
Expressivity and Control in Limited Reasoning

Marcelo Finger1 and Renata Wassermann2

Abstract. Real agents (natural or artificial) are limited
in their reasoning capabilities. In this paper, we present a
general framework for modeling limited reasoning based on
approximate reasoning and discuss its properties.

We start from Cadoli and Schaerf’s approximate entail-
ment. We first extend their system to deal with the full lan-
guage of propositional logic. A tableau inference system is pro-
posed for the extended system together with a sub-classical
semantics; it is shown that this new approximate reasoning
system is sound and complete with respect to this semantics.
We show how this system can be incrementally used to move
from one approximation to the next until the reasoning limi-
tation is reached.

We note that although the extension is more expressive
than the original system, it offers less control over the ap-
proximation process. We then suggest how we can recover
control while keeping the increased expressivity.

Keywords: Resource-Bounded Reasoning, Automated
Reasoning, Common-sense Reasoning, Deduction.

1 Introduction

Ideal agents know all the consequences of their beliefs. How-
ever, real agents are limited in their capabilities. Due to these
limitations, a real rational agent must devise some strategy
to make good use of the available resources.

Example 1 As a motivational example3 consider Paul, who
is finishing school and preparing himself for the final exams.
He studied several different subjects, like Mathematics, Biol-
ogy, Geography. His knowledge base contains (among others)
the beliefs in Figure 1.

When Paul gets the exam, the first question is: Do cows
have molar teeth?

Of course Paul cannot reason with all of his knowledge at
once. First he recalls what he knows about cows and about
molar teeth:

Cows eat grass.
Mammals have canine teeth or molar teeth.
From these two pieces of knowledge alone, he cannot answer

the question. Since all he knows (explicitly) about cows is that
they eat grass, he recalls what he knows about animals that
eat grass:

Animals that eat grass do not have canine teeth.
Animals that eat grass are mammals.

1 Department of Computer Science, University of São Paulo, Brazil.
mfinger@ime.usp.br

2 Department of Computer Science, University of São Paulo, Brazil.
renata@ime.usp.br

3 The example is based on an example of [9].

Triangles are polygons.
Triangles with one right angle are Pythagorean.
Rectangles are polygons.
Rectangles have four right angles.
Cows eat grass.
Dogs are carnivore.
Animals that eat grass do not have canine teeth.
Carnivorous animals are mammals.
Mammals have canine teeth or molar teeth.
Animals that eat grass are mammals.
Mammals are vertebrate.
Vertebrates are animals.
Brazil is in South America.
Volcanic soil is fertile.

Figure 1. Student’s knowledge base

From these, Paul can now derive that cows are mammals,
that mammals have canine teeth or molar teeth, but that cows
do not have canine teeth, hence cows have molar teeth.

The example shows that usually, a system does not have to
check its whole knowledge base in order to answer a query.
Moreover, it shows that the process of retrieving information
is made gradually, and not in a single step. If Paul had to go
too far in the process, he would not be able to find an answer,
since the time available for the exam is limited. But this does
not mean that if he was given more time later on, he would
start reasoning from scratch: his partial (or approximate) rea-
soning would be useful and he would be able to continue from
more or less where he stopped.

In this work we study a model of limited reasoning based
on Cadoli and Schaerf’s approximate entailment [9].

In particular, we study their family of logics S3. Its initial
formulation by Cadoli and Schaerf we call here CSS3. CSS3

only deals with formulas in negation normal form; it has been
used to formalize approximate diagnosis [11] and belief revi-
sion [4]. However, the knowledge had to be encoded in clausal
form. In this paper, we present an extension, which we call
KES3, that covers full propositional logic.

Why do we need full propositional logic? It happens that
each approximation step is characterized by a formal logic (see
below). The final step of the approximations is classical logic,
in which every formula is equivalent to one in clausal form.
However, in none of the intermediate systems such equiva-
lence holds.

S3 is in fact a family of logics parameterized by a set S of
relevant propositions. These logics approximate classical logic
(CL) in the following sense. Let P be a set of propositions and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357379701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S0 ⊆ S1 ⊆ . . . ⊆ P; let Th(L) indicate the set of theorems of
a logic. Then, by means of successive approximations:

Th(S3(∅)) ⊆ Th(S3(S
0)) ⊆ Th(S3(S

1)) ⊆ . . . ⊆ Th(S3(P))

where Th(S3(P)) = Th(CL) is the set of classical theorems.
From this property, we see that it suffices to prove a result in
some S3-approximation to have a classically valid theorem.

