lambda+b \mu} \ln \frac{u^{2}+u+1}{u^{2}+1} d u+\oint^{1}-1+a \mu+b \ln \frac{u^{2}+u}{u^{2}}-1 / d u
$$

$$
w_{2}=\int_{0}^{1} u^{-1+a \lambda+b \mu} \ln \frac{u^{2}+1}{u^{2}-u}, \int_{1}^{\infty} u^{-} \quad \ln \frac{u^{2}+1}{u^{2}-u+1} d u
$$

$$
\begin{aligned}
& \qquad \int_{0}^{1} u^{-1+a \lambda+b \mu} \ln \frac{u^{2}}{-u-1} d u+\int_{0}^{1+a \mu+b \lambda} \ln \frac{u^{2}+1}{u^{2}-u+1} d u \\
& \text { And } \\
& w=w_{1}+\int_{0}^{1} u \quad \ln \frac{y}{u^{2}-u+1} d u+\int_{0}^{1} u^{-1+a \mu+b \lambda} \ln \frac{u^{2}+u+1}{u^{2}-u+1} d u
\end{aligned}
$$

$$
\left.=\frac{u^{2}-u+1}{a \lambda+b}-\psi\left(\frac{a \lambda+b \mu}{3}\right)\right]+\frac{1}{a \lambda+b \mu}\left[\psi\left(\frac{a \lambda+b \mu}{6}\right)-\psi\left(\frac{a \lambda+b \mu}{2}\right)\right]
$$

$$
+\frac{2}{a \mu+b \lambda}\left[\eta(a \mu+b \lambda)-\psi\left(\frac{a \mu+b \lambda}{3}\right)\right]+\frac{1}{a \lambda+b \mu}\left[\psi\left(\frac{a \mu+b \lambda}{6}\right)-\psi\left(\frac{a \mu+b \lambda}{2}\right)\right] .
$$

$$
=k
$$

Similarly, setting $x=y / u$, and $x=-y / u$

$$
\begin{aligned}
\tilde{w}(y)=\int_{-\infty}^{0} & \frac{(-y)^{b(\mu-\lambda)}}{(-x)^{1-\alpha(\mu-\lambda)}} \frac{(\min \{(-x),(-y)\})^{\lambda}}{(\max \{(-x),(-y)\})^{\mu}} \ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}} d x \\
& +\int_{0}^{\infty} \frac{y^{b(\mu-\lambda)}}{(-x)^{1-\alpha(\mu-\lambda)}} \frac{(\min \{(-x), y\})^{\lambda}}{(\max \{(-x), y\})^{\mu}} \ln \frac{x^{2}+y^{2}}{x^{2}+x y+y^{2}} d x
\end{aligned}
$$

$$
\begin{align*}
= & \int_{-\infty}^{0} \frac{(-y)^{b(\mu-\lambda)}}{(-y / u)^{1-2(\mu-\lambda)}} \frac{(\min \{(-y / u),(-y)\})^{\lambda}}{(\max \{(-y / u),(-y)\})^{\mu}} \ln \frac{(y / u)^{2}+(y / u) y+y^{2}}{(y / u)^{2}+y^{2}} d(y / u) \\
& +\int_{0}^{\infty} \frac{y^{b(\mu-\lambda)}}{(y / u)^{1-a(\mu-\lambda)}} \frac{(\min \{(y / u), y\})^{\lambda}}{(\max \{(y / u), y\})^{\mu}} \ln \frac{(-y / u)^{2}+y^{2}}{(-y / u)^{2}+(-y / u) y+y^{2}} d(-y / u) \\
= & \int_{0}^{\infty} u^{-1+b(\mu-\lambda)} \frac{(\min \{1, u\})^{\lambda}}{\left(\max \{1, u)^{\mu}\right.} \ln \frac{u^{2}+u+1}{u^{2}+1} d u+\int_{0}^{\infty} u^{-1+b(\mu-\lambda)} \frac{(\min \{1, u\})^{\lambda}}{\left(\max \{1, u)^{\mu}\right.} \ln \frac{u^{2}+1}{u^{2}-u+1} d u \\
= & w_{1}+w_{2}=k \tag{2.4}
\end{align*}
$$

