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Three-Dimensional Analysis of 
Ice Sheet Indentation: Lower-
Bound Solutions 
The methods of plastic limit analysis are used to determine the indentation pressures 
of aflat rigid punch on a columnar ice sheet. The ice sheet is idealized as a semi-
infinite layer of elastic-perfectly plastic material Representative strength parameters 
of columnar sea ice are used to define anisotropic yield criteria for the ice sheet. 
The anisotropic yield criteria reflect the variations in mechanical properties caused 
by the horizontal orientation of the c-axis of sea ice in the columnar zone. Numerical 
results are obtained by applying the lower-bound theorem of plastic limit analysis. 
A three-dimensional stress field is optimized for a given ice condition for various 
indentor sizes. The effects of varying the aspect ratio (defined as the ratio ofindentor 
width to ice thickness) are then addressed. A comparison of results for intermediate 
aspect ratios to results for extremely high (plane stress) and extremely low (plane 
strain) aspect ratios is presented. It is found that the transition from plane stress to 
plane strain is governed by the tensile strength of the ice medium. 

Introduction 

The methods of plastic limit analysis are used to calculate 
the pressures required to indent an ice sheet. Lower-bound 
solutions are obtained by optimizing a three-dimensional 
stress field in order to determine the indentation pressures 
which cause yielding of the ice medium. The numerical results 
thus indicate the minimum loads required to initiate penetra­
tion of the indentor into the edge of the ice sheet. The failure 
mechanism of the ice is assumed to be purely plastic defor­
mation and the conditions of the lower-bound theorem are 
thus strictly satisfied. 

The failure envelopes or yield criteria used to describe ice 
strength are highly dependent upon strain rate. The use of a 
particular failure envelope thus corresponds to a given ice 
type, temperature and strain rate. The Von Mises and the 
Drucker-Prager yield criteria are used to compare the three-
dimensional lower-bound results to previous limit analysis 
results obtained using these criteria. Anisotropic criteria, ap­
plicable to columnar sea ice are also used to study the effects 
of indentation aspect ratios. 

The stress field addressed in this study includes a rigorous 
three-dimensional elasticity solution for a semi-infinite sheet 
subjected to a distributed edge load. For certain stress states 
and higher strain rates, the failure envelope for ice may 
actually correspond to fracture rather than ductile flow. Thus, 
a knowledge of the state of stress in the sheet in the elastic 
range provides much insight as to the expected modes of 
failure of the ice. This also provides a means of assessing the 
limitations of the assumption of plastic deformation. 
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Material Idealization 

The fracture and plastic flow characteristics of ice is de­
pendent upon the state of stress, substructure, temperature 
and strain rate. In this study, ice is considered as an elastic-
perfectly plastic material. The stress-strain diagram consists 
of an initial straight line with stress directly proportional to 
strain and a post failure line of constant stress. The yield 
criterion defines the stress state for transition from elastic to 
perfectly plastic deformation. 

In the columnar zone of an ice sheet the c-axes of the ice 
crystals are generally randomly oriented in the plane of the 
ice sheet [1], The mechanical properties are then isotropic in 
the plane of the sheet. The degree of elastic anisotropy, which 
is caused by the preferred orientation of the c-axes, is expected 
to vary from about 10 to 30 percent, depending on the state 
of stress [2]. This elastic anisotropy is ignored in determining 
the three-dimensional elasticity solutions. The anisotropic 
nature of the failure of the ice, however, is incorporated in 
the selected yield functions. 

The Von Mises yield criterion is first used in order to 
provide a direct comparison with previous three-dimensional 
upper-bound solutions. This criterion is isotropic and in 
principal stress space defines a circular cylinder [3], given by 

h = ViKS, - S2)
2 + (52 - S3)2!] + (Si - S,f] = K2 (1) 

where J2 is the second invariant of the deviatoric stress tensor, 
Si, Si, and 53 are the principal stresses [4], and Kis a strength 
parameter constant. 