In [9], these approximate logics are defined by means of
valuation semantics and algorithms for testing satisfiability.
However, their formulation contained no strategy to incre-
mentally increase S towards the closest approximation dur-
ing theorem proving. We present a mechanism for incremental
approximation for KES3 that is also adapted to CSS3.

Here, though not in the original formulation, we consider
CSS3 equipped with a resolution-style inference system and
KES3 equipped with a KE-tableaux system [6]. The set S
plays the role of the limitation in reasoning capabilities. In
such a setting, two questions naturally arise:

• Given S, what is Th(S3(S))? This is what we call the ex-
pressivity of S3(S).

• How do we expand S to S′ ⊃ S in trying to prove a the-
orem? In other words, how do we control theorem proving
before we exhaust our limited resources in reasoning?

The first property is a static property of the system, and
the second is a dynamic one. The dynamic issue is to have
an anytime method: one that can be stopped at any time,
whenever we reach a limit for S-expansion.

We are going to show that, on the static side, the expres-
sivity of CSS3(S) is smaller than that of KES3(S). As a com-
pensation, we are going to show that CSS3(S) offers more
control than KES3(S) even when operating over clausal form
formulas. We then are going to extend KES3(S) to recover the
controlling capability, at the expense of reducing its static ex-
pressivity. The balance between expressivity and control is
thus characterized, and the system KES3(S) is shown to have
a fine-tuning property, allowing its regulation in the balance
of expressivity vs. control.

Due to the lack of space, all proofs are left for the full
version of the paper.

2 Approximate Inference

In this section, we present Cadoli and Schaerf’s system and
extend it to deal with full propositional logic.

Notation: Let P be a countable set of propositional letters.
We concentrate on the classical propositional language LC

formed by the usual boolean connectives → (implication), ∧
(conjunction), ∨ (disjunction) and ¬ (negation).

Throughout the paper, we use lowercase Latin letters to
denote propositional letters, lowercase Greek letters to denote
formulas, and uppercase letters (Greek or Latin) to denote
sets of formulas.

Let S ⊂ P be a finite set of propositional letters. We abuse
notation and write that, for any formula α ∈ LC , α ∈ S if all
its propositional letters are in S. A propositional valuation vp

is a function vp : P → {0, 1}.

2.1 Cadoli and Schaerf’s Proposal

We briefly present here the notion of approximate entailment
and summarize the main results obtained in [9].

Schaerf and Cadoli define two approximations of classical
entailment: |=1

S which is complete but not sound, and |=3
S

which is classically sound but incomplete. Here we deal only
with the latter. In the trivial extreme of approximate entail-
ment, i.e., when S = P, classical entailment is obtained.
At the other extreme, when S = ∅, |=3

S corresponds to
Levesque’s logic for explicit beliefs [8], which bears a connec-
tion to relevance logics such as those of Anderson and Belnap
[1].

In an S3 assignment, if p ∈ S, then p and ¬p get oppo-
site truth values, while if p 6∈ S, p and ¬p do not both get
0, but may both get 1. The name S3 comes from the three
possible truth assignments for pairs p, ¬p outside S. The set
of formulas for which we are testing entailment is assumed to
be in clausal form. Satisfiability, entailment, and validity are
defined in the usual way.

The following example illustrates the use of approximate
entailment. Since |=3

S is sound but incomplete, it can be used
to approximate |=, i.e., if for some S we have that B |=3

S α,
then B |= α.

Example 2 (Formalization of Example 1) Let B be (part
of) the student’s knowledge base and let α represent the
exam question: do cows have molar teeth?. We want to check
whether B |= α, where α = ¬cow ∨ molar-teeth:

B = {¬cow ∨ grass-eater,
¬dog∨ carnivore,
¬grass-eater ∨ ¬canine-teeth,
¬carnivore ∨ mammal,
¬mammal ∨ canine-teeth ∨ molar-teeth,
¬grass-eater ∨ mammal,
¬mammal ∨ vertebrate,
¬vertebrate ∨ animal}.