and the lemma is proved.
Lemma 2.3 For $\varepsilon>0$; and $\min \{a \mu+b \lambda-2 \varepsilon / q, a \lambda+b \mu-2 \varepsilon / q\}>-1$, define bo functions, as follow:

$$
\begin{aligned}
& \tilde{f}(x)=\left\{\begin{array}{llc}
x^{a(\mu-\lambda)-1-2 \varepsilon / p}, & \text { if } & x \in(1, \infty), \\
0, & \text { if } & x \in[-1,1], \\
(-x)^{a(\mu-\hat{\lambda})-1-2 \varepsilon / p}, & \text { if } & x \in(-\infty,-1),
\end{array}\right. \\
& \tilde{g}(x)=\left\{\begin{array}{llc}
x^{b(\mu-\hat{\lambda})-1-2 \varepsilon / q}, & \text { if } & x \in(1, \infty), \\
0, & \text { if } & x \in[-1,1], \\
(-x)^{b(\mu-\lambda)-1-2 \varepsilon / q}, & \text { if } & x \in(-\infty,-1),
\end{array}\right.
\end{aligned}
$$

Then

Proof Easily

$$
\left.I(\varepsilon)=\varepsilon\left\{2 \int_{1}^{\infty} x^{-1} x^{-2 \varepsilon} d x\right\}^{1 / p}<\right\}^{2}=1
$$

Let y-Y, using $\tilde{f}(-x)=(x) \quad-x)=\tilde{g}(x)$ and
$\left.\left.\tilde{f}(-x) \int_{-\infty}^{\infty} \tilde{g}(y) \frac{(\mathrm{m} \|\langle | x|,|, y|\})^{2}}{\langle | x \mid} \right\rvert\, \operatorname{y||}\right) \left.^{\mu} \ln \frac{x}{x y+y^{2}} x^{2}+y^{2} \right\rvert\, d y$

$$
\left.\left.=\tilde{f}(2) \underset{\sim}{=}(Y) \frac{(x|x|, / \mid\})^{2}}{(\mathrm{ma}} \right\rvert\,(|x|,|Y|\}\right)^{\mu}\left|\ln \frac{x^{2}+x Y+Y^{2}}{x^{2}+Y^{2}}\right| d Y
$$

we have that $f(x) \int_{-\infty} g(y) \frac{(\min \{|x|,|y|\})}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y$ is an even function on x , then $\tilde{I}(\varepsilon):=2 \varepsilon \int_{-\infty}^{\infty} \tilde{f}(x)\left(\int_{-\infty}^{\infty} \tilde{g}(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y\right) d x$

$$
=2 \varepsilon\left[\int_{1}^{\infty} x^{a(\mu-\lambda)-1-2 e / p}\left(\int_{-\infty}^{-1}(-y)^{b(\mu-\lambda)-1-2 e / q} \frac{(\min \{|x|,|y|\})^{2}}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2} \mid}{x^{2}+y^{2}}\right| d y\right) d x\right.
$$

$$
\left.+\int_{1}^{\infty} x^{a(\mu-\lambda)-1-2 e / p}\left(\int_{1}^{\infty} y^{b(\mu-\lambda)-1-2 e / q} \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y\right) d x\right]
$$

$:=I_{1}+I_{2}$

$$
\begin{align*}
& I(\varepsilon):=\varepsilon\left\{\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} \tilde{f}^{p}(x) d x\right\}^{1 / p}\left\{\int_{-\infty}^{\infty}|x|^{q[1-b(\mu-\lambda)]} \quad-\hat{x}\right) d x x^{1 / /}=1 ; \tag{2.5}\\
& \tilde{I}(\varepsilon):=\varepsilon \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{f}(x) \tilde{g}(y) \frac{(\min \{|x|,|y|\})^{2}}{\left(\max \{|x|,|,| k)^{\mu}\right.}\left|\ln \frac{x+x y}{\sigma^{2}+y^{2}}\right|^{a x d y} \rightarrow k\left(\varepsilon \rightarrow 0^{+}\right) \tag{2.6}
\end{align*}
$$