The Von Mises criterion indicates that material yield is. 
independent of hydrostatic stress and does not, in general, 
accurately reflect the strength of ice. However, if the effective 
strain rates are very low, there is no significant difference 
between tensile strength and compressive strength [5]. The 
Von Mises criterion may then be adequate for these limited 
conditions provided there is no significant anisotropy. 
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Drucker and Prager [6] suggested a generalized Von Mises 
function often used in soil mechanics, defined by 

aI+J2"
2 = K (2) 

where / is the sum of principal stresses and a and K are 
constants. This criterion is used in the following to address 
the effects of hydrostatic stress on indentation pressures. The 
sensitivity of failure to hydrostatic stress is reflected by the 
coefficient a, and for a = 0 reduces to the Von Mises criterion. 

In the following indentation study, it is convenient to 
normalize the stresses with respect to the absolute value of 
the uniaxial compression strength, C0. The normalized 
Drucker-Prager yield condition is then 

oJ + J2'
/2/C„ = V3/3 - a (3) 

where / = I/CB. Note that the Drucker-Prager criterion is a 
two-parameter function, and normalizing the stresses with 
respect to C0 requires the relation 

K = (V3/3 - a)C0 (4) 

By forcing the uniaxial compression strength to be properly 
reflected, a single independent parameter, a, is required to 
define the yield function. As is discussed later, two important 
characteristics of a particular yield function are the uniaxial 
tension strength and the confined compression strength. If 
the uniaxial tension strength is used to determine the value 
for a, then the confined compression strength is also deter­
mined. For a given uniaxial compression strength, as the 
tensile strength decreases the confined compression strength 
necessarily increases. For indentation problems this is often a 
crucial limitation of the Drucker-Prager criterion. 

Finally, an anisotropic failure criterion is used to describe 
the failure envelope of columnar sea ice. Reinicke and Ralston 
[7] suggested a special case of Pariseau's n-type yield function 
[8] in the form 

/"=a,[(<7},-<Tz)
2 + ( ^ - o > ) 2 ] 

+ a3(ox - ayf + a4(rlz + T2
yz) 

+ 06T2xy+ a7((Tx+ Oy) + a9((Tz) ~ 1 

= 0 (5) 

where a and T denote normal and shear stresses, respectively, 
Oi, a3, a4, a7 and a9 are coefficients and a6 = 2(a, + 2a3). The 
material so described is isotropic in the x-y plane which is the 
plane of the ice sheet for the cases discussed in this paper. 
The anisotropic yield function for columnar sea ice is then 
defined by 5 independent material strength coefficients. 

Normalizing the stresses with respect to the uniaxial 
compression strength, C„, yields 

/ = at[(iy - a2f + (JA- - azf] 

+ a3{5x - 5y)2 + aA(fX2 + T2,Z) 

+ a6Txy + a7{5x + 5y) 

+ a9(<rz) - 1 

= 0 (6) 

where a = a/C0, f = T/C0 and 

a.\ = a\C2, a3 = a3C0
2, 

&4 = Q4C0 , @6 = ClsCo , 

a7 = a7C0, a9 = a9C0 

Forcing the yield function to properly reflect uniaxial 
compression requires 

a7 = at + a3 - 1 (7) 

Equation (6) is used in the following indentation analysis. 
In addition to being able to reflect anisotropic strength char­
acteristics, it is also somewhat more flexible in describing 
various shapes of the failure envelope. For example, for 
conditions of plane stress, various ratios of uniaxial tension 
and confined compression strength can be achieved. Reinicke 
and Ralston [7], Ralston [9], and Timco and Frederking [10] 
describe methods for determining the coefficients of equation 
(5). 

Limit Analysis 

In plastic limit analysis, the limit load is defined as the 
plastic collapse load of an ideal body which has the following 
properties [11]: (a) the material exhibits perfect plasticity, 
(b) the yield surface is convex, and (c) changes in geometry 
of the body at the limit load are negligible. Given such a 
material, the lower-bound limit theorem is stated as [12]: 

Collapse will not occur if any state of stress can be found 
which satisfies equilibrium and the boundary conditions on 
stress and for which all stress points lie inside the yield 
surface. 

Determining lower-bound solutions for the indentation 
problem thus involves determining stress fields within the 
material which satisfies equilibrium and the boundary con­
dition throughout the material without violating the yield 
criterion. Discontinuous stresses are permitted provided equi­
librium is maintained. This proves to be highly useful as will 
be discussed in the following sections. 