In [9] it is shown that for S = {grass-eater, mammal,
canine-teeth}, we have that B |=3

S α, hence B |= α.

Theorem 1 ([9]) There is an algorithm for deciding B |=3
S

α in O(|B|.|α|.2|S|) time.4

This algorithm can be seen as a resolution method applied
only to clauses where all literals are in S.

The good point of Schaerf and Cadoli’s system is that they
present an incremental algorithm to test for S3 entailment
as new elements are added to S. But there are two major
limitations in their results:

1. The system is restricted to→-free formulas and in negation
normal form. In [4] it is noted that the standard translation
of formulas into clausal form does not preserve truth-values
under the non-standard semantic of S3.

2. The set S must be guessed at each step of the approxima-
tion; no method is given for the atoms to be added to S.
Some heuristics for a specific application are presented in
[12], but nothing is said about the general case.

2.2 Extending Approximate Inference

In this section, we present an extension of S3 to full propo-
sitional logic. We first extend Cadoli and Schaerf’s semantics

4 The result above depends on a polynomial time satisfiability algo-
rithm for formulas in clausal form. This result has been extended
in [2] for formulas in negation normal form, but is not extendable
to formulas in arbitrary forms [3].

to all propositional formulas.

Definition 1 An S3-valuation v3
S is a function, v3

S : LC →
{0, 1}, that extends a propositional valuation vp (i.e., v3

S(p) =
vp(p)), satisfying the following restrictions:

(∧) v3
S(α ∧ β) = 1 ⇔ v3

S(α) = v3
S(β) = 1

(∨) v3
S(α ∨ β) = 0 ⇔ v3

S(α) = v3
S(β) = 0

(→) v3
S(α → β) = 0 ⇔ v3

S(α) = 1 and v3
S(β) = 0

(¬1) v3
S(¬α) = 0 ⇒ v3

S(α) = 1
(¬2) v3

S(¬α) = 1, α ∈ S ⇒ v3
S(α) = 0

Validity and satisfiability are defined as usual. The S3-
entailment relationship between a set of formulas B and a
formula α is represented as B |=3

S α and holds if every valu-
ation v3

S that simultaneously satisfies all formulas in B also
satisfies α.

Lemma 1 For any S, any S-valid formula in S3 is classically
valid.

Theorem 2 The following are properties that full S3 inherits
from classical logic:
• Modus Ponens is valid: α, α → β |=3

S β.
• The deduction theorem holds: B |=3

S α iff |=3
S

∧
B → α.

• The excluded middle is valid: |=3
S α ∨ ¬α.

Theorem 3 The following are non-classical properties of full
S3:
• The principle of contradiction is not valid: 6|=3

S ¬(α∧¬α).
• α → β is not equivalent to ¬α ∨ β.

A sound and complete axiomatization of the full S3 was
given in [7], where it was also compared with da Costa’s Para-
consistent Logics [5]. We now turn to a more computational
proof method based on KE-tableaux.

2.3 Tableaux for Approximate Inference

KE-tableaux were introduced by D’Agostino [6] as a princi-
pled computational improvement over Smullyan’s Semantic
Tableaux [10].

KE tableaux deal with T - and F -signed formulas: T α and
F α. For each connective, there are at least one T - and one F -
linear expansion rules. Linear expansion rules always have a
main premise, and may also have an auxiliary premise. They
may have one or two consequences. The only branching rule is
the Principle of Bivalence, stating that something cannot be
true and false at the same time. Figure 2 shows KE-tableau
expansion rules for classical logic.

The final line in Figure 2 presents the Principle of Bivalence
(PB), stating that any formula α is either true of false. The
use of PB is highly non-deterministic, so it is normally used
according to a branching heuristic: PB is used to generate
the auxiliary premise for a two-premised rule. To show that
α1, . . . , αn ` β we start with the initial tableau with a column
containing T α1, . . ., T αn, F β and develop the tableau by
applying the expansion rules in Figure 2. A branch is closed if
it contains both F α and T α, for some formula α. The sequent
is deducible if we can close all branches in the tableau.