Setting $y=t x$ then

$$
\begin{aligned}
I_{1}= & 2 \varepsilon \int_{1}^{\infty} x^{a(\mu-\lambda)-1-2 \varepsilon / p}\left(\int_{1}^{\infty} y^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{x, y\})^{\lambda}}{(\max \{x, y\})^{\mu}} \ln \frac{x^{2}+y^{2}}{x^{2}-x y+y^{2}} d y\right) d x \\
= & 2 \varepsilon \int_{1}^{\infty} x^{-1-2 \varepsilon}\left(\int_{1 / x}^{\infty} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t\right) d x \\
= & 2 \varepsilon \int_{1}^{\infty} x^{-1-2 \varepsilon}\left(\int_{1}^{\infty} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t\right) d x \\
& +2 \varepsilon \int_{1}^{\infty} x^{-1-2 \varepsilon}\left(\int_{1 / x}^{1} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t\right) d x \\
= & \int_{1}^{\infty} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t \\
& +2 \varepsilon \int_{0}^{1} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}}\left(\int_{1 / t}^{\infty} x^{-1-2 \varepsilon} d x\right) d t
\end{aligned}
$$

$$
=\int_{1}^{\infty} t^{(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t
$$

$$
+\int_{0}^{1} t^{b(\mu-\lambda)-1-2 e / p} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t
$$

$$
=\int_{0}^{\infty} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{t^{2}-t+1^{2}} d t
$$

$$
+\int_{0}^{1}\left(t^{2 \varepsilon / p}-t^{-2 \varepsilon / q}\right) t^{(\mu(\mu-\lambda)-1} \frac{(\min \{1, t\})^{2}}{\left(\max \{1, t\}^{4}\right.} \ln \frac{t^{2}+1}{t^{2}-t+1}
$$

$$
\left.\left.=\int_{0}^{\infty} t^{b(\mu-\lambda)-1-2 \varepsilon / q} \frac{(\min \{1, t\})^{\lambda}}{(\max \{1, t\})^{\mu}} \ln \frac{t^{2}+1^{2}}{1^{2}}\right) t+\eta_{1}(\varepsilon) \lim _{\varepsilon \rightarrow 0^{-}} \eta_{1}(\varepsilon)=0\right)
$$

Similarly

$$
I_{2}=2 \varepsilon \int_{1}^{\infty} x^{a(\mu-\lambda)-1-2 \varepsilon / p}\left(y^{\alpha} \quad-1-2 \varepsilon / q \frac{(\mathrm{n},}{(\max \{x, y\})^{\lambda}} \ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}} d y\right) d x
$$

by lemma

$$
=\int_{0}^{\infty} t^{b(\mu-}\langle-2 \varepsilon / q) \frac{\left.\operatorname{in}\{1, t\})^{2}\right)}{\max \{t)^{n}} \ln \frac{t^{2}+t+1^{2}}{t^{2}+1^{2}} d t+\eta_{2}(\varepsilon),\left(\lim _{\varepsilon \rightarrow 0^{-}} \eta_{2}(\varepsilon)=0\right)
$$

$$
\begin{aligned}
& \tilde{I}(\varepsilon) I_{1}+\lambda \\
& =\frac{1}{a \lambda+b \mu} \frac{1}{v / q}\left[\psi(a \lambda+b \mu-2 \varepsilon / q)-\psi\left(\frac{a \lambda+b \mu-2 \varepsilon / q}{3}\right)\right] \\
& \quad+\frac{1}{a \lambda+b \mu-2 \varepsilon / q}\left[\psi\left(\frac{a \lambda+b \mu-2 \varepsilon / q}{6}\right)-\psi\left(\frac{a \lambda+b \mu-2 \varepsilon / q}{2}\right)\right] \\
& +\frac{2}{a \mu+b \lambda-2 \varepsilon / q}\left[\psi(a \mu+b \lambda-2 \varepsilon / q)-\psi\left(\frac{a \mu+b \lambda-2 \varepsilon / q}{3}\right)\right] \\
& \quad+\frac{1}{a \mu+b \lambda-2 \varepsilon / q}\left[\psi\left(\frac{a \mu+b \lambda-2 \varepsilon / q}{6}\right)-\psi\left(\frac{a \mu+b \lambda-2 \varepsilon / q}{2}\right)\right]+\eta_{1}(\varepsilon)+\eta_{2}(\varepsilon)
\end{aligned}
$$