Three-Dimensional Stress Field 

Consider now a semi-infinite plate subjected to a distributed 
load induced by contact of an indentor as shown in Fig. 1. 
The plate lies on the x-y plane with the origin located at the 
center of the plate's edge. The plate thickness is 2c and the 
width of the contact zone is 2b. 

A three-dimensional elasticity solution for the stresses 
through the sheet is first obtained by assuming a uniform 
pressure over the entire contact area. The elasticity solution 
satisfies equilibrium and the boundary conditions at all points. 
This solution is based on the generalized theory of plane stress 
proposed by Clark and Reissner [13]. Clark [14] applied this 
three-dimensional correction theory for the case of a sinusoi-
dally varying normal edge load acting parallel to the plane of 
the sheet. The edge stress is distributed uniformly along the 
plate thickness. The normal edge stress is then given by 

Uy = ff„COS aX 

where <?„ is a constant and a = 2^/1, where 1 is the periodic 
length. The three-dimensional stresses have the approximate 

Fig. 1 Indentation geometry for a semi-infinite sheet 
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form 

jNxx, N„, Nxy) Rxx, R„, Rxy) 
°X, <Ty, TXy) = — + — Z (z) (8) 

(Txz, Tyz) = — Z (z) 

«r,.= - ^ Z ( z ) 

where 

Z(z) = - - I 1 -

(9) 

(10) 

(11) 

and Z ' and Z" are the first and second derivatives of Z with 
respect to z. The stress resultant quantities, Nxx, . . . . T are 
functions of the coordinates x and y. This form of the linear 
elastic solutions is consistent with the three-dimensional equi­
librium equation boundary conditions. Using the solutions 
provided by Clark for the sinusoidal normal edge load, solu­
tions are obtained for uniformly distributed load by means of 
a Fourier series. 

The periodic system shown in Fig. 2 is approximated by 
the Fourier series 

2b 
T 

2 . (2nirb 
fix) = — + £ — sin( —^- icosl 

(2m 
(12) 

where Tis the period of the system. Note that the period must 
be long enough such that in regions near the applied load, the 
effects of the adjacent applied loads are negligible. With a 
system period of T = 10b, several terms (approximately 40) 
must be used to closely approximate the desired stress distri­
bution. In this analysis a period of 106 is normally adequate 
although for higher values of c/b the period must be increased. 
In fact as plane strain conditions are approached, the ratio 
c/b approaches infinity and this method becomes difficult to 
apply since more terms in the Fourier series are required. 

It is convenient to normalize the distance parameters with 
respect to the indentor half-width b; that is, let 

x = x/b, y = y/b, z = z/b, c/b (13) 

Also, by normalizing the natural period y = T/b and letting 
y = 1/Y, then equation (12) takes the form 

fix) = 2-y + X — sin(2«ir7)cos(2«7r-yx) (14) 

As an example of this technique, the Fourier series expan­
sion for a distributed indentor pressure of a is shown in 
Fig. 3 for the case of c = 1.0. Normal stresses at the edge, 
ayix, 0, 0) and at a depth into the plate, ayix, y — 1, 0) are 
shown in the figure. In Fig. 4, values for the transverse normal 
stresses at the center of the edge of the sheet are shown for c 
values of 0.5, 1.0, 2.0, and 5.0. 
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Fig. 3 Stress distribution for a1 at y = 0 and y = 1.0 
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Fig. 2 Periodic system approximated by a Fourier series 

Fig. 4 Stress distribution for ax at y = 0 and z = 0 

An important aspect of this solution is the development of 
transverse normal stresses within the sheet. These stresses are 
compressive in areas beneath the indentor with a transition 
to tensile stress beyond the indentor. The aspect ratio, defined 
as the ratio of indentor width to plate thickness, significantly 
influences the magnitude of the transverse stresses, as shown 
in Fig. 4. Maximum transverse normal stresses occur at the 
center of the edge of the plate. 