T α → β
T α

T β

(T →1)

T α → β
F β

F α

(T →2)

F α → β
T α
F β

(F →)

F α ∧ β
T α
F β

(F∧1)

F α ∧ β
T β
F α

(F∧2)

T α ∧ β
T α
T β

(T∧)

T α ∨ β
F α
T β

(T∨1)

T α ∨ β
F β
T α

(T∨2)

F α ∨ β
F α
F β

(F∨)

T ¬α
F α

(T¬)
F ¬α
T α

(F¬)

T α F α
(PB)

Figure 2. KE-rules for classical logic

KES3 Tableaux. To construct a KE-tableau system for
S3, we keep all classical rules except rule (T ¬), which is
changed in KES3 to:

T ¬α

F α
provided α ∈ S

The (T ¬)-expansion of a branch is only allowed if it con-
tains its antecedent and the proviso is satisfied, that is, the
formula in question belongs to S. This makes our system im-
mediately subclassical, for any tableau that closes for KES3

also closes for classical logic. So KES3 is correct and incom-
plete with respect to classical logic.

Theorem 4 KES3 is sound and complete with respect to the
semantics presented in Section 2.2.

Let us examine an example.

Example 3 Figure 3 shows that → is not definable in terms
of ∨ and ¬ in KES3 for S = ∅.

Note that the left tableau for α → β ` ¬α ∨ β is exactly
the same as for classical logic.

1. T α → β
2. F ¬α ∨ β
3. F ¬α, from 2

4. F β , from 2

5. T α, from 3

6. T β , from 1,5

×

1. T ¬α ∨ β
2. F α → β
3. T α, from 2
4. F β, from 2
5. T ¬α, from 1,4

?

Figure 3. Undefinability of → in terms of ∨, ¬ in KES3

However, the tableau on the right for ¬α ∨ β ` α → β
cannot be closed for the rule on T ¬α cannot be applied for
α 6∈ S. We get stuck, as there are no further rules to be
applied, meaning that the input sequent is not provable.

One important feature of the open tableau in Figure 3 is
that if, at the point that it gets stuck, we insert the propo-
sitional letters of α in the set S, the tableau expansion can

proceed as in classical logic. In fact, the tableau then closes af-
ter a single step. This shows that the sequent ¬α∨β ` α → β
is deducible if α ∈ S (and nothing needs to be said about β).

What we have actually done is to change the logic we are
operating with during the KE-tableau expansion by adding a
formula to S. That formula was chosen so that a stuck tableau
could proceed classically. This actually makes us move one
step closer to classical logic. S works as the limited resource
that controls the proof. Classical logic is reached when all
atoms are in S.

This simple procedure is the KES3 incremental way of do-
ing approximate theorem proving.

3 Expressivity Gains and Control Losses

In this section we compare KES3 with the Cadoli-Schaerf
(CSS3) method with regards to expressivity (i.e. the theo-
rems proved for the same set S) and to the control that the
set S exerts over the proof development.

3.1 Dynamic Properties

A property that tells us in which direction to expand our
limited resource to achieve a goal is a dynamic property of the
method. KES3 provides a method for expanding S in trying
to prove a theorem, namely: “If a branch is closed due to a
blocked use of (T¬), add the blocking formula α to S, so as to
unblock that branch.”

Cadoli and Schaerf did not provide a dynamic extension for
their system. However, to be honest with their excellent work,
such a dynamic behaviour can be easily provided in analogy
to ours. In CSS3, we can resolve α∨ l with ¬l∨β only if l ∈ S,
which gives us the dynamic rule: “If resolution is blocked due
to the absence of resolvents in S, add a potential resolvent l
to S, so as to unblock resolution.”

With that formulation, we compare the dynamics of KES3

and CSS3 for conjunctive normal form formulas. We note that
both methods are highly non-deterministic in their behaviour
of choosing branch expansion rules and resolvents.

Suppose the size of a CSS3 proof is measured by the number
of resolution steps, and the size of a KES3 is measured by the
number of expansion rules applied.

Theorem 5 Let B, α be a set of clauses and a clause. In a
proof of B ` α, KES3 can linearly simulate the dynamics of
CSS3, generating the same S.