$$
\lim _{n} \tilde{I}(\varepsilon)=k
$$

we know that $\psi^{(x)}$ is a continuous function, then $\lim _{\varepsilon \rightarrow 0^{+}} I(\varepsilon)=k$
The lemma is proved.

Lemma 2.4 If $\mathrm{f}(\mathrm{x})$ is a nonnegative measurable function, and 0
$<\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x<\infty$
Then

$$
\begin{align*}
J & :=\int_{-\infty}^{\infty}|y|^{p b(\mu-\lambda)-1}\left(\int_{-\infty}^{\infty} f(x) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d x\right)^{p} d y \\
& \leq k^{p} \int_{-\infty}^{\infty}|x|^{p(1-\alpha(\mu-\lambda))-1} f^{p}(x) d x \tag{2.7}
\end{align*}
$$

Proof By lemma 2.2,we find

$=k^{p} \int_{-\infty}^{\infty}|x|^{p l}$
3 MAIN RESV TS
Theorem 3.1 If p : both unctions, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$, are nonnegative measurable functions, and satisf $\mathrm{ad}^{0} \int_{-\infty}^{+\infty}|y|^{q / \mathrm{l}} \mathrm{g}^{-1}(x) d x<\infty$ then $0<\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\hat{\lambda})]^{-1}} f^{p}(x) d x<\infty$

$$
\begin{align*}
I^{*}:= & \int_{-\infty} f(x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2} \mid}{x^{2}+y^{2}}\right| d x d y \\
& <k\left(\int_{-\infty}^{\infty \infty}|x|^{[1]-\alpha(\mu-\lambda)]-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q[1-b(\mu-\lambda))^{-1}} g^{q}(x) d x\right)^{1 / q} \tag{3.1}
\end{align*}
$$

And

$$
\begin{align*}
& J=\int_{-\infty}^{\infty}|y|^{p b(\mu-\lambda)-1}\left(\int_{-\infty}^{\infty} f(x) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d x\right)^{p} d y \\
& <k^{p} \int_{-\infty}^{\infty}|x|^{p[1-a(\mu-\lambda)]-1} f^{p}(x) d x \tag{3.2}
\end{align*}
$$

Inequalities (3.1)and (3.2) are equivalent,and where the constant factors k and kp arethe best possible.

Proof If there exist a $y \in(-\infty, 0) \cup(0, \infty)$,such that (2.7) takes the form of equality, then there exists constants M and N , such that they are not all zero, and
$M \frac{|x|^{[1-\alpha(\mu-\lambda)](\rho-1)}}{|y|^{1-b(\mu-\lambda)}} f^{p}(x)=N \frac{|y|^{[1-b(\mu-\lambda)](q-1)}}{|x|^{1-\alpha(\mu-\lambda)}}$ a.e. $\operatorname{In}(-\infty, \infty)$
Hence, there exists a constant C, such that
$M|x|^{p[1-\alpha(\mu-\lambda)]} f^{p}(x)=N|y|^{q[1-b(\mu-\lambda)]}=C$ a.e. $\operatorname{In}(-\infty, \infty)$
It means that $\mathrm{M}=0$. In fact, if $M \neq 0$, then
$|x|^{p[1-\alpha(\mu-\hat{\lambda})]-1} f^{p}(x)=\frac{C}{M|x|}$ a.e. $\operatorname{In}(-\infty, \infty)$
which contradicts the fact that $0<\int_{-\infty}^{\infty}|x|^{p l-\alpha(\mu-\lambda)]-1} f^{p}(x) d x<\infty$ In the same y wo wim tha $N=$
0 : This is too a contradiction and hence by (2.7), we have (3.2). By Holders inequality th veight and (3.2), we have,

$$
\begin{align*}
I^{*} & :=\int_{-\infty}^{\infty}\left[|y|^{b(\mu-\lambda)-\frac{1}{p}} \int_{-\infty}^{\infty} f(x) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d x\right] \\
& \leq J^{1 / p}\left(\int_{-\infty}^{\infty}|y|^{y(1-b(\mu-\lambda)]-1} g^{q}(y) d y\right)^{1 / q} \tag{3.3}
\end{align*}
$$