The magnitude of tensile stresses are not critical for a Von 
Mises-type material because such materials have equal tension 
and compression strengths. However, for material which are 
relatively weak in tension, these transverse normal tensile 
stresses do influence indentation strength, in some instances 
markedly. Because of the relative weakness of ice in tension 
and because tensile failure tends to be more brittle, particu­
larly at higher strain rates, the governing failure mode may 
be horizontal splitting of the ice sheet. In fact, in particular 
instances the plane strain indentation strength cannot be 
achieved because of the transverse splitting. This is in agree­
ment with many experimental findings [15, 16]. 

Optimum Stress Fields 

With a uniform distribution of pressure across the thickness 
of the plate edge, the outer layers of the sheet are limited to 
their plane stress indentation strength. Thus, in order to 
increase the lower bound, a nonuniform distribution of pres­
sure across the edge thickness is necessary. This is possible 
because the inner layers beneath the indentor are confined. 
At this point, we take advantage of the lower-bound theorem 
for which discontinuous stress fields are permitted. 
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Such a stress field can readily be attained by superimposing 
on the three-dimensional elasticity solution a plane stress 
solution in the outer layers of thickness D as shown in Fig. 5. 
Note that this solution is statically admissible since equilib­
rium is everywhere maintained including at the plane of 
discontinuity. The total edge pressure now includes an interior 
stress level, <r, and an edge stress level, <s — a„. 

The lower-bound solution now involves numerically optim­
izing the total indentation pressure with respect to D and a0. 
In the following section, the material stress state is allowed to 
just reach yield and thus the lower bound values may be the 
collapse values. 

There is, of course, no limit to the number of steps permit­
ted in the applied pressure intensity. It was found that com­
bining a uniaxial compression stress of a,,' directly below the 
indentor with the stress field shown in Fig. 6 gives an im­
proved lower bound. This configuration is used to optimize 
the indentation pressures discussed in the following section. 
Indentation pressures are calculated and numerically opti­
mized for values of a,,, a,,', and a„". 

Lower-Bound Solutions 

The Von Mises yield criterion is first used to study the 
effect of aspect ratios on the indentor pressures. Results are 
shown in Fig. 7 in which the pressures are normalized with 
respect to the unconfined compression strength. The results 
compare very well with upper-bound solutions obtained by 
Croasdale et al. [17]. 

Frederking and Gold [18] conducted tests to investigate the 
effects of aspect ratio on indentation pressures. Their tests 
were conducted using constant rates of indentation. As sug­
gested by Michel and Toussaint [19], an empirical relation 
for the effective constant strain rate e can be used 

V_ 
8b 

(15) 

where V is the indentation velocity and b is the indentation 
half-width. By using equation (15) and normalizing the results 
with respect to the uniaxial compression strength for the 
appropriate effective strain rate, the data points in Fig. 7 are 
obtained. 

The numerical results compare very well with the adjusted 
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Fig. 6 Improved stress field for optimization 
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Fig. 7 Normalized indentation pressures using the Von Mises yield crite­
rion 

experimental data. The effective strain rates were of the order 
of 10~7 s-1. For these relatively low strain rates, the Von Mises 
criterion evidently adequately reflects the ice failure. This is 
not true in general however because at higher strain rates the 
compression strength/tension strength ratios vary signifi­
cantly. 

As can be seen in the figure, only when the aspect ratio is 
less than 1.0 does the aspect ratio significantly affect the 
indentation pressure for a constant effective strain rate. For 
constant indentation velocity, however, the effect of the aspect 
ratio is more significant because the effective strain rate (and 
therefore the ice strength) changes as a function of aspect 
ratio. 

At higher strain rates, the relative weakness of ice in tension 
must be addressed. To study this effect, the Drucker-Prager 
criterion is used to calculate indentation pressures. Results 
are presented in Fig. 8 for various values of a of equation (3). 
Note that a particular value of a defines the relative tensile 
strength, T, and relative confined compression strength, R. 
Also shown in the figure are results from previous two-
dimensional indentation solutions [20]. 

Some interesting aspects of the three-dimensional nature of 
the indentation problem are reflected in the figure. As a 
increases, the tensile strength of the material decreases. For 
aspect ratios near 1.0, significant transverse normal stresses, 
(T2, develop but decrease as the aspect ratio decreases (Fig. 4). 
Smaller aspect ratios are required for indentation pressures to 
increase for larger values of a (smaller tensile strengths). Also, 
as a increases, the confined compression strength increases 
resulting in increased values for the plane stress indentation 
pressures. It is apparent from this figure that the transition 
from plane stress to plane strain is highly dependent upon the 
tensile strength of the sheet. 