The theorem is proved by rewriting the resolution steps as
application of inference rules in a KES3 tableau. Also, in [9]
every atom in α was implicitly considered part of S, so in
order to compare both systems, we have to start with those
atoms in S. Every possible approximation S0 ⊂ . . . ⊂ Sk in
CSS3 is also possible in KES3. However, because KES3 deals
with a larger language, several transformational tricks can be
used in KES3 to improve its static expressivity which cannot
be simulated by CSS3.

3.2 Static Expressivity

The static expressivity of a method is the set of theorems it
can prove with a fixed limited resource. In our case, we are

going to compare the set of theorems that can be proved with
a given S.

The idea is to use the larger language of KES3 to rewrite
¬l ∨ α as l → α. Since α may be a large disjunction, we may
not know a priori which negative literal to transform, so this
transformation is assumed to be applied “on the fly” during
theorem proving.

We can now show that for a fixed S, and formulas in →-
clausal form, KES3 can prove more theorems.

Theorem 6 Let B, α be a set of formulas and a formula in
CNF. Suppose CSS3 proves B ` α with S. Suppose KE applies
the transformation above to clauses with one or more negative
literals. Then KES3 proves B ` α in time linear w.r.t. the
time needed by CSS3, with an S′ ⊆ S; it is possible that S′ ⊂
S.

Proof Sketch: It suffices to note that, in the simulation
of CSS3-resolution, one needs not always add l to S′ (see
Figure 4). �

This does

T ¬l ∨ α
T l ∨ β
F α ∨ β

F α
F β
T ¬l

F l (l ∈ S)
T l
×

T l → α
T l ∨ β
F α ∨ β

F α
F β
F l
T l
×

Figure 4. Simulation of CSS3 by KES3

not only mean
that the static
expressivity
of KES3 is
higher, but also
that CSS3 may
not simulate
any expansion
S0 ⊂ . . . ⊂ Sk

in KES3: KES3

may proceed
without the
addition of new
elements to S

at points where CSS3 is surely blocked and needs S to be
expanded.

Example 4 Example 2 is redone below according to KES3.
The ∨-clauses have been a priori transformed to →, but the
same could have been done on-the-fly. Above the horizontal
line is the knowledge base B and the denial of α. The branch-
ing rule PB is applied over canine-teeth after line 14.

S = ∅
1. T cow → grass-eater
2. T dog → carnivore
3. T canine-teeth →¬grass-eater
4. T carnivore → mammal
5. T mammal → (canine-teeth ∨ molar-teeth)
6. T grass-eater → mammal
7. T mammal → vertebrate
8. T vertebrate → animal}
9. F cow → molar-teeth

10. T cow F→ : 9

11. F molar-teeth F→ : 9

12. T grass-eater T→ : 1, 10

13. T mammal T→ : 6, 12

14. T canine-teeth ∨ molar-teeth T→ : 1, 10

15’. T canine-teeth PB:T 15”. F canine-teeth PB:F

16’. T ¬grass-eater T→ : 3, 15′ 16”. T molar-teeth
S ={grass-eater} T∨ :14, 15′′

17’. F grass-eater T¬ : 16′ ×
×

Note that the tableau starts with S = ∅. After line 16′, it be-
comes blocked and S has to be expanded to allow for its clos-
ing. In that way, the tableau ends up with S ={grass-eater},
a subset from the S computed in Example 2. It is interesting
to note that this agrees with our motivational example, where
Paul, besides his knowledge about cows and molar teeth, only
had to take into account his knowledge about grass eaters.

What was the price payed for such an increase of static
expressivity? The answer is: loss of control in the deduction
process.

The sensitivity of a proof method depends on the set of
new theorems ∆T we get when we move from S to S ∪∆S.
Proof method 1 has more control than method 2 if it has more
sensitivity, that is, if for the same ∆S, ∆T1 ⊆ ∆T2. Note that
sensitivity and control are also dynamic properties.

In CSS3, the set S has an effect over (i.e., controls) the set
of atoms over which resolution can be applied. In KES3, the
set S controls the formulas over which (T¬) can be applied; by
applying the transformation above, we eliminate ¬-formulas
and thus reduce the control of S on KES3 proofs. If we add
to S an atom that only occurs non-negated in B ` α, no
new theorems are obtained in KES3. We have thus shown the
following:

Theorem 7

• KES3 is more expressive than CSS3.
• CSS3 has more control than KES3.