Using (3.2),we have (3.1).
Setting
Setting
$g(y)=|y|^{p b(\mu-\lambda)-1}\left(\left.\int_{-\infty}^{\infty} f(x) \frac{(\min \{|x|,|y|\})^{i}}{(\max \{|x|,|y|\})^{\mu} \mid} \right\rvert\, \ln \frac{x^{2}+x y+y^{2}}{\text { an }}\right.$)
$J=\int_{-\infty}^{\infty}|y|^{q[1-b(\mu-\lambda)]-1} g^{q}(y) d y$ by (2 we h $\mathrm{e}^{J<\infty}$ if $\mathrm{J}=0$ then (3.2) is proved;
If $0<J<\infty$ we obtain

Inequalit 1)and $)^{2}$ ace equivalent.
If the onstai factor $\mathrm{h} \boldsymbol{n}$ (3.1) is not the best possible, then there exists a positive h (with $\mathrm{h}<$ k), such

$$
\begin{aligned}
& \int_{-\infty}^{\infty}-\sin (x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2} \mid}{x^{2}+y^{2}}\right| d x d y \\
& \quad<h\left(\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q[1-b(\mu-\lambda)]-1} g^{q}(x) d x\right)^{1 / q}
\end{aligned}
$$

For ${ }^{\varepsilon>0}$ by (2.5),using lemma 2.3 ,we have

$$
\begin{equation*}
k+o(1)<\varepsilon h\left(\int_{-\infty}^{\infty}|x|^{p(1-\alpha(\mu-\lambda)]-1} \tilde{f}^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q[1-b(\mu-\lambda)]-1} \tilde{g}^{q}(x) d x\right)^{1 / q}=h \tag{3.4}
\end{equation*}
$$

Hence we find, $\mathrm{k}+\mathrm{o}(1)<\mathrm{h}$: For ${ }^{\varepsilon} \rightarrow^{+}$it follows that ${ }^{k \leq h}$ which contradicts the fact that $\mathrm{h}<\mathrm{k}$.
Hence the constant k in (3.1) is the best possible.
Thus we complete the prove of the theorem.

Theorem 3.2 If $1>p>0$; both functions, $f(x)$ and $g(x)$, are nonnegative measurable functions, and satisfy

$$
\begin{align*}
& 0<\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x<\infty \text { and } 0<\int_{-\infty}^{\infty}|x|^{[l \mid-b s(\mu-\lambda)]-1} g^{q}(x) d x<\infty \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d x d y \\
& >k\left(\int_{-\infty}^{\infty}|x|^{[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q[1-b(\mu-\lambda)]-1} g^{q}(x) d x\right)^{1 / q} \tag{3.5}\\
& J>k^{p} \int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x \tag{3.6}
\end{align*}
$$

And

$$
\begin{align*}
L & :=\int_{-\infty}^{\infty}|x|^{q a(\mu-\lambda)-1}\left(\int_{-\infty}^{\infty} \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}} g(y)\right| d y\right)^{q} d x \\
& <k^{q} \int_{-\infty}^{\infty}|y|^{[(1-b(\mu-\lambda)]-1} g^{q}(y) d y \tag{3.7}
\end{align*}
$$

Inequalities (3.5),(3.6)and (3.7) are equivalent, and where the ons best possible
Proof By the reverse Holder's inequality and the same way, we can o in the reverseforms of (2.7)and (3.3).And then we deduce the (3.5),by the som way,we obtain (3.6).