Results using the anisotropic yield criterion of equation (5) 
are presented in Fig. 9. Strength parameters suggested by 
Ralston [21] were used where a, = 1.77, a3 = 3.57, and 
<z9 = —3.54. The strength parameter a9 reflects the effect of <rz 
on material yield. This parameter governs the transition from 
two-dimensional plane strain conditions. This is also shown 
in the figure by results for a9 = 1.0. Also shown in the figure 
are the results from Michel and Toussaint [19] for strain rates 
of e = 2.5 X 10-4 s"1. At this strain rate level tension and 
compression strength vary significantly. 

Qualitatively, the results are very similar to the results using 
the Drucker-Prager criterion. In both cases, the indentation 
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pressures do not exceed the plane stress values unless the 
aspect ratio is well below 2.0. Solutions rapidly approach the 
plane strain values for aspect ratios below approximately 0.2. 
This transition is highly dependent on the yield function used 
and is extremely sensitive to the tensile strength of the ice 
medium. 

To demonstrate the dependency of indentation pressures 
on transverse tensile strength, yield criteria discussed by 
Timco and Frederking [10] are employed. The coefficients of 
equation (5) can be established by requiring proper reflection 
for the following strengths: (a) uniaxial compression 
strength in the x (or y) direction; (b) uniaxial compression 
strength in the z direction; (c) confined compression 
strengths in the x-y plane; (d) shear strength in the x-y 
plane; and (c) shear strength in the x-z (or y-z) plane. 

The following coefficients are thus obtained for dis­
continuous columnar grained ice at — 13°C at a strain rate of 
2 x 10-4 s"1: a, = 1.2 MPa"2, a3 = MPaT2, a4 = 3.2 MPa~2, 
a7 = 3.9 MPa"1 and ag = 7.7 MPa~'. The corresponding 
tensile strength in the z direction normalized with respect to 
the uniaxial compressive strength in the x direction is Tz = 
0.03. The calculated indentation pressures for various aspect 
ratios are presented in Fig. 10. Note that this very low tensile 
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strength prohibits any increase in indentation pressures above 
the plane stress values (unless £ < 0.2). 

Also shown in the figure are results for Tz = 0.18 and 
Tz = 1.0. The corresponding failure criteria coefficients are 
found by maintaining the same uniaxial and confined 
compression strength conditions (a), (b), and (c) mentioned 
previously. The tensile strengths are varied by changing only 
the shear strengths, conditions (d) and (e). Note that by 
increasing Tz to 0.1, an increase in indentation pressure 
becomes significant as c becomes less than about 0.5. When 
Tz = 1.0, increases in indentation pressure become apprecia­
ble as c becomes less than 1.0. It is evident that transverse 
tensile strength is an important parameter in quantifying 
indentation pressure for intermediate aspect ratios. 

Conclusions 

To date, most efforts to analytically determine ice inden­
tation pressures using plastic limit analysis have assumed 
conditions of either plane stress or plane strain. Plane stress 
results can be considerably higher than the uniaxial compres­
sion strength and generally compare favorably with carefully 
controlled experimental results for higher aspect ratios. For 
the analysis of plane strain conditions, it is assumed that the 
necessary transverse normal compressive stresses exist and 
comparison with experimental results is somewhat less favor­
able. 

A three-dimensional analysis provides a method for describ­
ing the stress state of the indented medium for arbitrary aspect 
ratios. Elasticity solutions indicate that significant transverse 
tensile stresses result as the plane strain conditions are ap­
proached. The failure mechanism for intermediate aspect 
ratios may therefore be transverse horizontal splitting for 
lower aspect ratios and the plastic limit pressure for plane 
strain indentation conditions may not be an adequate ap­
proximation. 

In contrast to two-dimensional indentation studies, the 
indentation pressures are shown to be highly dependent upon 
tensile strength. In order to predict ice indentation pressures 
for intermediate aspect ratios, it is important to properly 
establish the ice strength characteristics in the tensile, tensile/ 
compression, and the compression/compression regimes. 
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