3.3 Recovering Control

In the previous section, we have seen that although the ex-
tension proposed to S3 allows for more expressivity, we end
up losing control over the resources used. Cadoli and Schaerf
use resolution as the only inference rule and the set S deter-
mines the set of atoms over which resolution may be applied.
In our system, modus ponens is valid even if S is empty, i.e.,
α → β, β `KES3 β.

If we want to regain control, we can add a restriction to the
application of modus ponens, so that we always need part of
the formulas to be in S. We end up with rules like these:

T α → β
T α

T β if α ∈ ST
→

T ¬α

F α if α ∈ ST
¬

where S = ST
¬ ∪ST

→. This blocks the use of the transformation
rule in Theorem 6, and the two systems can clearly simulate
each other.

Therefore, the systems now have the same static expressiv-
ity, and the same control over the approximations. Further-
more, we see that the KES3 system can be fine-tuned for more
expressivity or more control, depending on the application.

Example 5 If we apply the new rule (T →) to Example 4,
every line in which (T →) was applied would cause an expan-
sion in ST

→ at each such line, namely:

• cow is added at line 12
• grass-eater is added at line 13
• mammal is added at line 14

• canine-teeth is added at line 15′

And since in [9] every atom in α was implicitly considered
part of S, we end up with the same S-set as in Example 2.

4 Conclusions and future work

We have presented an extension of Cadoli and Schaerf’s S3

system that deals with full propositional logic. We have given
a proof method based on KE-tableaux, where the proofs can
be built incrementally when we add new atoms to the context
set S. We have shown that while our system is reacher in terms
of expressivity, it allows for less control in the approximation.
We have then shown that control can be regained without
loosing the expressivity.

Ongoing work includes the implementation of a theorem
prover based on KES3.

ACKNOWLEDGEMENTS

Marcelo Finger is partly supported by the Brazilian Research
Council (CNPq), grant PQ 300597/95-5. Renata Wassermann
is partly supported by CNPq grant 68.0099/01-8. This work
was developed under the CNPq project APQ 468765/00-0.

REFERENCES
[1] A.R Anderson and N.D Belnap, Entailment: The Logic of

Relevance and Necessity, Vol. 1, Princeton University Press,
1975.

[2] Marco Cadoli and Marco Schaerf, ‘Approximate inference in
default logic and circumscription’, Fundamenta Informaticae,
23, 123–143, (1995).

[3] Marco Cadoli and Marco Schaerf, ‘The complexity of entail-
ment in propositional multivalued logics’, Annals of Mathe-
matics and Artificial Intelligence, 18(1), 29–50, (1996).

[4] Samir Chopra, Rohit Parikh, and Renata Wassermann, ‘Ap-
proximate belief revision’, Logic Journal of the IGPL, 9(6),
755–768, (2001).

[5] Newton C.A. da Costa, ‘Calculs propositionnels pour les
systémes formels inconsistants’, Comptes Rendus d’Academie
des Sciences de Paris, 257, (1963).

[6] Marcello D’Agostino, ‘Are tableaux an improvement on truth-
tables? — cut-free proofs and bivalence’, Journal of Logic,
Language and Information, 1, 235–252, (1992).

[7] Marcelo Finger and Renata Wassermann, ‘Approximate rea-
soning and paraconsistency’, in 8th Workshop on Logic, Lan-
guage, Information and Computation (WoLLIC’2001), pp.
77–86, (July 31–August 3 2001).

[8] Hector Levesque, ‘A logic of implicit and explicit belief’, in
Proceedings of AAAI-84, (1984).

[9] Marco Schaerf and Marco Cadoli, ‘Tractable reasoning via ap-
proximation’, Artificial Intelligence, 74(2), 249–310, (1995).

[10] Raymond M. Smullyan, First-Order Logic, Springer-Verlag,
1968.

[11] Annette ten Teije and Frank van Harmelen, ‘Computing ap-
proximate diagnoses by using approximate entailment’, in
Proceedings of KR’96, (1996).

[12] Annette ten Teije and Frank van Harmelen, ‘Exploiting do-
main knowledge for approximate diagnosis’, in Proceedings of
the Fifteenth International Joint Conference on Artificial In-
telligence (IJCAI’97), ed., M. Pollack, pp. 454–459, Nagoya,
Japan, (August 1997).