Setting $\mathrm{g}(\mathrm{y})$ as the theorem 1, we obtain $\mathrm{J}>0$, if $J=\infty$, wiver_ve (3.6), if $0<J<\infty$, by (3.5)

$$
\left.\begin{array}{rl}
& \left.\int_{-\infty}^{\infty}|y|\right|^{q[1-b(\mu-\lambda)]-1} g^{q}(y) d y=J=I^{*} \\
> & k\left(\int_{-\infty}^{\infty}|x|^{p[1-\alpha(\mu-\lambda)]-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x| q[\mid 1-b(\mu-\lambda)]-1\right.
\end{array}(x) d x\right)=
$$

and we have (3.6), and inequalitie 3) an (3.6) ar equivalent. Setting

$\left.\int_{E_{n}}|y|^{[1-b(\lambda)}\right) \operatorname{rg}(y) d y>0$,
And
$[f(x)]_{n}=|x|^{p a(\mu-\lambda)-1}\left(\int_{E_{n}}[g(x)]_{n} \frac{\left(\min \{x|,|y|\})^{2}\right.}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y\right)^{q-1}$

$$
[L(x)]_{n}=\int_{E_{n}}|x|^{q \alpha(\mu-\lambda)-1}\left(\int_{E_{n}}[g(x)]_{n} \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{\mu} \mid}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right| d y\right)^{q} d x
$$

Then $\exists n_{0} \in \mathrm{~N}$, such that $n>n_{0}$; we have
$\int_{E_{z}}|y|^{q[1-b(\mu-\lambda)]-1} g^{q}(y) d y<\infty$,

In particular, from (4.1) we get the following particular cases:
1)If $\lambda+\mu=4$; then $k=2\left[\psi(2)-\psi\left(\frac{2}{3}\right)\right]+\frac{2}{3}\left[\psi\left(\frac{1}{3}\right)-\psi(1)\right]=2+\frac{3 \ln 3}{2}-\frac{\sqrt{3} \pi}{2}$, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{4-\lambda} \mid}\left|\ln \frac{x^{2}+x y+y^{2} \mid}{x^{2}+y^{2}}\right| d x d y \\
< & \left(2+\frac{3 \ln 3}{2}-\frac{\sqrt{3} \pi}{2}\right)\left(\int_{-\infty}^{\infty}|x|^{p(\lambda-1)-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q(\lambda-1)-1} g^{q}(x) d x\right)^{1 / q} \tag{4.2}
\end{align*}
$$

2) If $\lambda+\mu=3$; then $k=\frac{8}{3}\left[\psi\left(\frac{3}{2}\right)-\psi\left(\frac{1}{2}\right)\right]+\frac{4}{3}\left[\psi\left(\frac{1}{4}\right)-\psi\left(\frac{3}{4}\right)\right]=\frac{4}{3}(4-\pi)$,

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{4-\lambda}}\left|\ln \frac{x^{2}+x y+y^{2} \mid}{x^{2}+y^{2}}\right| d x d y \\
< & \left(2+\frac{3 \ln 3}{2}-\frac{\sqrt{3} \pi}{2}\right)\left(\int_{-\infty}^{\infty}|x|^{p(\lambda-1)-1} f^{p}(x) d x\right)^{1 / p}\left(\int_{-\infty}^{\infty}|x|^{q(\lambda-1)-1} g^{q}(x) d x\right)^{1 / q} \tag{4.3}
\end{align*}
$$

3) If $\lambda+\mu=2$; then $\left.k=4\left[\psi(1)-\psi\left(\frac{1}{3}\right)\right]+2\left[\psi\left(\frac{1}{6}\right)-\psi\left(\frac{1}{2}\right)\right]=\ln \right\rangle 2 \pi=-\sqrt{2} \pi$

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x) g(y) \frac{(\min \{|x|,|y|\})^{\lambda}}{(\max \{|x|,|y|\})^{2-\lambda}}\left|\ln \frac{x^{2}+x y+y^{2}}{x^{2}+y^{2}}\right|^{\prime} d y \\
< & \left(6 \ln 3+\frac{2 \pi}{\sqrt{3}}-\sqrt{2} \pi\right)\left(\int_{-\infty}^{\infty}|x|^{p \lambda-1} f^{p}(x) d x\right)^{1 / p}\left(\infty^{\infty}|x|^{\mid p^{\lambda-1}} g\right. \tag{4.4}
\end{align*}
$$

B) Let $\lambda=\mu$ in (3.1),then we have a 1 ntegral 1n aality) with the homogeneous kernel of 0 degree form as follows:

There

$$
\begin{equation*}
<k(\lambda)\left(\int_{-\infty}^{\infty}|x|^{p-1}{ }^{p}(\lambda)^{1 / p}\left(\int_{-\infty}^{\infty} \left\lvert\, \frac{\xi}{\lambda} g^{q}(x) d x\right.\right)^{1 / q}\right. \tag{4.5}
\end{equation*}
$$

$$
k(\lambda)=\frac{4}{2}\left[(\lambda)-\left(\frac{\lambda}{3}\right)\right]+\frac{\lambda}{\chi}\left[\left(\frac{\lambda}{6}\right)-\psi\left(\frac{\lambda}{2}\right)\right]
$$

we have we have
[6] XIE Zitian and ZHOU Qinghua,A note on a Property of psi -function, Wuhan University Journal of Natural Sciences, Wuhan University Journal of Natural Science, 2011,16(2),139-142.
[7] Bicheng Yang, On a Hilber-type integral inequality with a combination kerne and applications, Kyungpook Mathematical Journal, 2010(50),281-288
[8] Zitian Xie , Zheng Zeng, The Hilbert-type integral inequality with the system Kernel of $-\lambda$ degree homogeneous form, Kyungpook Mathematical Journal, 2010(50),297-306
[9] Xie Zitian, A New Hilbert-type integral inequality with the homogeneous kernel of real numberdegre, Journal of Jishou University (Natural Science Edition), 2011,32(4)26-30
[10] Zitian Xie and Bicheng Yang,A new Hilbert-type integral inequality with some narameters and its reverse,Kyungpook Mathematical Journal,2008,(48):93-100
[11] Zitian Xie,A new Hilbert-type inequality with the kernel of -30 -homogened University (Science edition),2007,45(3):369-373.
[12] Zitian Xie and Juming Murong,A rewerse Hilbert-type inequ ity some parameters,Journal of Jilin University (Science edition), 2008,46 (4):
[13] Zitian Xie,A new reverse Hilbert-type inequality with a b t constan cter J.Math.Appl, 2008,(343):1154-1160.
[14] Zheng Zeng and Zi-tian Xie, A Hilbert's inequality th bes nstant factor, Journal of Inequalities and Applications, 2009, Article ID 820176, pages doi:10.1) s/2009/820176
[15] Xie Zitian ,Zeng Zheng,On generality of Hilbert's equality wi'h best constant factor, Natural Science Journal of Xiangtan University, 2010, 32(3) :
[16] Zheng Zeng and Zitian Xie, On a new thert-type megral inequality with the integral in whole plane, Journal of Inequalities and Applic tion 2010, Article ID 256796, 8 pages, 2010. doi:10.1155/2010/256796
[17] Zitian Xie,Bicheng Yang, homogeneous kernel of real 2010,48(6) : 941-945.
[18] Zitian Xie and Fang Zhou, A reralization of a Hilbert-type inequality with the best constant factor, Journal f Sio n Normक University (Natural Science) 2009, 32(5): 626-629
[19] Xie Zitian,Zer Z Zneng, A H <-type integral inequality with the integral in whole plane and the kernel of -4 gree bogeneons form, i-manager's Journal on Mathematics, Vol. 1 No. 3, Julyseptember 2012,
[20] Ziti e,Zhe Zong,Qinghua Zhou, A new Hilbert-type integral inequality with the homoc neous kernel o real number-degree and its equivalent inequality forms,Journal of Jilin Univers (S ition), 2012,50(4), 693-697.
[21] Xie Z \quad ఇ.Zeng Zheng, A new half-discrete Hilbert-type inequality with the homogeneous kernel of degr - -4μ, Journal of Jishou University(Natural Science Edition), 2012,33 (2), 15-19

